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Abstract 
 
Aiming at the problem of limited imaging quality of monomodal optical cameras in low-light environments, this paper constructs a 
thermal infrared-RGB binocular stereo vision system and proposes a joint calibration framework for infrared and RGB cameras to 
provide a high-precision geometric alignment basis for multimodal image fusion. First, a high-precision geometric calibration 
method is used to eliminate the internal distortion of the infrared camera and establish the mapping relationship between its pixel 
coordinate system and physical space. Second, a cross-modal extrinsic calibration strategy based on common view targets is 
designed. A specially designed heated and temperature-controlled chessboard calibration board for thermal infrared is used to 
enhance the feature contrast in the infrared image through temperature control. Combined with a cross-modal feature matching 
algorithm, the spatial pose transformation matrix between the infrared and RGB cameras is accurately solved to align multimodal 
images. Experimental results show that the proposed thermal infrared–RGB binocular calibration method can significantly improve 
calibration accuracy and robustness, providing effective technical support for visual perception and target recognition in low-light 
environments. 
 
 

1. Introduction 

In low-light environments, monomodal optical cameras, limited 
by illumination conditions, often struggle to capture high-
quality images, thereby restricting visual perception 
capabilities. For instance, in nighttime or low-illumination 
scenarios, images captured by RGB cameras may suffer from 
insufficient brightness, low contrast, and loss of details, 
severely affecting the usability of the images. This issue is 
particularly prominent in mobile mapping tasks, as mobile 
mapping systems (such as autonomous vehicles, UAV 
surveying, and mobile robots) need to obtain accurate 
environmental information in real time under complex and 
variable lighting conditions to achieve safe navigation, target 
recognition, and precise mapping. However, the insufficient 
performance of traditional monomodal optical imaging systems 
in low-light environments limits the application of mobile 
mapping technologies in nighttime or low-illumination 
scenarios. 
To enhance visual perception capabilities and overcome the 
limitations of low-light environments, multimodal image fusion 
technology has emerged. Among these technologies, the fusion 
of infrared and RGB imaging has become a highly promising 
solution. Infrared imaging (Su et al., 2024), by capturing 
thermal radiation information, effectively addresses the 
perceptual failure of RGB in no-light, smoke/haze scenarios. It 
provides complementary details to RGB images, thereby 
significantly improving target recognizability and the accuracy 
of environmental perception. Therefore, this paper constructs a 
thermal infrared–RGB binocular system based on a thermal 
infrared camera and simultaneously implements a cross-modal 
alignment method for thermal infrared and RGB images. The 
fusion of thermal infrared and RGB binocular vision not only 
enhances image quality but also provides mobile mapping 
systems with more comprehensive environmental perception 

capabilities, thereby improving their robustness and reliability 
in complex environments. 
The construction of a thermal infrared-RGB binocular system 
hinges on solving the geometric alignment issue between the 
two modalities, which relies on precise camera calibration 
techniques. However, during the calibration process, RGB 
imaging depends on corner/edge features, while infrared 
imaging relies on temperature gradient features. This results in 
limited feature visibility of traditional checkerboard calibration 
boards in infrared imaging, thereby restricting the accuracy and 
applicability of existing calibration methods. Moreover, when 
dealing with cross-modal extrinsic calibration, existing 
methods often overlook the differences in imaging 
characteristics between infrared and RGB, leading to 
insufficient calibration accuracy and robustness. 
To address the aforementioned issues, this study proposes a 
joint calibration framework for infrared and RGB cameras, 
which is dedicated to providing a high-precision geometric 
alignment basis for multimodal image fusion. The core ideas of 
the research include two key steps: 
Firstly, a high-precision geometric calibration method is 
employed to correct the internal distortion of the infrared 
camera. This process precisely establishes the mapping 
relationship between its pixel coordinate system and the 
physical space, thereby providing an accurate geometric 
foundation for subsequent multimodal image fusion. Secondly, 
for the extrinsic calibration between infrared and RGB cameras, 
a cross-modal calibration strategy based on common view 
targets is designed. A specially designed heated and 
temperature-controlled chessboard calibration board for 
thermal infrared imaging is utilized. This board presents 
significant temperature contrast in infrared images, enhancing 
the feature contrast in thermal infrared images while retaining 
the corner features of the chessboard in the RGB band. It 
effectively solves the problem of difficult feature point 
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extraction in infrared imaging due to insufficient temperature 
differences. Subsequently, a cross-modal feature matching 
method is used to accurately solve the spatial pose 
transformation matrix between the infrared and RGB cameras, 
ensuring the robustness of the alignment between thermal 
infrared and RGB images. The final calibration error is 0.295 
pixels. 
Therefore, the calibration method proposed in this paper is 
capable of solving the high-precision calibration problem 
between thermal infrared and RGB cameras. It further 
enhances the visual perception capabilities of mobile mapping 
systems in complex environments and provides a solid 
foundation for the application of mobile mapping technologies 
in a wider range of scenarios. 
 

