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Abstract

Aiming at the problem of limited imaging quality of monomodal optical cameras in low-light environments, this paper constructs a
thermal infrared-RGB binocular stereo vision system and proposes a joint calibration framework for infrared and RGB cameras to
provide a high-precision geometric alignment basis for multimodal image fusion. First, a high-precision geometric calibration
method is used to eliminate the internal distortion of the infrared camera and establish the mapping relationship between its pixel
coordinate system and physical space. Second, a cross-modal extrinsic calibration strategy based on common view targets is
designed. A specially designed heated and temperature-controlled chessboard calibration board for thermal infrared is used to
enhance the feature contrast in the infrared image through temperature control. Combined with a cross-modal feature matching
algorithm, the spatial pose transformation matrix between the infrared and RGB cameras is accurately solved to align multimodal
images. Experimental results show that the proposed thermal infrared—RGB binocular calibration method can significantly improve
calibration accuracy and robustness, providing effective technical support for visual perception and target recognition in low-light

environments.

1. Introduction

In low-light environments, monomodal optical cameras, limited
by illumination conditions, often struggle to capture high-
quality images, thereby restricting visual perception
capabilities. For instance, in nighttime or low-illumination
scenarios, images captured by RGB cameras may suffer from
insufficient brightness, low contrast, and loss of details,
severely affecting the usability of the images. This issue is
particularly prominent in mobile mapping tasks, as mobile
mapping systems (such as autonomous vehicles, UAV
surveying, and mobile robots) need to obtain accurate
environmental information in real time under complex and
variable lighting conditions to achieve safe navigation, target
recognition, and precise mapping. However, the insufficient
performance of traditional monomodal optical imaging systems
in low-light environments limits the application of mobile
mapping technologies in nighttime or low-illumination
scenarios.

To enhance visual perception capabilities and overcome the
limitations of low-light environments, multimodal image fusion
technology has emerged. Among these technologies, the fusion
of infrared and RGB imaging has become a highly promising
solution. Infrared imaging (Su et al., 2024), by capturing
thermal radiation information, effectively addresses the
perceptual failure of RGB in no-light, smoke/haze scenarios. It
provides complementary details to RGB images, thereby
significantly improving target recognizability and the accuracy
of environmental perception. Therefore, this paper constructs a
thermal infrared—RGB binocular system based on a thermal
infrared camera and simultaneously implements a cross-modal
alignment method for thermal infrared and RGB images. The
fusion of thermal infrared and RGB binocular vision not only
enhances image quality but also provides mobile mapping
systems with more comprehensive environmental perception

capabilities, thereby improving their robustness and reliability
in complex environments.

The construction of a thermal infrared-RGB binocular system
hinges on solving the geometric alignment issue between the
two modalities, which relies on precise camera calibration
techniques. However, during the calibration process, RGB
imaging depends on corner/edge features, while infrared
imaging relies on temperature gradient features. This results in
limited feature visibility of traditional checkerboard calibration
boards in infrared imaging, thereby restricting the accuracy and
applicability of existing calibration methods. Moreover, when

dealing with cross-modal extrinsic calibration, existing
methods often overlook the differences in imaging
characteristics between infrared and RGB, leading to

insufficient calibration accuracy and robustness.

To address the aforementioned issues, this study proposes a
joint calibration framework for infrared and RGB cameras,
which is dedicated to providing a high-precision geometric
alignment basis for multimodal image fusion. The core ideas of
the research include two key steps:

Firstly, a high-precision geometric calibration method is
employed to correct the internal distortion of the infrared
camera. This process precisely establishes the mapping
relationship between its pixel coordinate system and the
physical space, thereby providing an accurate geometric
foundation for subsequent multimodal image fusion. Secondly,
for the extrinsic calibration between infrared and RGB cameras,
a cross-modal calibration strategy based on common view
targets is designed. A specially designed heated and
temperature-controlled chessboard calibration board for
thermal infrared imaging is utilized. This board presents
significant temperature contrast in infrared images, enhancing
the feature contrast in thermal infrared images while retaining
the corner features of the chessboard in the RGB band. It
effectively solves the problem of difficult feature point
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extraction in infrared imaging due to insufficient temperature
differences. Subsequently, a cross-modal feature matching
method is used to accurately solve the spatial pose
transformation matrix between the infrared and RGB cameras,
ensuring the robustness of the alignment between thermal
infrared and RGB images. The final calibration error is 0.295
pixels.

