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Abstract:  

 
Point cloud registration plays an important role in 3D reconstruction and other point cloud-related tasks. The establishment of reliable 

and high-quality point correspondences is essential for accurately recovering the transformation matrix between point clouds. In recent 

years, the coarse-to-fine strategy have gained widespread attention to construct reliable point correspondences. However, in the coarse-

scale superpoint matching stage, superpoints in non-overlapping regions can degrade the matching quality, thereby limiting the relia-

bility of the refined point correspondences. To address this issue, this paper proposes a coarse-to-fine point cloud registration method 
based on superpoint overlap prediction, which focuses on optimizing the construction of superpoint correspondences at the coarse scale 

and effectively improving registration accuracy. Firstly, we employ a position-aware attention mechanism to enhance superpoint fea-

tures under geometric constraints. Then, the superpoint overlap prediction module generates overlap masks based on the enhanced 

features, effectively filtering out superpoints over non-overlapping regions. This ensures that only the available superpoints over over-

lapping regions participate in the matching process, leading to more accurate superpoint correspondences and improved registration 
accuracy and robustness. Experimental results on indoor 3DMatch and 3DLoMatch datasets, as well as the outdoor KITTI dataset, 

demonstrate that our proposed method achieves the superior registration performance.  

 

 

1. Introduction 

With the advancement of 3D laser scanning technology, point 

clouds have become a critical data source in applications such as 

3D reconstruction, making the processing of point cloud data es-

sential. As a crucial step in point cloud processing, point cloud 

registration aims to compute a transformation matrix that aligns 
local point clouds from different coordinate systems into a uni-

fied coordinate system, thereby reconstructing a complete 3D 

scene (Yang et al., 2024). Point cloud registration has now been 

widely applied in various fields, including 3D reconstruction 
(Yang et al., 2022) and virtual reality (Nguyen et al., 2022). 

Therefore, the topic of point cloud registration holds significant 

theoretical value and has profound implications for practical ap-

plications. 

 
In traditional point cloud registration methods, the Iterative 

Closest Point (ICP) algorithm (Besl and McKay, 1992) estab-

lishes point correspondences through nearest-neighbor search 

and uses iterative optimization to minimize the geometric error 

between two sets of point clouds. While the ICP algorithm is 
highly versatile, it suffers from issues such as sensitivity to the 

initial position and slow convergence. To solve the above issues, 

some studies have introduced branch-and-bound methods (Yang 

et al., 2013) or constraint strategies based on covariance matrices  

(Segal et al., 2009) to accelerate convergence and improve reg-
istration accuracy. However, these methods still face efficiency 

issues when dealing with low-overlap or dense point clouds. Un-

like the traditional point cloud registration methods, researchers  

have devoted to classic 3D feature descriptors such as SHOT 

(Salti et al., 2014) and FPFH (Rusu et al., 2009) and established 
point correspondences by exploiting the similarity between de-

scriptors. These 3D feature descriptor-based methods perform 

well in specific scenarios, effectively extracting point cloud fea-

tures and performing matching. However, traditional descriptors 
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primarily rely on geometric information, making it difficult to 
capture higher-level semantic features. As a result, point corre-

spondences constructed in complex scenes with substantial noise 

or repetitive structures are less reliable, leading to further degra-

dation in registration accuracy. 

 
In recent years, deep learning has attracted widespread attention 

in the point cloud registration field due to its powerful feature 

learning and representation capabilities. Many studies (Bai et al., 

2020, Huang et al., 2020) have begun to leverage neural net-
works to learn semantic features of point clouds, replacing tradi-

tional hand-crafted 3D feature descriptors to construct more re-

liable point correspondences. Deep learning-based point cloud 

registration approaches can generally be classified into two cat-

egories. The first category includes keypoint detection-based 
methods (Zaman et al., 2023, Huang et al., 2021), which primar-

ily rely on constructing high-discriminative feature descriptors 

to improve the reliability of point correspondences. For example, 

RoReg (Wang et al., 2023) improves the accuracy of keypoint 

detection and optimizes the feature matching process by intro-
ducing orientation descriptors and a local rotation estimation 

mechanism. This strategy enhances the reliability of point corre-

spondences and effectively improves the accuracy of point cloud 

registration. Instead of keypoint detection(Yu et al., 2021, Qin et 

al., 2023), the second type of methods adopts a coarse-to-fine 
strategy to progressively establish point correspondences. These 

methods construct superpoint correspondences at the coarse 

scale, which are then refined at the fine scale, thereby avoiding 

the keypoint detection process and enhancing the reliability of 

the constructed point correspondences. 
 