2. Related Works 

2.1 Monocular camera calibration 

2.1.1 Traditional calibration methods based on passive 
targets 
Traditional single-camera calibration methods usually rely on 
calibration targets with checkerboard patterns or circular 
markers. These methods extract the coordinates of feature 
points (such as corners or centers of circles) and use their 
geometric mapping relationship with the camera's spatial 
coordinates for calibration, thereby solving for the camera 
parameters. The mathematical derivation of traditional 
calibration methods is rigorous, and the calculation process is 
efficient and concise, making them easy to implement and 
apply. The most classic calibration methods include the Tsai 
two-step method and the Zhang Zhengyou calibration method 
(Zhang et al., 2000). 
However, the calibration accuracy of these traditional methods 
is highly dependent on the extraction accuracy of the feature 
points. In practical applications, they are easily affected by 
environmental factors, such as lighting conditions, the surface 
reflectivity of the calibration target, and the degree of camera 
distortion. Moreover, the placement posture of the calibration 
target and the camera's viewing angle must also be considered 
during the calibration process. If the angle between the 
calibration target and the camera's optical axis is too small, or 
if the calibration target does not fully cover the camera's field 
of view, it may lead to deviations in the calibration results. 
Despite these limitations, traditional calibration methods have 
the advantages of simple operation and low cost. They can 
provide high calibration accuracy under ideal conditions. 
 
2.1.2 Calibration method based on phase target 
In recent years, calibration methods based on phase targets 
have gradually attracted attention. These methods use the 
phase information of fringe patterns as feature points and 
obtain the unwrapped phase map through algorithms such as 
phase-shifting or Fourier transform, thereby achieving high-
precision calibration. For example, Ma (Ma et al., 2014) 
proposed a feature extraction method using fringe pattern sets 
as phase target features, and solved the wrapped phase through 
a three-step phase-shifting method.  
However, the "defocused" images were obtained by applying 
Gaussian filtering to clear images, rather than real 
experimentally captured images. Wang (Wang et al., 2019) 
demonstrated the robustness and accuracy of the camera 
calibration method based on orthogonal fringes through 
simulation and experiments, but did not provide comparative 

experiments with other calibration methods under the same 
conditions in either simulation or experimental scenarios. Liu 
(Liu et al., 2024) proposed a calibration method based on 
encoded phase-shifting fringe patterns (Phase-Shifting Fringe, 
PSF), establishing a mapping relationship between the virtual 
phase plane and the original phase points through arbitrary 
quadrilateral interpolation, thereby achieving high-precision 
camera calibration. However, phase unwrapping is a key step 
in phase target calibration, but it is easily affected by noise and 
ambient light in practice, leading to discontinuities and errors 
in the phase map. 
 
