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Abstract:

Point cloud registration plays an important role in 3D reconstruction and other point cloud-related tasks. The establishment of reliable
and high-quality point correspondences is essential for accurately recovering the transformation matrix between point clouds. In recent
years, the coarse-to-fine strategy have gained widespread attention to construct reliable point correspondences. However, in the coarse-
scale superpoint matching stage, superpoints in non-overlapping regions can degrade the matching quality, thereby limiting the relia-
bility of the refined point correspondences. To address this issue, this paper proposes a coarse-to-fine point cloud registration method
based on superpoint overlap prediction, which focuses on optimizing the construction of superpoint correspondences at the coarse scale
and effectively improving registration accuracy. Firstly, we employ a position-aware attention mechanism to enhance superpoint fea-
tures under geometric constraints. Then, the superpoint overlap prediction module generates overlap masks based on the enhanced
features, effectively filtering out superpoints over non-overlapping regions. This ensures that only the available superpoints over over-
lapping regions participate in the matching process, leading to more accurate superpoint correspondences and improved registration
accuracy and robustness. Experimental results on indoor 3DMatch and 3DLoMatch datasets, as well as the outdoor KITTI dataset,

demonstrate that our proposed method achieves the superior registration performance.

1. Introduction

With the advancement of 3D laser scanning technology, point
clouds have become a critical data source in applications such as
3D reconstruction, making the processing of point cloud data es-
sential. As a crucial step in point cloud processing, point cloud
registration aims to compute a transformation matrix that aligns
local point clouds from different coordinate systems into a uni-
fied coordinate system, thereby reconstructing a complete 3D
scene (Yang et al., 2024). Point cloud registration has now been
widely applied in various fields, including 3D reconstruction
(Yang et al., 2022) and virtual reality (Nguyen et al., 2022).
Therefore, the topic of point cloud registration holds significant
theoretical value and has profound implications for practical ap-
plications.

In traditional point cloud registration methods, the Iterative
Closest Point (ICP) algorithm (Besl and McKay, 1992) estab-
lishes point correspondences through nearest-neighbor search
and uses iterative optimization to minimize the geometric error
between two sets of point clouds. While the ICP algorithm is
highly versatile, it suffers from issues such as sensitivity to the
initial position and slow convergence. To solve the above issues,
some studies have introduced branch-and-bound methods (Yang
et al., 2013) or constraint strategies based on covariance matrices
(Segal et al., 2009) to accelerate convergence and improve reg-
istration accuracy. However, these methods still face efficiency
issues when dealing with low-overlap or dense point clouds. Un-
like the traditional point cloud registration methods, researchers
have devoted to classic 3D feature descriptors such as SHOT
(Salti et al., 2014) and FPFH (Rusuet al., 2009) and established
point correspondences by exploiting the similarity between de-
scriptors. These 3D feature descriptor-based methods perform
well in specific scenarios, effectively extracting point cloud fea-
tures and performing matching. However, traditional descriptors
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primarily rely on geometric information, making it difficult to
capture higher-level semantic features. As a result, point corre-
spondences constructed in complex scenes with substantial noise
or repetitive structures are less reliable, leading to further degra-
dation in registration accuracy.

In recent years, deep learning has attracted widespread attention
in the point cloud registration field due to its powerful feature
learning and representation capabilities. Many studies (Bai et al.,
2020, Huang et al., 2020) have begun to leverage neural net-
works to learn semantic features of point clouds, replacing tradi-
tional hand-crafted 3D feature descriptors to construct more re-
liable point correspondences. Deep learning-based point cloud
registration approaches can generally be classified into two cat-
egories. The first category includes keypoint detection-based
methods (Zaman et al., 2023, Huang et al., 2021), which primar-
ily rely on constructing high-discriminative feature descriptors
to improve the reliability of point correspondences. For example,
RoReg (Wang et al., 2023) improves the accuracy of keypoint
detection and optimizes the feature matching process by intro-
ducing orientation descriptors and a local rotation estimation
mechanism. This strategy enhances the reliability of point corre-
spondences and effectively improves the accuracy of point cloud
registration. Instead of keypoint detection(Yu et al., 2021, Qin et
al., 2023), the second type of methods adopts a coarse-to-fine
strategy to progressively establish point correspondences. These
methods construct superpoint correspondences at the coarse
scale, which are then refined at the fine scale, thereby avoiding
the keypoint detection process and enhancing the reliability of
the constructed point correspondences.