Despite the promising results achieved by lots of existing meth-

ods, the point cloud registration task still faces significant chal-

lenges for several reasons. Firstly, the introduction of attention 

mechanism helps superpoints to aggregate more context 
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information and enhance the expressiveness of point cloud fea-

tures. However, the attention mechanism often ignores the geo-
metric structure of the point cloud and leads to insufficient ex-

pression of the geometric information of the point cloud features, 

thereby increasing the risk of false correspondence. Secondly, 

previous researches (Yu et al., 2021) have demonstrated that a 

coarse-to-fine matching strategy offers significant advantages in 
improving the accuracy of point correspondences. However, dur-

ing the coarse-scale superpoint matching phase, the process is 

susceptible to noise interference and non-overlapping super-

points, which weakens the quality of superpoint matching and 

reduces the reliability of subsequent point correspondences. 
 

To address the aforementioned challenges, we propose a coarse-

to-fine point cloud registration network based on superpoint 

overlap prediction. Our contributions of this paper can be sum-

marized as follows: 
(1) We design a position-aware attention mechanism that inte-

grates positional information into superpoint features. By using 

self-attention and cross-attention under geometric constraints, it 

effectively fuses local superpoint features with global contextual 

information. 
(2) In the coarse-scale superpoint matching phase, we introduce 

a superpoint overlap prediction (SOP) module, which uses an 

overlap mask to filter out non-overlapping superpoints and im-

prove matching robustness. 

(3) Evaluation results on large-scale indoor and outdoor datasets  
demonstrate that our proposed method achieves superior regis-

tration performance, with a registration recall of 90.2% on in-

door scenes and 99.8% on outdoor scenes.   

 

2. Methodology 

Let 𝑷X、𝑷Y ∈ ℝ3  be two point clouds with partial overlap. 

Our goal is to estimate a rigid transformation parameter to align 

𝑷X  and 𝑷Y  into the same coordinate system, where 𝑹 ∈

𝑆𝑂(3) and 𝒕 ∈ ℝ3. We first establish superpoint correspond-

ences at the coarse scale (Section 2.1), then refine these corre-

spondences during the point correspondence construction phase. 

Based on the refined correspondences, we estimate the rigid 

transformation parameters to achieve point cloud registration 
(Section 2.2). The overall process of the proposed method is il-

lustrated in Figure 1. 

 

2.1 Superpoint correspondence construction 

2.1.1 Position-aware attention: To obtain superpoint fea-
tures for matching, we first encode the input raw point cloud and 

enhance the features using position-aware attention. Specifically, 

we use the encoding layers of KPConv to extract features and 

perform downsampling on the input raw point cloud data, reduc-

ing computational complexity while preserving key information. 

Through this process, we obtain the superpoint features 𝑭X
′ ∈

ℝ𝑛′×𝑏 and 𝑭Y
′ ∈ ℝ𝑚′ ×𝑏, as well as the uniformly distributed 

superpoints 𝑷X
′ ∈ ℝ𝑛′×3  and 𝑷Y

′ ∈ ℝ𝑚′ ×3 .The superpoints 

and their features are then fed into the position-aware attention 

module. By injecting positional information into the superpoint 
features, the network enhances its ability to capture contextual 

information while improving its perception of the geometric 

structure of the point clouds. This process is illustrated in Figure 

2.  

 

Taking the superpoints 𝑷X
′  from the source point cloud as an 

example, the process is as follows: First, we center the super-
points to remove the effects of global spatial shifts on feature 

learning. Next, a position encoding network maps the point 

cloud's spatial information into a high-dimensional feature space, 

which is fused with the original features to enhance the super-

point representation. The specific calculation of the position en-
coding is given by Equation (1). 