Therefore, the calibration method proposed in this paper is
capable of solving the high-precision calibration problem
between thermal infrared and RGB cameras. It further
enhances the visual perception capabilities of mobile mapping
systems in complex environments and provides a solid
foundation for the application of mobile mapping technologies
in a wider range of scenarios.

2. Related Works
2.1 Monocular camera calibration

2.1.1
targets
Traditional single-camera calibration methods usually rely on
calibration targets with checkerboard patterns or circular
markers. These methods extract the coordinates of feature
points (such as corners or centers of circles) and use their
geometric mapping relationship with the camera's spatial
coordinates for calibration, thereby solving for the camera
parameters. The mathematical derivation of traditional
calibration methods is rigorous, and the calculation process is
efficient and concise, making them easy to implement and
apply. The most classic calibration methods include the Tsai
two-step method and the Zhang Zhengyou calibration method
(Zhang et al., 2000).

However, the calibration accuracy of these traditional methods
is highly dependent on the extraction accuracy of the feature
points. In practical applications, they are easily affected by
environmental factors, such as lighting conditions, the surface
reflectivity of the calibration target, and the degree of camera
distortion. Moreover, the placement posture of the calibration
target and the camera's viewing angle must also be considered
during the calibration process. If the angle between the
calibration target and the camera's optical axis is too small, or
if the calibration target does not fully cover the camera's field
of view, it may lead to deviations in the calibration results.
Despite these limitations, traditional calibration methods have
the advantages of simple operation and low cost. They can
provide high calibration accuracy under ideal conditions.

Traditional calibration methods based on passive

2.1.2  Calibration method based on phase target

In recent years, calibration methods based on phase targets
have gradually attracted attention. These methods use the
phase information of fringe patterns as feature points and
obtain the unwrapped phase map through algorithms such as
phase-shifting or Fourier transform, thereby achieving high-
precision calibration. For example, Ma (Ma et al., 2014)
proposed a feature extraction method using fringe pattern sets
as phase target features, and solved the wrapped phase through
a three-step phase-shifting method.

However, the "defocused" images were obtained by applying
Gaussian filtering to clear images, rather than real
experimentally captured images. Wang (Wang et al., 2019)
demonstrated the robustness and accuracy of the camera
calibration method based on orthogonal fringes through
simulation and experiments, but did not provide comparative

experiments with other calibration methods under the same
conditions in either simulation or experimental scenarios. Liu
(Liu et al., 2024) proposed a calibration method based on
encoded phase-shifting fringe patterns (Phase-Shifting Fringe,
PSF), establishing a mapping relationship between the virtual
phase plane and the original phase points through arbitrary
quadrilateral interpolation, thereby achieving high-precision
camera calibration. However, phase unwrapping is a key step
in phase target calibration, but it is easily affected by noise and
ambient light in practice, leading to discontinuities and errors
in the phase map.

2.1.3  Other calibration methods

Genovese (Genovese et al., 2024) proposed a camera
calibration method based on a single image. This method uses
a random speckle pattern that covers the entire sensor and
combines it with Digital Image Correlation (DIC) technology to
achieve model-free distortion correction. Zhu (Zhu et al., 2024)
proposed a calibration method based on monocular 3D priors,
which is capable of recovering the complete 4-DOF (degrees of
freedom) intrinsic parameters from monocular images without
relying on specific 3D objects or strong geometric assumptions.

2.2 Multi camera calibration

Yang (Yang et al., 2024) addressed the alignment issue
between thermal imagers and other sensors, proposing an
autonomous targetless extrinsic calibration framework for
thermal imagers, RGB cameras, and LiDAR sensors in mobile
robots. By analyzing the characteristics of thermal imaging,
they utilized thermal bridges and the PnL algorithm based on
line features to achieve autonomous targetless calibration
between LiDAR and RGB cameras as well as between LiDAR
and thermal imagers.

Li and Cai (Li et al., 2023) proposed a calibration and real-
time target matching method for a heterogeneous multi-camera
system composed of thermal infrared cameras and visible
spectrum (VS) cameras. This method enables better perception
of surrounding information in complex environments and has
been widely applied in many intelligent unmanned devices,
such as drones and patrol robots. Edlinger (Edlinger et al.,
2023) designed a calibration method for thermal imaging
cameras. This method involves placing a calibration-patterned
board on a heated background, solving the problem of
traditional methods being unable to achieve calibration in the
infrared spectrum.