Despite the promising results achieved by lots of existing meth-
ods, the point cloud registration task still faces significant chal-
lenges for several reasons. Firstly, the introduction of attention
mechanism helps superpoints to aggregate more context
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Figure 1. The pipeline of the proposed method.
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Figure 2. The pipeline of the position-aware attention.

information and enhance the expressiveness of point cloud fea-
tures. However, the attention mechanism often ignores the geo-
metric structure of the point cloud and leads to insufficient ex-
pression of the geometric information ofthe point cloud features,
thereby increasing the risk of false correspondence. Secondly,
previous researches (Yu et al., 2021) have demonstrated that a
coarse-to-fine matching strategy offers significant advantages in
improving the accuracy ofpoint correspondences. However, dur-
ing the coarse-scale superpoint matching phase, the process is
susceptible to noise interference and non-overlapping super-
points, which weakens the quality of superpoint matching and
reduces the reliability of subsequent point correspondences.

To address the aforementioned challenges, we propose a coarse-
to-fine point cloud registration network based on superpoint
overlap prediction. Our contributions of this paper can be sum-
marized as follows:

(1) We design a position-aware attention mechanism that inte-
grates positional information into superpoint features. By using
self-attention and cross-attention under geometric constraints, it
effectively fuses local superpoint features with global contextual
information.

(2) In the coarse-scale superpoint matching phase, we introduce
a superpoint overlap prediction (SOP) module, which uses an
overlap mask to filter out non-overlapping superpoints and im-
prove matching robustness.

(3) Evaluation results on large-scale indoor and outdoor datasets
demonstrate that our proposed method achieves superior regis-
tration performance, with a registration recall of 90.2% on in-
door scenes and 99.8% on outdoor scenes.

2. Methodology

Let Py. Py € R® be two point clouds with partial overlap.
Our goal is to estimate a rigid transformation parameter to align
Py and Py into the same coordinate system, where R €

SO(3) and t € R3. We first establish superpoint correspond-
ences at the coarse scale (Section 2.1), then refine these corre-
spondences during the point correspondence construction phase.
Based on the refined correspondences, we estimate the rigid
transformation parameters to achieve point cloud registration
(Section 2.2). The overall process of the proposed method is il-
lustrated in Figure 1.

2.1 Superpoint correspondence construction

2.1.1 Position-aware attention: To obtain superpoint fea-
tures for matching, we first encode the input raw point cloud and
enhance the features using position-aware attention. Specifically,
we use the encoding layers of KPConv to extract features and
perform downsampling on the input raw point cloud data, reduc-
ing computational complexity while preserving key information.
Through this process, we obtain the superpoint features Fy €
R and Fy € R™ P a5 well as the uniformly distributed
superpoints Py € R™*® and P}y € R™ >3 The superpoints
and their features are then fed into the position-aware attention
module. By injecting positional information into the superpoint
features, the network enhances its ability to capture contextual
information while improving its perception of the geometric
structure of the point clouds. This process is illustrated in Figure
2.

Taking the superpoints Py from the source point cloud as an
example, the process is as follows: First, we center the super-
points to remove the effects of global spatial shifts on feature
learning. Next, a position encoding network maps the point
cloud's spatial information into a high-dimensional feature space,
which is fused with the original features to enhance the super-
point representation. The specific calculation of the position en-
coding is given by Equation (1).
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In the equation, ¢(-) denotes the position encoding func-
tion.Fyrepresents the superpoint features with embedded posi-
tional information. A similar operation is performed on the su-
perpoints Pyof the target point cloud, resulting in the features
7.