 

 
Figure 1. The pipeline of the proposed method. 

 

 

Figure 2. The pipeline of the position-aware attention. 
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 𝑭̂𝑋
′ = 𝑭𝑋

′ + 𝜙 (𝑷𝑋
′ −

1

𝑛 ′ ∑(𝑷𝑥𝑖

′ )

𝑛′

𝑖

) (1) 

 

In the equation, 𝜙(∙)  denotes the position encoding func-

tion.𝑭̂X
′ represents the superpoint features with embedded posi-

tional information. A similar operation is performed on the su-

perpoints 𝑷Y
′ of the target point cloud, resulting in the features  

𝑭̂Y
′ . 

 

The superpoint features 𝑭̂X
′  and 𝑭Y

′ , now augmented with po-

sitional information, are fed into the attention mechanism. This 
mechanism alternates between self-attention and cross-attention 

operations to further enhance the feature representations of the 

superpoints. Subsequently, a multi-layer perceptron (MLP) is 

used to deeply fuse the processed features with the original fea-

tures, preserving critical information and improving feature dis-
criminability. To better illustrate the processing steps, we de-

scribe the attention mechanism using the superpoint features of 

the source point cloud as an example. First, self-attention is ap-

plied to the superpoint features 𝑭X
′ . 

 

𝑭XSA

′ = MLP(Concat[𝑭̂X
′ , MHAttn (𝑭̂X

′ , 𝑭X
′ , 𝑭̂X

′ )]) (2) 

 

Next, cross-attention is applied to 𝑭XSA

′ , enabling superpoints to 

extract relevant information from the target point cloud and en-

hancing feature consistency between corresponding points. Fol-

lowing this, another round of self-attention is performed to fur-

ther refine the superpoint feature representation. As a result, we 

obtain the final superpoint features 𝑭X
′ , which integrate both po-

sitional information and global contextual cues. Similarly, the 

same processing steps are applied to the target point cloud’s su-

perpoint features 𝑭̂Y
′ , yielding the enhanced features 𝑭Y

′ . 

 
2.1.2 Superpoint overlap prediction: To enhance the accu-

racy of superpoint correspondences in the coarse stage, we intro-

duce a SOP module during the superpoint matching phase. This 

module performs a binary classification task to generate an over-

lap mask, effectively filtering out non-overlapping superpoints 
and preventing incorrect correspondences that may disrupt the 

matching process. 

 

The enhanced superpoint features 𝑭X
′  and 𝑭Y

′  are fed into the 

SOP module, which consists of 1D convolutional layers with 

ReLU activation, and employs GroupNorm for normalization to 

stabilize training. SOP utilizes these enhanced features to predict 

the probability of each superpoint belonging to the overlapping 
region and constructs the overlap mask accordingly. The key 

workflow of SOP is illustrated in Figure 3. Specifically, we first 

estimate the probability of each superpoint being in the overlap-

ping region: 

 

 𝒙ol = ℎ(𝑭X
′ ) (3) 

 𝒚ol = ℎ(𝑭Y
′ ) (4) 

 

In this process, ℎ(∙)  denotes the overlap prediction function. 

We first compute the overlap probabilities 𝒙ol and 𝒚ol , then 

apply the argmax operation to generate the overlap masks 𝑴X 

and 𝑴Y , which identify the overlapping superpoints. Using 

these masks, we filter out non-overlapping features, retaining 

only the features within the overlapping regions, denoted as 

𝑭MX
′  and 𝑭MY

′ , for further processing. Next, we construct a su-

perpoint feature similarity matrix 𝑺′ based on 𝑭MX
′  and 𝑭MY

′  

to quantify the similarity between superpoints. To refine this 
similarity matrix, we employ the Sinkhorn algorithm, which it-

eratively optimizes 𝑺′  to satisfy double normalization con-

straints, ensuring a more reliable matching process. Finally, 

based on the optimized similarity matrix 𝑺′, we derive the su-

perpoint correspondence set 𝑪′. 