3. Thermal Infrared -Visible Binocular System
3.1 Theoretical basis of binocular stereo vision

3.1.1 Pinhole Camera Model

The monocular pinhole camera model is the geometric
foundation of optical imaging systems. Through this geometric
model, the camera can map the coordinate points in a three-
dimensional scene to a two-dimensional image plane. The
mapping process is shown in figure 1. Here, P (x,,,.z,)

represents the coordinates of a 3D point in the world
coordinate system, P, (u,v) represents the pixel coordinates,
O-x-y-z represents the world coordinate system, O'-x'-y’-z'
represents the camera coordinate system, and f represents the

focal length. The core idea is that light travels in straight lines,
and after passing through the camera's optical center O, it is
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projected onto the imaging plane. The pinhole camera model
describes the transformation between the world coordinate
system and the camera coordinate system using a rotation

matrix R and a translation vector ¢ , which represent the

camera's pose. It then maps the 3D coordinates to normalized
image coordinates through the intrinsic parameter matrix. The
pinhole camera model provides the correspondence between
the spatial location of objects and image pixels for monocular
vision, and it is the theoretical foundation for understanding
disparity calculation, depth recovery, and 3D reconstruction in
binocular stereo vision.

y BGen.z)

Figure 1. Mapping process of pinhole camera model
Project point A into the camera coordinate system based on the
current image pose:

F=R.P, +t, (1
Then, normalize P. to obtain the projection X on the
normalized image plane (xc lz,y./ z,l) .

Project the normalized coordinates onto the pixel coordinate
system based on the camera's focal length.
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e @)
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Here, o and g are the scaling factors in the directions of x
and y , respectively, and c¢_, ¢, are the translations in the
directions of x and y , respectively. After combining the

scaling factors and translations, the transformation from the
world coordinate system to the camera pixel coordinate system
is ultimately given by:

P, =L K(RP,+1) 3)
fXC 0 CX

K={0 f, ¢ o
0O 0 1

K is the intrinsic parameter matrix, which is obtained through
camera calibration.

3.1.2  Distortion Model

The discrepancy between the idealized assumptions of the
pinhole camera model and actual optical systems is the
fundamental cause of image distortion. Real lenses, due to non-
ideal optical characteristics and off-axis aberrations, prevent
light rays from strictly following the straight-line projection
path. Additionally, material inhomogeneities (such as local

refractive index variations caused by temperature gradients or
manufacturing errors) further disrupt the uniform propagation
of light rays. Mechanical assembly deviations can cause
misalignment between the projection coordinate system and the
ideal coordinate system. Thermal effects and environmental
interferences, especially detector sensitivity drift or lens
deformation caused by temperature changes in uncooled
infrared cameras, introduce nonlinear radiometric distortions.
The combined effect of these factors causes the actual imaging
process to deviate from the ideal pinhole model. Therefore,
precise distortion mathematical modeling and calibration
techniques must be employed for correction, thereby enhancing

the accuracy and reliability of applications such as
photogrammetry and computer vision.
The ideal imaging formula for a pinhole camera is:
x= X f.+c,
V4
)
Yy .
y= E - fy + cy

(X,Y,Z) represents the coordinates of a spatial point, f, and
Jf, are the focal lengths, and (C,,C,) is the coordinates of the
optical center O. In actual imaging, distortion terms need to
be introduced to correct the above deviations.

The symmetric distortion caused by lens curvature has the
following mathematical form:

x = x(l + kit + ket +)
! 2 4 (6)
y :y(1+k1r + k,r +)
Here, r*=x"+)", and k , k, are the radial distortion
coefficients, and higher-order terms can be neglected or fitted
with a more complex polynomial. The distortion caused by the
optical axis not being perpendicular to the lens plane or by
assembly tilt has the form:
{x' =x+2pxy+ p,(r* +2x%)
Y =y+2pxy+p (7 +2y%)
p,» P, are the tangential distortion coefficient, which is

(N

related to the tilt angle of the lens.

3.2 Thermal Infrared-Visible Calibration Board

To address the geometric distortion correction and radiometric
consistency requirements of the uncooled thermal infrared-
RGB binocular system, this paper designs a multimodal
calibration board. This calibration board integrates high-
precision geometric structures, dynamic temperature control
modules, and multi-band radiometric  characteristics.
Geometric calibration is used to correct the spatial resolution
degradation and nonlinear distortions of the thermal infrared
camera caused by the thermal diffusion effect. Radiometric
correction can establish a unified radiometric model between
infrared and RGB images, thereby improving the depth
estimation accuracy of binocular stereo vision. Additionally,
the calibration board can simulate real-world temperature
distributions (30-150°C) to verify the system's stability under
extreme conditions, demonstrating its environmental
adaptability. The core parameters of the calibration board are
shown in Table 1.