The superpoint features Fy and Fy, now augmented with po-
sitional information, are fed into the attention mechanism. This
mechanism alternates between self-attention and cross-attention
operations to further enhance the feature representations of the
superpoints. Subsequently, a multi-layer perceptron (MLP) is
used to deeply fuse the processed features with the original fea-
tures, preserving critical information and improving feature dis-
criminability. To better illustrate the processing steps, we de-
scribe the attention mechanism using the superpoint features of
the source point cloud as an example. First, self-attention is ap-
plied to the superpoint features FY.

Fy,, = MLP(Concat[Fy, MHAtn (F, Fi F)])  (2)

Next, cross-attention is applied to F' &SA, enabling superpoints to
extract relevant information from the target point cloud and en-
hancing feature consistency between corresponding points. Fol-
lowing this, another round of self-attention is performed to fur-
ther refine the superpoint feature representation. As a result, we
obtain the final superpoint features Fy, which integrate both po-
sitional information and global contextual cues. Similarly, the
same processing steps are applied to the target point cloud’s su-
perpoint features FY, yielding the enhanced features Fy,.

2.1.2 Superpoint overlap prediction: To enhance the accu-
racy of superpoint correspondences in the coarse stage, we intro-
duce a SOP module during the superpoint matching phase. This
module performs a binary classification task to generate an over-
lap mask, effectively filtering out non-overlapping superpoints
and preventing incorrect correspondences that may disrupt the
matching process.

The enhanced superpoint features Fy and Fy are fed into the
SOP module, which consists of 1D convolutional layers with
ReLU activation, and employs GroupNorm for normalization to

estimate the probability of each superpoint being in the overlap-
ping region:

xo1 = h(Fy) (©)
Yo = h(Fy) *)

In this process, h(+) denotes the overlap prediction function.
We first compute the overlap probabilities x, and y,, then
apply the argmax operation to generate the overlap masks My
and My, which identify the overlapping superpoints. Using
these masks, we filter out non-overlapping features, retaining
only the features within the overlapping regions, denoted as
Fyx and Fyy, for further processing. Next, we construct a su-
perpoint feature similarity matrix S’ based on Fyy and Fyy
to quantify the similarity between superpoints. To refine this
similarity matrix, we employ the Sinkhorn algorithm, which it-
eratively optimizes S’ to satisfy double normalization con-
straints, ensuring a more reliable matching process. Finally,
based on the optimized similarity matrix S', we derive the su-
perpoint correspondence set C'.

2.2 Point correspondence construction

To refine the superpoint correspondences obtained in the previ-
ous stage, we first utilize the decoding layers of the KPConv net-
work. Through nearest-neighbor interpolation, upsampling, and
skip connections, we restore the superpoint features to the origi-
nal resolution of Py and Py, obtaining their corresponding
fine-grained feature representations Fy € R™¢ and Fy €
R™*¢ Based on these refined features, we adopt a point-to-node
grouping strategy to propagate superpoint correspondences to
fine-scale patches, where each patch consists of a set of associ-
ated points and their respective feature descriptors. Specifically,
for any given superpoint PY(i"), its associated point set and fea-
ture descriptor set can be expressed as:

{Gf, ={p e Pylllp — Px(OIl < llp — PLGOIL V" =i} )
GiF = {fe Fy|f @ pwithpe G‘;}
In the equation, |||l = |||, represents the Euclidean distance,

and p denotes each point in the point cloud to be assigned. Gf,
and Gf, represent the generated associated point set and its
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Figure 4. Registration results on 3DMatch and 3DLoMatch. (a) and (b) represent the input point cloud pairs (green represents the
source point cloud, and yellow denotes the target point cloud.), (c) shows the ground truth alignment, and (d) presents the estimated
registration result.

corresponding feature descriptor, respectively. Through the
point-to-node grouping strategy, we extend the superpoint corre-
spondences to their associated patch correspondences, where the
correspondences in geometric space are represented as Cp =

{(G?, Gjp, )] and the correspondences in feature space are repre-
sented as Cp = {(GiF,,GjF, )}