 

2.2 Point correspondence construction 

To refine the superpoint correspondences obtained in the previ-

ous stage, we first utilize the decoding layers of the KPConv net-
work. Through nearest-neighbor interpolation, upsampling, and 

skip connections, we restore the superpoint features to the origi-

nal resolution of 𝑷𝑋  and 𝑷𝑌 , obtaining their corresponding 

fine-grained feature representations 𝑭𝑋 ∈ ℝ𝑛×𝑐  and 𝑭𝑌 ∈
ℝ𝑚×𝑐 . Based on these refined features, we adopt a point-to-node 

grouping strategy to propagate superpoint correspondences to 

fine-scale patches, where each patch consists of a set of associ-

ated points and their respective feature descriptors. Specifically, 

for any given superpoint 𝑷𝑋
′ (𝑖′) , its associated point set and fea-

ture descriptor set can be expressed as: 
 

{
𝑮𝑖′

𝑃 = {𝑝 ∈ 𝑷𝑋|‖𝑝 − 𝑷𝑋
′ (𝑖′)‖ ≤ ‖𝑝 − 𝑷𝑋

′ (𝑗′)‖, ∀𝑗′ ≠ 𝑖′}

𝑮𝑖′
𝐹 = {𝑓 ∈ 𝑭𝑋|𝑓 ↔ 𝑝 𝑤𝑖𝑡ℎ 𝑝 ∈ 𝑮𝑖′

𝑃 }
 (5) 

 

In the equation, ‖∙‖ = ‖∙‖2 represents the Euclidean distance, 

and 𝑝 denotes each point in the point cloud to be assigned. 𝑮𝑖′
𝑃  

and 𝑮𝑖′
𝐹   represent the generated associated point set and its 

 

Figure 3. The pipeline of the SOP. 
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corresponding feature descriptor, respectively. Through the 
point-to-node grouping strategy, we extend the superpoint corre-

spondences to their associated patch correspondences, where the 

correspondences in geometric space are represented as CP =

{(𝑮𝑖′
P , 𝑮𝑗′

P )} and the correspondences in feature space are repre-

sented as CF = {(𝑮𝑖′
F , 𝑮𝑗′

F )}. 

 

For the obtained patch correspondences, we introduce a density-

adaptive mechanism to extract high-quality point correspond-

ences. Specifically, for a given patch correspondence 

{(𝐆𝑖′
P, 𝐆𝑖′

F), (𝐆𝑗′
P, 𝐆𝑗′

F)}, we first utilize an attention mechanism to 

aggregate local point cloud information while masking out inva-

lid points using "-∞". Then, we perform an optimal transport op-

eration to obtain the similarity matrix 𝑺(𝑖, 𝑗) and select high-
confidence point correspondences to form the point correspond-

ence set 𝑪𝑖  for the given patch correspondence. Finally, we 

merge all point correspondence sets to construct the global point 

correspondence set 𝑪 = ⋃ 𝑪𝑖
𝑁𝐶̃

𝑖=1
 . Finally, based on the point 

correspondence set 𝑪, we solve for the optimal rigid transfor-
mation parameters using weighted Singular Value Decomposi-

tion (SVD) within the RANSAC framework, thereby achieving 

the rigid alignment between the source and target point clouds. 

 

2.3 Loss function 

To enable the model to learn higher-quality point correspond-

ences and achieve optimal registration performance, we design 

three loss functions superpoint matching loss ℒc, overlap pre-

diction loss ℒov, and point matching loss ℒf to provide super-

vision at different stages of the model. 

 

Superpoint matching loss: For a given pair of superpoints 

𝑷X
′ (𝑖′) and 𝑷Y

′ (𝑗′) , we use the proportion of true point corre-

spondences in their expanded sets 𝑮𝑖′
P   and 𝑮𝑗′

P   to construct 

their true matching probability. Specifically, the ground truth 

matching probability 𝑾′(𝑖′ , 𝑗′) can be defined as: 

 

𝑾′(𝑖′ , 𝑗′) = |{𝑝 ∈ 𝑮𝑖′
P | min

𝑞∈𝑮
𝑗′
P

∥ 𝑻̅Y
X(𝑝) − 𝑞 ∥2< 𝜏𝑝 }|/|𝑮𝑖′

P | 

(6) 