This calibration board, featuring a 12x9 black-and-white
checkerboard  structure (with each cell measuring
25mmx25mm), achieves high-precision geometric distortion
correction and integrates a closed-loop PID temperature control
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system to support multi-physics coupling analysis. In infrared
mode, the black cells have a high emissivity of up to 0.9 (in the
8-12pum wavelength band). Combined with the sub-pixel
corner extraction algorithm (OpenCV cornerSubPix), it can
enhance the corner positioning accuracy to <0.1 pixels. This
effectively corrects the radial/tangential distortions and
nonlinear responses of uncooled thermal infrared cameras
caused by the thermal diffusion effect. Meanwhile, the
temperature control module precisely regulates the target
temperature (30-150°C, with an accuracy of +1.5°C) through

power-off/on cycles, simulating the radiative characteristics of
high-temperature targets to verify sensor dark current drift and
detector temperature sensitivity. In RGB mode, the low
reflectivity of the white cells (<5%) significantly reduces stray
light interference. This supports the disparity calculation and
spatial consistency verification in the joint calibration of
binocular cameras. Moreover, the dynamic characteristics of
the temperature control module can further provide
experimental evidence for the temperature drift correction of
multimodal imaging systems.

Table 1. Calibration board parameters and performance

Parameters Technical Specifications Function
Supports calibration of wide field-of-
Effective dimensions: 300mm X view imaging systems. The C?H siz.e is
Size 225mm; Single cell: 25mm x matched with the detector pixel size

25mm.

(17um), which can be used to verify the
spatial resolution (approximately 1.47
times the pixel size).

Emissivity of black cells: 0.9 + 0.05
(8—12pm wavelength band);
Reflectivity of white cells: <5%
(visible light wavelength band).

Material & Properties

Ensures high contrast in infrared
imaging and reduces the impact of
ambient light interference on visible
light calibration.

Operating temperature range: 30—
150°C, temperature control
accuracy +1.5°C.

Temperature Control Module

Simulates the temperature distribution of
real-world scene targets and verifies the
stability of the thermal imager under
extreme conditions.

3.3 Calibration method for
binocular system

thermal infrared-visible

3.3.1 Intrinsic Parameter Calibration Based on the
Zhang Zhengyou Method
Zhang Zhengyou calibration algorithm is a widely used
monocular camera calibration method. Its core lies in the
detection of corner points and geometric constraints of a
checkerboard calibration plate. By capturing images of a planar
calibration plate with known spatial coordinates from different
viewpoints, a linear equation system is established based on
the correspondence between image corner points and real
three-dimensional coordinates. The method estimates the
intrinsic and extrinsic parameter matrices of the camera by
minimizing the reprojection error. Its mathematical foundation
is the camera imaging model:

X, =R[X, -t]K"+d ®)
X, represents the image coordinates, X, represents the world

coordinates, R and t are the rotation matrix and translation
vector, respectively, and K is the intrinsic parameter matrix
(including the focal length f,, f,, and the principal point

X

(¢,»¢,) . The distortion vector d includes radial distortions ki,

ko, and tangential distortions pi, p2. The distortion vector
includes radial distortions ki, ko, and tangential distortions p1,
p2. Assuming the calibration board is located in the plane Z=0,
and high-precision 2D corner coordinates are obtained through
sub-pixel corner detection, a linearized equation system is
constructed. Based on this, the 3D point X, =(X,,%,0)" in

the world coordinate system is projected into the camera
coordinate system to obtain the normalized coordinates

X

K, it is reprojected onto the image plane, and its predicted
value is:

=R(X,, 1)/ Z,. By using the intrinsic parameter matrix

c/n

£=KX_, =KR(X, -t)K X, ©)
After introducing radial distortions %, , &, and tangential
distortions p,, p,, the complete observation model is:

%, =%+ {klrj + kzr: +p,(2xy) + pz(rz + 2xz) (10)
k™ +k,r” + p,2xy) + p,(r- +2y7)
Here, r*=x+3> , (xy) are the normalized image
coordinates