2.1.3 Other calibration methods 
Genovese (Genovese et al., 2024) proposed a camera 
calibration method based on a single image. This method uses 
a random speckle pattern that covers the entire sensor and 
combines it with Digital Image Correlation (DIC) technology to 
achieve model-free distortion correction. Zhu (Zhu et al., 2024) 
proposed a calibration method based on monocular 3D priors, 
which is capable of recovering the complete 4-DOF (degrees of 
freedom) intrinsic parameters from monocular images without 
relying on specific 3D objects or strong geometric assumptions. 
 
2.2 Multi camera calibration 

Yang (Yang et al., 2024) addressed the alignment issue 
between thermal imagers and other sensors, proposing an 
autonomous targetless extrinsic calibration framework for 
thermal imagers, RGB cameras, and LiDAR sensors in mobile 
robots. By analyzing the characteristics of thermal imaging, 
they utilized thermal bridges and the PnL algorithm based on 
line features to achieve autonomous targetless calibration 
between LiDAR and RGB cameras as well as between LiDAR 
and thermal imagers. 
Li and Cai (Li et al., 2023) proposed a calibration and real-
time target matching method for a heterogeneous multi-camera 
system composed of thermal infrared cameras and visible 
spectrum (VS) cameras. This method enables better perception 
of surrounding information in complex environments and has 
been widely applied in many intelligent unmanned devices, 
such as drones and patrol robots. Edlinger (Edlinger et al., 
2023) designed a calibration method for thermal imaging 
cameras. This method involves placing a calibration-patterned 
board on a heated background, solving the problem of 
traditional methods being unable to achieve calibration in the 
infrared spectrum. 
 

3. Thermal Infrared -Visible Binocular System 

3.1 Theoretical basis of binocular stereo vision 

3.1.1 Pinhole Camera Model 
The monocular pinhole camera model is the geometric 
foundation of optical imaging systems. Through this geometric 
model, the camera can map the coordinate points in a three-
dimensional scene to a two-dimensional image plane. The 
mapping process is shown in figure 1. Here, ( , , )w w w wP x y z  
represents the coordinates of a 3D point in the world 
coordinate system, ( , )uvP u v  represents the pixel coordinates, 

- - -O x y z  represents the world coordinate system, - - -O x y z′ ′ ′ ′  
represents the camera coordinate system, and f  represents the 
focal length. The core idea is that light travels in straight lines, 
and after passing through the camera's optical center O , it is 
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projected onto the imaging plane. The pinhole camera model 
describes the transformation between the world coordinate 
system and the camera coordinate system using a rotation 
matrix c

wR  and a translation vector c
wt , which represent the 

camera's pose. It then maps the 3D coordinates to normalized 
image coordinates through the intrinsic parameter matrix. The 
pinhole camera model provides the correspondence between 
the spatial location of objects and image pixels for monocular 
vision, and it is the theoretical foundation for understanding 
disparity calculation, depth recovery, and 3D reconstruction in 
binocular stereo vision. 

 
Figure 1. Mapping process of pinhole camera model 

Project point A into the camera coordinate system based on the 
current image pose: 
 c c

C w w wP R P t= +  (1) 
Then, normalize CP  to obtain the projection X on the 

normalized image plane ( )/ , / ,1c cx z y z . 
Project the normalized coordinates onto the pixel coordinate 
system based on the camera's focal length. 
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Here, α  and β  are the scaling factors in the directions of x  
and y , respectively, and xc , yc  are the translations in the 
directions of x  and y , respectively. After combining the 
scaling factors and translations, the transformation from the 
world coordinate system to the camera pixel coordinate system 
is ultimately given by: 
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K is the intrinsic parameter matrix, which is obtained through 
camera calibration. 
 