For the obtained patch correspondences, we introduce a density-
adaptive mechanism to extract high-quality point correspond-
ences. Specifically, for a given patch correspondence
{(G; ) Glg ), (ng‘ G}f)}, we first utilize an attention mechanism to
aggregate local point cloud information while masking out inva-
lid points using "-o0". Then, we perform an optimal transport op-
eration to obtain the similarity matrix S(i,j) and select high-
confidence point correspondences to form the point correspond-
ence set C; for the given patch correspondence. Finally, we
merge all point correspondence sets to construct the global point
correspondence set € = U?]fl C;. Finally, based on the point
correspondence set C, we solve for the optimal rigid transfor-
mation parameters using weighted Singular Value Decomposi-
tion (SVD) within the RANSAC framework, thereby achieving
the rigid alignment between the source and target point clouds.

2.3 Loss function

To enable the model to learn higher-quality point correspond-
ences and achieve optimal registration performance, we design
three loss functions superpoint matching loss L., overlap pre-
diction loss L, and point matching loss L; to provide super-
vision at different stages of the model.

Superpoint matching loss: For a given pair of superpoints
P%(i") and Py(j"), we use the proportion of true point corre-
spondences in their expanded sets Gf, and GJB to construct

their true matching probability. Specifically, the ground truth
matching probability W' (i’,j") can be defined as:

w'(i',j") = Hp € GF,| ;IEHGI}' Il T%(P) —q < ‘L'p}
]'f

/165
6)

In this equation, T¥ represents the ground truth rotation and
translation matrix, and 7, denotes the predefined distance
threshold. The loss function for the superpoint matching stage
can be defined as:

=Xy W) log(S'(,5)
¢ X pW (L")

(M

Overlap prediction loss: We define the overlap prediction as a
binary classification task, using cross-entropy loss for supervi-
sion. The overlap loss of superpoints in the source point cloud
can be defined as follows:

1 ! * ~ * ~
L, = ?Z?ﬂox{ “log6,y+ (1—0,,) - log(1 - 0,) (8)

In the equation, O;Q represents the ground truth overlap labels.
Similarly, the Loy is calculated in this way. The total overlap
loss can be calculated by the following equation: L, =
3 Lo, +Lo).

Point matching loss: The matching probability B €

REDXEHD for any given patch pair (G?,Gjpl) € Cp can be
defined as:0

1, |7 (G?(i)) - Gj‘,’,(j)||2 <1y

0, otherwise

B(G,)) = { V.,V €ll, k]
(€)

We set the rows and columns corresponding to duplicate sam-
pled points in matrix B to 0, and set B(k+1,k+ 1) =0 to
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Evaluation results of 3DMatch and 3DLoMatch datasets under different sample sizes ranging from 250 to 5000. (a) to (c)

represent the test results on 3DMatch, and (d) to (f) represent the test results on 3DLoMatch.
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Figure 6. Visualization of registration results on KITTI. (a) and (b) represents the input point cloud pairs (green represents the source
point cloud, and yellow denotes the target point cloud.), (c) shows the ground truth alignment, and (d) presents the estimated regis-
tration result.

eliminate their side effects during the training process. Therefore,
the loss function for the point matching stage is defined as:

L=-) BG)IgGN)/ ) BGH  (10)
i ii

Finally, the total loss can be calculated by the following equation:

L=L.+ Ly, + Ly

3.  Experiments

To evaluate the performance of the proposed method, we con-
duct experiments on the indoor datasets 3DMatch (overlap ratio >
30%) and 3DLoMatch (overlap ratio 10%—-30%) and compare it
with existing methods, including 3DSN(Gojcic et al., 2018),
FCGF(Choy et al,, 2019), D3Feat(Bai et al., 2020), Preda-
tor(Huang et al., 2021), and CoFiNet(Yu et al., 2021). Further-
more, to assess the robustness and generalization ability of the
proposed method in large-scale outdoor environments, we also
perform experiments on the KITTI dataset.