To linearize this model, we perform a Taylor expansion on A
and retain the first-order terms:

x, ~ AX, +b+d(x,) (11)
A is the combination of the camera matrix and the extrinsic
parameters, b is the translation term, and d(x;) is the
distortion vector based on the current estimate. Substituting all
corner point observations x; ; into the model, we construct a

nonlinear least squares problem and estimate the camera
parameters by minimizing the reprojection error:

min Y'[x,, ~(AX,, +b+d(x, ) (12)

KRGkk2 o s

3.3.2 Extrinsic Calibration Based on Cross-Modal
Feature Matching

In the cross-modal extrinsic calibration task, this paper adopts
the XoFTR (Cross-modal Feature Matching Transformer)
algorithm proposed by Tuzcuoglu (Tuzcuoglu et al., 2024) to
achieve feature matching between RGB and infrared
modalities. This method effectively addresses cross-modal
differences through a two-stage training strategy: First, it
employs Masked Image Modeling (MIM) pre-training to learn
cross-modal features from visible-thermal image pairs. By
randomly masking regions of the images and reconstructing the
inter-modal correlation features, the model learns the common
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expressions under heterogeneous radiative mechanisms.
Subsequently, it applies a pseudo-thermal image augmentation
strategy based on cosine transformation to non-linearly
transform the intensity of RGB images, simulating the
radiative property differences of thermal imaging and
enhancing the model's adaptability to real cross-modal data. Its
improved coarse-to-fine matching pipeline constructs many-to-
many feature associations at 1/8 resolution through a multi-
level Transformer architecture and then performs sub-pixel
coordinate regression at 1/2 resolution using a custom decoder,
significantly improving the matching accuracy of cross-modal
features under view differences, scale changes, and low-texture
scenes.

In this paper, we first utilize the feature matching capability of
XoFTR to extract precise feature point correspondences from
RGB and thermal infrared images. These correspondences not
only have high accuracy at the pixel level but are also further
refined by a sub-pixel refinement module to enhance the
matching precision. To further improve the robustness of the
calibration, we introduce a multi-view geometric constraint
mechanism. By optimizing the extrinsic parameters across
multiple viewpoints, we capture the geometric structure of the
scene from different angles, thereby providing richer geometric
information for the extrinsic calibration. We then employ the
RANSAC algorithm to estimate the Essential Matrix between
each pair of images, initially calculating the relative rotation
and translation between cameras. Subsequently, using these
preliminary estimated extrinsic parameters as initial values, we
introduce a global optimization framework based on Bundle
Adjustment. This framework minimizes the reprojection error
and multi-view consistency error while optimizing the extrinsic
parameters across all viewpoints, ensuring the stability and
consistency of the calibration results across different scenes.

4. Experiments Results

In multi-camera systems, accurately obtaining the intrinsic and
extrinsic parameters of cameras is crucial for subsequent image
processing, 3D reconstruction, and visual measurement tasks.
The Zhang Zhengyou calibration method, as a classic camera
calibration technique, is widely used in various camera
calibration scenarios due to its advantages in calibration
accuracy and ease of operation. In this experimental section,
the Zhang Zhengyou calibration method was employed to
calibrate the intrinsic and extrinsic parameters of RGB and
thermal infrared cameras. Additionally, an extrinsic calibration
method based on cross-modal feature matching was used to
verify and correct the relative pose of the binocular cameras,
ensuring the accuracy of the extrinsic calibration. The RGB
camera used is the RealSense D455, and the thermal infrared
camera is the FLIR VUE PRO R. The binocular stereo vision
system composed of these two cameras is shown in the figure,
with 3D-printed structural components used for connection and
fixation. Through careful design of the calibration process and
multiple rounds of experimental data collection and analysis,
the aim is to ensure the validity and reliability of the
calibration method in this experimental environment and to
provide an accurate parameter basis for subsequent visual
applications based on these two cameras.

4.1 Calibration Results Using Zhang Zhengyou Method

4.1.1 Intrinsic Calibration

We employed the Zhang Zhengyou calibration method to
calibrate the intrinsic parameters and perform image
undistortion for both the infrared and RGB cameras. During
this process, it is important to note that the calibration board
should fill the entire image frame as much as possible to
ensure a uniform distribution of feature points, thereby
enhancing the correction accuracy. The undistortion results for
RGB and thermal infrared images are shown in the figure 2. It
can be observed that the RGB image exhibits little noticeable
distortion, while the undistorted thermal infrared image shows
more significant changes, with the checkerboard pattern being
well-corrected.