3.1.2 Distortion Model 
The discrepancy between the idealized assumptions of the 
pinhole camera model and actual optical systems is the 
fundamental cause of image distortion. Real lenses, due to non-
ideal optical characteristics and off-axis aberrations, prevent 
light rays from strictly following the straight-line projection 
path. Additionally, material inhomogeneities (such as local 

refractive index variations caused by temperature gradients or 
manufacturing errors) further disrupt the uniform propagation 
of light rays. Mechanical assembly deviations can cause 
misalignment between the projection coordinate system and the 
ideal coordinate system. Thermal effects and environmental 
interferences, especially detector sensitivity drift or lens 
deformation caused by temperature changes in uncooled 
infrared cameras, introduce nonlinear radiometric distortions. 
The combined effect of these factors causes the actual imaging 
process to deviate from the ideal pinhole model. Therefore, 
precise distortion mathematical modeling and calibration 
techniques must be employed for correction, thereby enhancing 
the accuracy and reliability of applications such as 
photogrammetry and computer vision. 
The ideal imaging formula for a pinhole camera is: 
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Z
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( , , )X Y Z  represents the coordinates of a spatial point, xf  and 

yf  are the focal lengths, and ( , )x yC C  is the coordinates of the 
optical center O . In actual imaging, distortion terms need to 
be introduced to correct the above deviations. 
The symmetric distortion caused by lens curvature has the 
following mathematical form: 
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Here, 2 2 2r x y= + , and 1k , 2k are the radial distortion 
coefficients, and higher-order terms can be neglected or fitted 
with a more complex polynomial. The distortion caused by the 
optical axis not being perpendicular to the lens plane or by 
assembly tilt has the form: 
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1p , 2p  are the tangential distortion coefficient, which is 
related to the tilt angle of the lens. 
 
3.2 Thermal Infrared-Visible Calibration Board 

To address the geometric distortion correction and radiometric 
consistency requirements of the uncooled thermal infrared-
RGB binocular system, this paper designs a multimodal 
calibration board. This calibration board integrates high-
precision geometric structures, dynamic temperature control 
modules, and multi-band radiometric characteristics. 
Geometric calibration is used to correct the spatial resolution 
degradation and nonlinear distortions of the thermal infrared 
camera caused by the thermal diffusion effect. Radiometric 
correction can establish a unified radiometric model between 
infrared and RGB images, thereby improving the depth 
estimation accuracy of binocular stereo vision. Additionally, 
the calibration board can simulate real-world temperature 
distributions (30–150℃) to verify the system's stability under 
extreme conditions, demonstrating its environmental 
adaptability. The core parameters of the calibration board are 
shown in Table 1. 
This calibration board, featuring a 12×9 black-and-white 
checkerboard structure (with each cell measuring 
25mm×25mm), achieves high-precision geometric distortion 
correction and integrates a closed-loop PID temperature control 
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system to support multi-physics coupling analysis. In infrared 
mode, the black cells have a high emissivity of up to 0.9 (in the 
8–12μm wavelength band). Combined with the sub-pixel 
corner extraction algorithm (OpenCV cornerSubPix), it can 
enhance the corner positioning accuracy to ≤0.1 pixels. This 
effectively corrects the radial/tangential distortions and 
nonlinear responses of uncooled thermal infrared cameras 
caused by the thermal diffusion effect. Meanwhile, the 
temperature control module precisely regulates the target 
temperature (30–150℃, with an accuracy of ±1.5℃) through 

power-off/on cycles, simulating the radiative characteristics of 
high-temperature targets to verify sensor dark current drift and 
detector temperature sensitivity. In RGB mode, the low 
reflectivity of the white cells (<5%) significantly reduces stray 
light interference. This supports the disparity calculation and 
spatial consistency verification in the joint calibration of 
binocular cameras. Moreover, the dynamic characteristics of 
the temperature control module can further provide 
experimental evidence for the temperature drift correction of 
multimodal imaging systems. 

Table 1. Calibration board parameters and performance 

Parameters Technical Specifications Function 

Size 
Effective dimensions: 300mm × 

225mm; Single cell: 25mm × 
25mm. 

Supports calibration of wide field-of-
view imaging systems. The cell size is 
matched with the detector pixel size 

(17μm), which can be used to verify the 
spatial resolution (approximately 1.47 

times the pixel size). 

 
Material & Properties 

Emissivity of black cells: 0.9 ± 0.05 
(8–12μm wavelength band); 

Reflectivity of white cells: <5% 
(visible light wavelength band). 