 

In this equation, 𝑻̅Y
X   represents the ground truth rotation and 

translation matrix, and 𝜏𝑝  denotes the predefined distance 

threshold. The loss function for the superpoint matching stage 

can be defined as: 

 ℒc =
− ∑ 𝑾′(𝑖′ , 𝑗′) log(𝑺′(𝑖′ , 𝑗′))𝑖′,𝑗′

∑ 𝑾′(𝑖′ , 𝑗′)𝑖′,𝑗′
 (7) 

 

Overlap prediction loss: We define the overlap prediction as a 

binary classification task, using cross-entropy loss for supervi-

sion. The overlap loss of superpoints in the source point cloud 

can be defined as follows: 
 

 

ℒ𝑜𝑥
=

1

𝑛′
∑ 𝑜

𝑥𝑖
′

∗ ∙ log 𝑜𝑥𝑖
′ + (1 − 𝑜

𝑥𝑖
′

∗ ) ∙ log(1 − 𝑜𝑥𝑖
′)𝑛′

𝑖=1     (8) 

 

In the equation, 𝑜
𝑥𝑖

′
∗  represents the ground truth overlap labels. 

Similarly, the ℒ𝑜𝑦
 is calculated in this way. The total overlap 

loss can be calculated by the following equation: ℒov =
1

2
(ℒ𝑜𝑥

+ ℒ𝑜𝑦
). 

 

Point matching loss: The matching probability 𝑩 ∈

ℝ(𝒌+𝟏)×(𝒌+𝟏) for any given patch pair (𝑮𝑖′
P , 𝑮𝑗′

P ) ∈ 𝑪P can be 

defined as:0 

 

𝑩(𝑖, 𝑗) = {
1, ‖𝑻̅Y

X
(𝑮

𝑖′
P(𝑖)) − 𝑮

𝑗′
P(𝑗)‖

2
< 𝜏𝑝′

0, otherwise
      ∀𝑖 ,∀𝑗𝜖[1, 𝑘] 

 (9) 

 

We set the rows and columns corresponding to duplicate sam-

pled points in matrix 𝑩 to 0, and set 𝑩(𝑘 + 1, 𝑘 + 1) = 0 to 

 

Figure 4. Registration results on 3DMatch and 3DLoMatch. (a) and (b) represent the input point cloud pairs (green represents the 

source point cloud, and yellow denotes the target point cloud.), (c) shows the ground truth alignment, and (d) presents the estimated 

registration result. 
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eliminate their side effects during the training process. Therefore, 
the loss function for the point matching stage is defined as: 

 

ℒf = − ∑ 𝑩(𝑖, 𝑗) log(𝑺(𝑖, 𝑗))
𝑖 ,𝑗

∕ ∑ 𝑩(𝑖, 𝑗)
𝑖 ,𝑗

 (10) 

 

Finally, the total loss can be calculated by the following equation: 

ℒ = ℒc + ℒov + ℒf. 

 

3. Experiments 

To evaluate the performance of the proposed method, we con-

duct experiments on the indoor datasets 3DMatch (overlap ratio > 

30%) and 3DLoMatch (overlap ratio 10%–30%) and compare it 

with existing methods, including 3DSN(Gojcic et al., 2018), 

FCGF(Choy et al., 2019), D3Feat(Bai et al., 2020), Preda-
tor(Huang et al., 2021), and CoFiNet(Yu et al., 2021). Further-

more, to assess the robustness and generalization ability of the 

proposed method in large-scale outdoor environments, we also 

perform experiments on the KITTI dataset. 

 

3.1 Evaluation on 3DMatch and 3DMLoMatch 

Evaluation Metrics: Based on prior work, we evaluate the 

method’s performance using Registration Recall (RR), Inlier Ra-

tio (IR), and Feature Matching Recall (FMR). Specifically, (1) 

RR quantifies the success rate of point cloud registration, de-

fined as the percentage of point cloud pairs where the rigid trans-
formation estimated by RANSAC has an error below a specified 

threshold (e.g., RMSE <  0.2m). (2) IR measures the reliability 

of correspondences, representing the fraction of matched points 

whose geometric residuals are below a predefined threshold (e.g., 

𝜏1 = 0.1m) under the ground truth transformation. (3) FMR de-

fines as the proportion of point cloud pairs where the IR exceeds  

a given threshold (e.g., 𝜏2 = 5%). 