4.1.2  Extrinsic Calibration

We used the undistorted RGB and thermal infrared images for
extrinsic calibration. The specific experimental setup is shown
in the figure 3.

Figure 3. Experimental scene

However, due to the lower resolution and higher image noise
of thermal infrared images, after using the Zhang Zhengyou
method to obtain the relative pose between the RGB camera
and the thermal infrared camera, we further employed a cross-
modal feature matching method to perform sub-pixel
registration between the two cameras. This step ensures and
enhances the accuracy of the extrinsic calibration.

4.2 Extrinsic Calibration Based on Cross-Modal Feature
Matching

This paper utilizes XoFTR to complete cross-modal feature
matching and further calculates the relative pose between RGB
and thermal infrared cameras. XoFTR is a cross-modal method
for matching RGB and thermal infrared images. It addresses
the matching challenges brought by modality differences
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through pre-training with masked image modeling and fine-
tuning with pseudo-thermal image augmentation. Meanwhile,
XoFTR employs a coarse-to-fine matching process, performing
coarse matching at the 1/8 scale and fine matching at the 1/2
scale, and enhancing precision through sub-pixel refinement.

To ensure the accuracy of cross-modal feature matching
between RGB and thermal infrared images, this paper sets the
confidence level for coarse matching feature points to 0.8, that

is, only features with a confidence greater than 0.8 are retained.

Similarly, the confidence level for fine matching feature points
is set to 0.6. The final cross-modal feature matching results

based on the XoFTR method are shown in Figure 4.
—— =

Figure 4. Cross-modal feature matching

We use the reprojection error as a quantitative metric to
evaluate the accuracy of the extrinsic camera calibration.
Specifically, we first use XoFTR to extract matching feature
point pairs from RGB and thermal infrared images, compute
the essential matrix using the eight-point algorithm, and
simultaneously employ the RANSAC algorithm to eliminate
mismatches, thereby enhancing the estimation accuracy of the
essential matrix. Subsequently, we perform Singular Value
Decomposition (SVD) on the essential matrix to obtain the
relative rotation matrix and translation vector between the two
cameras. We then reconstruct the feature points in 3D space
using triangulation and reproject these 3D points onto the
image plane using the estimated extrinsic parameters. The
reprojection error is quantified by calculating the Euclidean
distance between the reprojected points and the actually
detected feature points. In this paper, we choose the mean
value as the quantitative metric for calibration accuracy.

To further verify the reliability of the calibration results, we
also conducted geometric consistency checks. Specifically, we
selected multiple sets of matching feature points across several
views and used these feature points to estimate the extrinsic
parameters separately. By verifying whether the estimated
extrinsic parameters satisfy geometric constraints such as
coplanarity, parallelism, and perpendicularity, we assessed
their geometric consistency. The final extrinsic parameter
estimation error obtained in this paper was 0.295 pixels.
Therefore, the extrinsic calibration method proposed in this
paper demonstrates high accuracy and stability in matching
RGB and thermal infrared images. The binocular stereo vision
system constructed based on this calibration method can
effectively be applied to mobile measurement tasks in real-
world scenarios.

5. Discussion and Conclusion

The calibration method proposed in this paper demonstrates its
advantages in several aspects. First, the high-precision
geometric calibration method is used to correct the internal
distortions of the infrared camera, significantly improving the
imaging quality of infrared images and providing an accurate
geometric basis for subsequent multimodal image fusion.
Second, the cross-modal extrinsic calibration strategy, using a

heatable checkerboard calibration board, effectively addresses
the issue of difficult feature point extraction in infrared
imaging due to insufficient temperature differences, further
enhancing the accuracy and robustness of the calibration. In
addition, the cross-modal feature matching capability of the
XoFTR algorithm further ensures the reliability of the
calibration results.

However, our method also has some limitations. First, the
calibration process requires the use of a specially designed
heatable checkerboard calibration board, which increases the
cost and complexity of the calibration equipment. Second,
although the method demonstrates high calibration accuracy in
the laboratory environment, environmental factors (such as
temperature changes and lighting conditions) may have some
impact on the calibration results in practical applications.
Future work can further optimize the design of the calibration
board to make it more adaptable to different environments. In
addition, more efficient cross-modal feature matching
algorithms can be explored to further improve the accuracy and
efficiency of calibration.
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