Ensures high contrast in infrared 
imaging and reduces the impact of 

ambient light interference on visible 
light calibration. 

Temperature Control Module 
Operating temperature range: 30–

150℃, temperature control 
accuracy ±1.5℃. 

Simulates the temperature distribution of 
real-world scene targets and verifies the 

stability of the thermal imager under 
extreme conditions. 

 
3.3 Calibration method for thermal infrared-visible 
binocular system  

3.3.1 Intrinsic Parameter Calibration Based on the 
Zhang Zhengyou Method 
Zhang Zhengyou calibration algorithm is a widely used 
monocular camera calibration method. Its core lies in the 
detection of corner points and geometric constraints of a 
checkerboard calibration plate. By capturing images of a planar 
calibration plate with known spatial coordinates from different 
viewpoints, a linear equation system is established based on 
the correspondence between image corner points and real 
three-dimensional coordinates. The method estimates the 
intrinsic and extrinsic parameter matrices of the camera by 
minimizing the reprojection error. Its mathematical foundation 
is the camera imaging model: 
 1[ ]c w

−= − +X R X t K d  (8) 

cX represents the image coordinates, wX  represents the world 
coordinates, R  and t  are the rotation matrix and translation 
vector, respectively, and K  is the intrinsic parameter matrix 
(including the focal length xf , yf , and the principal point 

( , )x yc c . The distortion vector d  includes radial distortions k1, 
k2, and tangential distortions p1, p2. The distortion vector 
includes radial distortions k1, k2, and tangential distortions p1, 
p2. Assuming the calibration board is located in the plane Z=0, 
and high-precision 2D corner coordinates are obtained through 
sub-pixel corner detection, a linearized equation system is 
constructed. Based on this, the 3D point ( , ,0)T

iw iX X Y=  in 
the world coordinate system is projected into the camera 
coordinate system to obtain the normalized coordinates 

'
/ ( ) /c n w cZt= −X R X . By using the intrinsic parameter matrix 

K , it is reprojected onto the image plane, and its predicted 
value is: 

 1
/ˆ ( )c n w w

− ′= = −x KX KR X t K X  (9) 
After introducing radial distortions 1k , 2k  and tangential 
distortions 1p , 2p , the complete observation model is: 
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Here, 2 2 2r x y= + , (x,y)  are the normalized image 
coordinates 
To linearize this model, we perform a Taylor expansion on A 
and retain the first-order terms: 
 
 
 ( )i w i

′≈ + +x AX b d x  (11) 
A  is the combination of the camera matrix and the extrinsic 
parameters, b  is the translation term, and ( )id x  is the 
distortion vector based on the current estimate. Substituting all 
corner point observations ,i jx  into the model, we construct a 
nonlinear least squares problem and estimate the camera 
parameters by minimizing the reprojection error: 

 ( )
, , , , , ,1 2 1 2

2

, , ,
,

min ( )
k k p p

i j w j i j
i j

′− + +∑
K R t

x AX b d x  (12) 