3.1 Evaluation on 3DMatch and 3DMLoMatch

Evaluation Metrics: Based on prior work, we evaluate the
method’s performance using Registration Recall (RR), Inlier Ra-
tio (IR), and Feature Matching Recall (FMR). Specifically, (1)
RR quantifies the success rate of point cloud registration, de-
fined as the percentage of point cloud pairs where the rigid trans-
formation estimated by RANSAC has an error below a specified

threshold (e.g., RMSE < 0.2m). (2) IR measures the reliability

of correspondences, representing the fraction of matched points
whose geometric residuals are below a predefined threshold (e.g.,
7, = 0.1m) under the ground truth transformation. (3) FMR de-
fines as the proportion of point cloud pairs where the IR exceeds

a given threshold (e.g., 7, = 5%).

Registration Results: To assess the robustness of the proposed
method under varying levels of point correspondence sparsity
and examine the effect of correspondence quantity on registra-
tion accuracy, we follow (Bai et al,, 2020) and evaluate the
method’s performance across different sampling densities, com-
paring it with existing approaches. The results are presented in
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Method RTE(m) RRE(®) RR(%)
DGR 0.320 0.37 98.7
FMR 0.660 1.49 90.6

SpinNet 0.099 0.47 99.1

CoFiNet 0.085 0.41 99.8
Ours 0.080 0.32 99.8

Table 1 Registration results comparison on the KITTI dataset.
The best result is shown in bold and the second best result is
underlined.

Figure 4. In terms of IR, the proposed method consistently
achieves superior performance across different sampling densi-
ties on 3DMatch and 3DLoMatch datasets. Specifically, on
3DMatch, when sampling 250 and 500 correspondences, our
method surpasses all competing approaches in IR. On
3DLoMatch, our method achieves the highest matching quality
in most cases, except at 5000 samples, where it is slightly out-
performed by Predator. For RR, which measures final registra-
tion accuracy, our method exhibits competitive performance on
3DMatch, with a slight disadvantage at 1000 samples. In all
other cases, it outperforms competing methods, achieving a
0.4%-3.2% improvement in accuracy. On 3DLoMatch, except
for a slight gap compared with CoFiNet, all methods achieve
better performance than other methods. Further analysis indi-
cates that at 250 samples, both IR and RR reach their peak values
across both datasets. The registration results are visualized in
Figure 5. Moreover, experimental results indicate that as the
number of point correspondences increases, the IR and RR tends
to degrade. This decline is primarily attributed to the rising pro-
portion of mismatches, which adversely affects the RANSAC-
based transformation estimation. The increase in outlier ratio
weakens the support from inliers, thereby reducing both the reg-
istration accuracy and the stability of the estimation process.

3.2 Evaluation on KITTI

Evaluation Metrics: For the outdoor dataset KITTI, we assess
performance using three key metrics: Relative Translation Error
(RTE), Relative Rotation Error (RRE), and Registration Recall
(RR). (1) RTE measures the Euclidean distance error between
the predicted and ground-truth translation vectors. (2) RRE
quantifies the geodesic distance error between the predicted and
ground-truth rotation matrices. (3) RR assesses registration suc-
cess, defined as the proportion of point cloud pairs where RRE
isbelow 5° and RTE isbelow 2m after applying the estimated
transformation.

Registration Results: To assess the capability of the proposed
method in outdoor point cloud registration, we conduct experi-
ments on the KITTI dataset. We compare our approach with
DGR(Choy et al., 2020), FMR(Huanget al., 2020), SpinNet(Ao
etal., 2021),and CoFiNet(Yu et al., 2021), with the comparative
results summarized in Table 1. Our method demonstrates com-
petitive registration performance against existing approaches in
outdoor scenarios, highlighting its strong generalization ability
to large-scale environments. Figure 6 illustrates the qualitative
registration results on KITTI.

3.3 Ablation study

3.3.1 The reliability of correspondences: To validate the re-
liability ofthe point correspondences established by our method,
we estimate the rigid transformation parameters directly from
the extracted correspondences via Singular Value Decomposi-
tion (SVD), without employing the robust pose estimator
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Figure 7. Registration results without RANSAC. (a) represents
the registration results on 3DMatch, and (b) represents the reg-
istration results on 3DLoMatch.