 

Registration Results: To assess the robustness of the proposed 
method under varying levels of point correspondence sparsity 

and examine the effect of correspondence quantity on registra-

tion accuracy, we follow (Bai et al., 2020) and evaluate the 

method’s performance across different sampling densities, com-

paring it with existing approaches. The results are presented in 

 
Figure 5. Evaluation results of 3DMatch and 3DLoMatch datasets under different sample sizes ranging from 250 to 5000. (a) to (c) 

represent the test results on 3DMatch, and (d) to (f) represent the test results on 3DLoMatch. 

 

 
Figure 6. Visualization of registration results on KITTI. (a) and (b) represents the input point cloud pairs (green represents the source 

point cloud, and yellow denotes the target point cloud.), (c) shows the ground truth alignment, and (d) presents the estimated regis-

tration result. 
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Figure 4. In terms of IR, the proposed method consistently 

achieves superior performance across different sampling densi-

ties on 3DMatch and 3DLoMatch datasets. Specifically, on 
3DMatch, when sampling 250 and 500 correspondences, our 

method surpasses all competing approaches in IR. On 

3DLoMatch, our method achieves the highest matching quality 

in most cases, except at 5000 samples, where it is slightly out-

performed by Predator. For RR, which measures final registra-
tion accuracy, our method exhibits competitive performance on 

3DMatch, with a slight disadvantage at 1000 samples. In all 

other cases, it outperforms competing methods, achieving a 

0.4%–3.2% improvement in accuracy. On 3DLoMatch, except 

for a slight gap compared with CoFiNet, all methods achieve 
better performance than other methods. Further analysis indi-

cates that at 250 samples, both IR and RR reach their peak values 

across both datasets. The registration results are visualized in 

Figure 5. Moreover, experimental results indicate that as the 

number of point correspondences increases, the IR and RR tends 
to degrade. This decline is primarily attributed to the rising pro-

portion of mismatches, which adversely affects the RANSAC-

based transformation estimation. The increase in outlier ratio 

weakens the support from inliers, thereby reducing both the reg-

istration accuracy and the stability of the estimation process. 
 

3.2 Evaluation on KITTI 

Evaluation Metrics: For the outdoor dataset KITTI, we assess 

performance using three key metrics: Relative Translation Error 

(RTE), Relative Rotation Error (RRE), and Registration Recall 
(RR). (1) RTE measures the Euclidean distance error between 

the predicted and ground-truth translation vectors. (2) RRE 

quantifies the geodesic distance error between the predicted and 

ground-truth rotation matrices. (3) RR assesses registration suc-

cess, defined as the proportion of point cloud pairs where RRE 

is below 5° and RTE is below 2𝑚 after applying the estimated 
transformation. 

 

Registration Results: To assess the capability of the proposed 

method in outdoor point cloud registration, we conduct experi-

ments on the KITTI dataset. We compare our approach with 
DGR(Choy et al., 2020), FMR(Huang et al., 2020), SpinNet(Ao 

et al., 2021), and CoFiNet(Yu et al., 2021), with the comparative 

results summarized in Table 1. Our method demonstrates com-

petitive registration performance against existing approaches in 

outdoor scenarios, highlighting its strong generalization ability 
to large-scale environments. Figure 6 illustrates the qualitative 

registration results on KITTI. 

 

3.3 Ablation study 

3.3.1 The reliability of correspondences: To validate the re-
liability of the point correspondences established by our method, 

we estimate the rigid transformation parameters directly from 

the extracted correspondences via Singular Value Decomposi-

tion (SVD), without employing the robust pose estimator 

RANSAC. The experimental results are illustrated in Figure 7. 