 
3.3.2 Extrinsic Calibration Based on Cross-Modal 
Feature Matching 
In the cross-modal extrinsic calibration task, this paper adopts 
the XoFTR (Cross-modal Feature Matching Transformer) 
algorithm proposed by Tuzcuoglu (Tuzcuoğlu et al., 2024) to 
achieve feature matching between RGB and infrared 
modalities. This method effectively addresses cross-modal 
differences through a two-stage training strategy: First, it 
employs Masked Image Modeling (MIM) pre-training to learn 
cross-modal features from visible-thermal image pairs. By 
randomly masking regions of the images and reconstructing the 
inter-modal correlation features, the model learns the common 
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expressions under heterogeneous radiative mechanisms. 
Subsequently, it applies a pseudo-thermal image augmentation 
strategy based on cosine transformation to non-linearly 
transform the intensity of RGB images, simulating the 
radiative property differences of thermal imaging and 
enhancing the model's adaptability to real cross-modal data. Its 
improved coarse-to-fine matching pipeline constructs many-to-
many feature associations at 1/8 resolution through a multi-
level Transformer architecture and then performs sub-pixel 
coordinate regression at 1/2 resolution using a custom decoder, 
significantly improving the matching accuracy of cross-modal 
features under view differences, scale changes, and low-texture 
scenes. 
In this paper, we first utilize the feature matching capability of 
XoFTR to extract precise feature point correspondences from 
RGB and thermal infrared images. These correspondences not 
only have high accuracy at the pixel level but are also further 
refined by a sub-pixel refinement module to enhance the 
matching precision. To further improve the robustness of the 
calibration, we introduce a multi-view geometric constraint 
mechanism. By optimizing the extrinsic parameters across 
multiple viewpoints, we capture the geometric structure of the 
scene from different angles, thereby providing richer geometric 
information for the extrinsic calibration. We then employ the 
RANSAC algorithm to estimate the Essential Matrix between 
each pair of images, initially calculating the relative rotation 
and translation between cameras. Subsequently, using these 
preliminary estimated extrinsic parameters as initial values, we 
introduce a global optimization framework based on Bundle 
Adjustment. This framework minimizes the reprojection error 
and multi-view consistency error while optimizing the extrinsic 
parameters across all viewpoints, ensuring the stability and 
consistency of the calibration results across different scenes. 
 

4. Experiments Results 

In multi-camera systems, accurately obtaining the intrinsic and 
extrinsic parameters of cameras is crucial for subsequent image 
processing, 3D reconstruction, and visual measurement tasks. 
The Zhang Zhengyou calibration method, as a classic camera 
calibration technique, is widely used in various camera 
calibration scenarios due to its advantages in calibration 
accuracy and ease of operation. In this experimental section, 
the Zhang Zhengyou calibration method was employed to 
calibrate the intrinsic and extrinsic parameters of RGB and 
thermal infrared cameras. Additionally, an extrinsic calibration 
method based on cross-modal feature matching was used to 
verify and correct the relative pose of the binocular cameras, 
ensuring the accuracy of the extrinsic calibration. The RGB 
camera used is the RealSense D455, and the thermal infrared 
camera is the FLIR VUE PRO R. The binocular stereo vision 
system composed of these two cameras is shown in the figure, 
with 3D-printed structural components used for connection and 
fixation. Through careful design of the calibration process and 
multiple rounds of experimental data collection and analysis, 
the aim is to ensure the validity and reliability of the 
calibration method in this experimental environment and to 
provide an accurate parameter basis for subsequent visual 
applications based on these two cameras. 
 

4.1 Calibration Results Using Zhang Zhengyou Method 

4.1.1 Intrinsic Calibration 
We employed the Zhang Zhengyou calibration method to 
calibrate the intrinsic parameters and perform image 
undistortion for both the infrared and RGB cameras. During 
this process, it is important to note that the calibration board 
should fill the entire image frame as much as possible to 
ensure a uniform distribution of feature points, thereby 
enhancing the correction accuracy. The undistortion results for 
RGB and thermal infrared images are shown in the figure 2. It 
can be observed that the RGB image exhibits little noticeable 
distortion, while the undistorted thermal infrared image shows 
more significant changes, with the checkerboard pattern being 
well-corrected. 
 
4.1.2 Extrinsic Calibration 
We used the undistorted RGB and thermal infrared images for 
extrinsic calibration. The specific experimental setup is shown 
in the figure 3. 

 
Figure 2. Image Undistortion 

 
Figure 3. Experimental scene 

However, due to the lower resolution and higher image noise 
of thermal infrared images, after using the Zhang Zhengyou 
method to obtain the relative pose between the RGB camera 
and the thermal infrared camera, we further employed a cross-
modal feature matching method to perform sub-pixel 
registration between the two cameras. This step ensures and 
enhances the accuracy of the extrinsic calibration. 
 