RANSAC. The experimental results are illustrated in Figure 7.

As shown in the Figure 7, without relying on the RANSAC al-
gorithm, D3Feat, FCGF, and Predator demonstrate strong regis-
tration performance on the high-overlap 3DMatch dataset. How-
ever, their registration accuracy deteriorates significantly on the
low-overlap 3DLoMatch dataset, highlighting a lack of robust-
ness. In contrast, our method consistently delivers stable and su-
perior registration performance across both the 3DMatch and
3DLoMatch datasets. Notably, when compared to the second-
best performer, CoFiNet, our approach achieves an average RR
improvement of approximately 9%, indicating that the proposed
method generates more reliable point correspondences and ex-
hibits strong adaptability in varying overlap scenarios.

3.3.2 The influence of the number of superpoints: Our
method employs a coarse-to-fine strategy to gradually establish
point correspondences, with the final correspondences refined
from the coarse-scale superpoint correspondences. To explore
the effect of the number of superpoint correspondences on point
matching accuracy and registration performance, we evaluate
the IR and RR under varying qualities and quantities of super-
point correspondences. The results are illustrated in Figure 8.
The results indicate that increasing the confidence threshold Tz,
effectively filters out more reliable superpoint correspondences,
thereby improving the IR. However, this also reduces the num-
ber of superpoint correspondences available for establishing
point correspondences, which consequently leads to a decrease
in RR. To address this, we propose a dual-threshold strategy,
adding a secondary threshold t,, to ensure that each point
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3DMatch 3DLoMatch
PE SOP IR (%) RR(%) FMR (%) IR(%) RR(%) FMR(%)
X X 51.2 89.5 98.0 243 60.7 80.5
X N 535 89.1 98.1 27.4 61.2 82.0
v X 54.7 88.6 97.8 28.1 63.0 82.7
v v 54.7 90.0 97.7 28.2 % 83.4

Table 2 The ablation studies of different modules. The best result is shown in bold and the second best result is underlined.
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Figure 8. The ablation study on the corresponding number of
different superpoints (sample number 2500). (a) and (b) repre-
sent the experimental results on 3DMatch and 3DLoMatch, re-

spectively.

cloud pair retains at least T, superpoint correspondences,
thereby mitigating the issue of insufficient point correspond-
ences caused by an overly high z.. Although this strategy
slightly decreases the IR, it results in a significant improvement
in the RR, thereby enhancing the registration success rate while
maintaining a reasonable IR.

3.3.3 Different module ablation experiments: To evaluate
the impact of the Position Encoding (PE) and SOP modules on
registration performance, we conducted ablation experiments on
the 3DMatch and 3DLoMatch datasets, with the results shown
in Table 2. The experiments indicate that using SOP alone pro-
vides limited improvements in IR and FMR, suggesting that
while it helps mitigate interference from non-overlapping re-
gions, its overall contribution to registration performance is not

significant. In contrast, the PE module effectively enhances IR,
but its impact on final registration performance remains limited.
However, when PE and SOP work together, not only does IR
further improve, but RR also reaches its optimal level. The two
modules complement each other, jointly enhancing matching
quality and overall registration performance.

4.  Summary and outlook

With the rapid development of 3D scanning technology, point
cloud registration has become increasingly popular. In this work,
we propose a coarse-to-fine point cloud registration method
based on superpoint overlap perception, focusing on optimizing
superpoint matching at the coarse scale. In our approach, we in-
troduce a position-aware attention mechanism to enhance super-
point feature representation and design a superpoint overlap pre-
diction module that generates a mask by predicting overlap prob-
abilities, filtering out invalid superpoints in non-overlapping re-
gions to improve matching accuracy. Experimental results
demonstrate that our proposed method achieves high accuracy
and robustness on the 3DMatch, 3DLoMatch, and KITTI da-
tasets. However, in low-overlap scenarios, the accuracy of point
correspondences still has room for improvement. In the future,
we will focus on optimizing the distribution of point correspond-
ences in low-overlap cases to enhance registration accuracy.
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