 

As shown in the Figure 7, without relying on the RANSAC al-

gorithm, D3Feat, FCGF, and Predator demonstrate strong regis-
tration performance on the high-overlap 3DMatch dataset. How-

ever, their registration accuracy deteriorates significantly on the 

low-overlap 3DLoMatch dataset, highlighting a lack of robust-

ness. In contrast, our method consistently delivers stable and su-

perior registration performance across both the 3DMatch and 
3DLoMatch datasets. Notably, when compared to the second-

best performer, CoFiNet, our approach achieves an average RR 

improvement of approximately 9%, indicating that the proposed 

method generates more reliable point correspondences and ex-

hibits strong adaptability in varying overlap scenarios. 
 

3.3.2 The influence of the number of superpoints: Our 

method employs a coarse-to-fine strategy to gradually establish 

point correspondences, with the final correspondences refined 

from the coarse-scale superpoint correspondences. To explore 
the effect of the number of superpoint correspondences on point 

matching accuracy and registration performance, we evaluate 

the IR and RR under varying qualities and quantities of super-

point correspondences. The results are illustrated in Figure 8. 

The results indicate that increasing the confidence threshold 𝝉𝒄 

effectively filters out more reliable superpoint correspondences, 
thereby improving the IR. However, this also reduces the num-

ber of superpoint correspondences available for establishing 

point correspondences, which consequently leads to a decrease 

in RR. To address this, we propose a dual-threshold strategy, 

adding a secondary threshold 𝝉𝒎 to ensure that each point  

Method RTE(m) RRE(°) RR(%) 

DGR 0.320 0.37 98.7 

FMR 0.660 1.49 90.6 

SpinNet 0.099 0.47 99.1 

CoFiNet 0.085 0.41 99.8 

Ours 0.080 0.32 99.8 

Table 1 Registration results comparison on the KITTI dataset. 

The best result is shown in bold and the second best result is 

underlined. 

 

 

 

(a) 

 

(b) 

Figure 7. Registration results without RANSAC. (a) represents 

the registration results on 3DMatch, and (b) represents the reg-

istration results on 3DLoMatch. 
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(a) 

 

(b) 

Figure 8. The ablation study on the corresponding number of 

different superpoints (sample number 2500). (a) and (b) repre-

sent the experimental results on 3DMatch and 3DLoMatch, re-
spectively. 

 

cloud pair retains at least 𝝉𝒎  superpoint correspondences, 

thereby mitigating the issue of insufficient point correspond-

ences caused by an overly high 𝝉𝒄 . Although this strategy 
slightly decreases the IR, it results in a significant improvement 

in the RR, thereby enhancing the registration success rate while 

maintaining a reasonable IR. 

 

3.3.3 Different module ablation experiments: To evaluate 
the impact of the Position Encoding (PE) and SOP modules on 

registration performance, we conducted ablation experiments on 

the 3DMatch and 3DLoMatch datasets, with the results shown 

in Table 2. The experiments indicate that using SOP alone pro-

vides limited improvements in IR and FMR, suggesting that 
while it helps mitigate interference from non-overlapping re-

gions, its overall contribution to registration performance is not 

significant. In contrast, the PE module effectively enhances IR, 

but its impact on final registration performance remains limited. 
However, when PE and SOP work together, not only does IR 

further improve, but RR also reaches its optimal level. The two 

modules complement each other, jointly enhancing matching 

quality and overall registration performance. 

 

4. Summary and outlook 

With the rapid development of 3D scanning technology, point 

cloud registration has become increasingly popular. In this work, 

we propose a coarse-to-fine point cloud registration method 

based on superpoint overlap perception, focusing on optimizing 
superpoint matching at the coarse scale. In our approach, we in-

troduce a position-aware attention mechanism to enhance super-

point feature representation and design a superpoint overlap pre-

diction module that generates a mask by predicting overlap prob-

abilities, filtering out invalid superpoints in non-overlapping re-
gions to improve matching accuracy. Experimental results 

demonstrate that our proposed method achieves high accuracy 

and robustness on the 3DMatch, 3DLoMatch, and KITTI da-

tasets. However, in low-overlap scenarios, the accuracy of point 

correspondences still has room for improvement. In the future, 
we will focus on optimizing the distribution of point correspond-

ences in low-overlap cases to enhance registration accuracy. 
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