4.2 Extrinsic Calibration Based on Cross-Modal Feature 
Matching 

This paper utilizes XoFTR to complete cross-modal feature 
matching and further calculates the relative pose between RGB 
and thermal infrared cameras. XoFTR is a cross-modal method 
for matching RGB and thermal infrared images. It addresses 
the matching challenges brought by modality differences 
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through pre-training with masked image modeling and fine-
tuning with pseudo-thermal image augmentation. Meanwhile, 
XoFTR employs a coarse-to-fine matching process, performing 
coarse matching at the 1/8 scale and fine matching at the 1/2 
scale, and enhancing precision through sub-pixel refinement. 
To ensure the accuracy of cross-modal feature matching 
between RGB and thermal infrared images, this paper sets the 
confidence level for coarse matching feature points to 0.8, that 
is, only features with a confidence greater than 0.8 are retained. 
Similarly, the confidence level for fine matching feature points 
is set to 0.6. The final cross-modal feature matching results 
based on the XoFTR method are shown in Figure 4. 

 
Figure 4. Cross-modal feature matching 

We use the reprojection error as a quantitative metric to 
evaluate the accuracy of the extrinsic camera calibration. 
Specifically, we first use XoFTR to extract matching feature 
point pairs from RGB and thermal infrared images, compute 
the essential matrix using the eight-point algorithm, and 
simultaneously employ the RANSAC algorithm to eliminate 
mismatches, thereby enhancing the estimation accuracy of the 
essential matrix. Subsequently, we perform Singular Value 
Decomposition (SVD) on the essential matrix to obtain the 
relative rotation matrix and translation vector between the two 
cameras. We then reconstruct the feature points in 3D space 
using triangulation and reproject these 3D points onto the 
image plane using the estimated extrinsic parameters. The 
reprojection error is quantified by calculating the Euclidean 
distance between the reprojected points and the actually 
detected feature points. In this paper, we choose the mean 
value as the quantitative metric for calibration accuracy. 
To further verify the reliability of the calibration results, we 
also conducted geometric consistency checks. Specifically, we 
selected multiple sets of matching feature points across several 
views and used these feature points to estimate the extrinsic 
parameters separately. By verifying whether the estimated 
extrinsic parameters satisfy geometric constraints such as 
coplanarity, parallelism, and perpendicularity, we assessed 
their geometric consistency. The final extrinsic parameter 
estimation error obtained in this paper was 0.295 pixels. 
Therefore, the extrinsic calibration method proposed in this 
paper demonstrates high accuracy and stability in matching 
RGB and thermal infrared images. The binocular stereo vision 
system constructed based on this calibration method can 
effectively be applied to mobile measurement tasks in real-
world scenarios. 
 

5. Discussion and Conclusion 

The calibration method proposed in this paper demonstrates its 
advantages in several aspects. First, the high-precision 
geometric calibration method is used to correct the internal 
distortions of the infrared camera, significantly improving the 
imaging quality of infrared images and providing an accurate 
geometric basis for subsequent multimodal image fusion. 
Second, the cross-modal extrinsic calibration strategy, using a 

heatable checkerboard calibration board, effectively addresses 
the issue of difficult feature point extraction in infrared 
imaging due to insufficient temperature differences, further 
enhancing the accuracy and robustness of the calibration. In 
addition, the cross-modal feature matching capability of the 
XoFTR algorithm further ensures the reliability of the 
calibration results. 
However, our method also has some limitations. First, the 
calibration process requires the use of a specially designed 
heatable checkerboard calibration board, which increases the 
cost and complexity of the calibration equipment. Second, 
although the method demonstrates high calibration accuracy in 
the laboratory environment, environmental factors (such as 
temperature changes and lighting conditions) may have some 
impact on the calibration results in practical applications. 
Future work can further optimize the design of the calibration 
board to make it more adaptable to different environments. In 
addition, more efficient cross-modal feature matching 
algorithms can be explored to further improve the accuracy and 
efficiency of calibration. 
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