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Abstract

Accurately and efficiently identifying rock mass structural planes and extracting their characteristic information is crucial for rock
mass stability assessment. Three-dimensional (3D) laser scanning technology can significantly enhance both the efficiency and
accuracy of structural plane surveying; however, current mainstream point cloud segmentation algorithms exhibit notable shortcomings,
including blurred recognition of structural plane edges, insufficient segmentation accuracy, and poor integration precision among
segmented blocks. To address these problems, this study proposes an improved multi-rule region growing point cloud segmentation
method for rock structural planes. Specifically, plane fitting residuals are calculated from the point cloud data, and these residual values
are then used to optimize seed point selection, thereby improving the segmentation accuracy of planar point sets. Next, considering the
spatial relationship between the location of rock structural plane point clouds and their neighborhoods, a KD-tree data structure is
employed to perform voxel downsampling for nearest-neighbor searching, and the RANSAC-based region growing algorithm is further
refined. By adjusting the region growing segmentation parameters using multiple feature values and segmenting structural planes based
on point cloud normal vector differences and final feature values, the proposed method facilitates the extraction of structural plane
orientation, spacing, and extent, improving the overall segmentation quality. Experimental results demonstrate that the error between
the segmented rock structural plane area and dimensions obtained by this method and those computed using CAD is only 1.07%, which
meets the engineering error tolerance. Consequently, the proposed method provides stable and effective technical support for the

identification and segmentation of rock structural planes.

1. Introduction

Rock mass stability assessment is of critical importance in
geological engineering, mining, tunnel construction, and other
related fields. As the weakest component within rock masses,
rock structural planes—characterized by parameters such as
orientation, trace length, strike, and dip—directly influence the
mechanical behavior and stability of the rock mass. However,
rock structural planes often exhibit interlaced distributions, and
their complex geometric configurations and spatial relationships
pose challenges to accurately and comprehensively identifying
and evaluating them through traditional geological surveys. In
recent years, the use of UAV photogrammetry and three-
dimensional laser scanning to acquire characteristic information
of rock structural planes has enabled a more detailed
representation of the three-dimensional features of rock masses,
thereby providing more precise data for structural plane
identification. Consequently, accurately and efficiently
recognizing and extracting characteristic information about rock
structural planes has become a crucial task in rock mass stability
evaluation.

In the process of extracting rock mass structural planes,
especially under conditions where multiple planes are interlaced,
existing point cloud segmentation methods face certain
challenges. 3D point cloud region growing typically employs
random sample consensus (RANSAC) to obtain seed points
However, region growing based on RANSAC can be susceptible
to segmentation instability, and when dealing with interwoven or
complex geometries, it often suffers from insufficient
segmentation accuracy. To overcome this limitation, Wang et al.

proposed a multi-scale supervoxel segmentation method for point
cloud data by integrating multiple features such as color,
reflectivity, normal vectors, and principal directions, followed by
graph-based segmentation (Wang et al., 2021). However, this
algorithm relies on analyzing various point cloud attributes,
which constrains its range of application scenarios. Building on
these approaches, Liu et al. constructed an undirected graph using
voxels as nodes and employed connected components for
clustering, followed by a refined segmentation of under-
segmented objects via a normalized segmentation method
(Haifeng et al., 2018). Nevertheless, this strategy requires
filtering out ground points, which inevitably affects the
segmentation of targets. Matsuzaki et al. randomly sampled seed
points and determined whether their neighborhoods conformed
to a pre-defined geometric model (Matsuzaki and Nonaka, 2024).
However, this approach often suffers from false segmentations.
Overall, while these methods have achieved notable progress,
noise interference and blurred boundaries remain pressing
challenges when handling complex structural planes.
Consequently, there is a strong need for further algorithmic
optimization to enhance segmentation accuracy and efficiency.

In recent years, researchers have focused on automated or semi-
automated extraction of structural plane parameters—such as
orientation, spacing, and trace length—from three-dimensional
(3D) point clouds of rock masses (Song et al., 2024). Traditional
manual methods involve selecting at least three points on the
structural plane to compute its normal vector, thereby obtaining
the relevant parameters. This approach, however, is time-
consuming, prone to subjectivity, and vyields incomplete
geometric information. Another strategy involves either
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identifying principal curvature variations at point cloud vertices
or searching for an optimal plane within the 3D model (Dumic
and da Silva Cruz, 2025). Gigli et al. proposed a method wherein
a cubic region is employed to search for coplanar point subsets,
and clusters identified as belonging to the same structural plane
are then merged (Gigli and Casagli, 2011). Nonetheless, the
accuracy of this method is highly sensitive to the size of the cubic
search region, leading to potential errors in cluster merging. Liu
et al. presented a new structural plane grouping method that
simultaneously considers orientation, trace length, and
undulation (Liu et al., 2022). Nonetheless, the algorithm faces
limitations in building high-density 3D point cloud models and
accurately identifying and fitting complex structural planes,
while also insufficiently addressing uncertainties in the statistical
behavior of structural plane orientations. Meanwhile, Cao et al.
developed a multi-task learning neural network that segments
rock masses and calculates key parameters, facilitating accurate
predictions of digital rock image segmentation, porosity, shear
modulus, and bulk modulus (Cao et al., 2022). However, the
relatively weak generalization capability of this model constrains
its accuracy and robustness.

In response to the aforementioned issues, this paper proposes a
multi-rule region growing method for rock structural plane
segmentation in point clouds. Building upon the original
RANSAC algorithm, novel sampling strategies and scoring
criteria are introduced to improve region growing, while
incorporating the specific attributes of structural planes to
enhance segmentation accuracy and robustness in scenarios with
complex interwoven structural planes. The main contributions of
this study are as follows:

1. Proposing an improved RANSAC algorithm for fine-
grained segmentation of rock structural planes.

2. Proposing an improved Graham Scan algorithm for
precise extraction of structural plane boundaries.

3. Employing nearest-neighbor searching to integrate
larger structural plane clusters with adjacent smaller clusters,
thereby enabling the extraction of critical structural plane
information.

By leveraging the distinctive features of rock structural planes,
the proposed method achieves efficient and noise-resilient
structural plane recognition and segmentation, with the aim of
providing a technical reference for the acquisition of foundational
data on rock structural planes.

2. Method

To accurately segment structural surfaces and extract key
geometric information from rock mass point clouds, this paper
proposes an improved multi-rule region-growing method for rock
mass structural surface point cloud segmentation. First, the seed
point selection in the region-growing algorithm is optimized by
calculating the local plane fitting residuals of the point cloud,
which reduces initial segmentation errors. Next, by combining
KD-tree voxel downsampling with the improved RANSAC
strategy, the method ensures efficient processing of large-scale
point cloud datasets while enhancing the reliability of plane
fitting in noisy data environments. This effectively improves the
algorithm's adaptability to complex and irregular rock structures.
Finally, a multi-feature constraint method is introduced to refine
the segmentation results based on point cloud normal vector
differences and feature thresholds, enabling the extraction of key
geometric information such as structural surface attitude, area,
and dimensions. This provides valuable insights for geological

modeling and analysis. The specific implementation process of
this method is illustrated in Figure 1.

Figure 1. The general implementation flow of the method in this
paper.

2.1 Improved Region Growing Algorithm

Region growing is a method of region segmentation based on the
characteristics of the data. It compares the features of an arbitrary
point with its surrounding points, merging data points with
similar properties to achieve region identification and
segmentation. The improved RANSAC algorithm proposed in
this paper adopts a local sampling approach, obtaining new
candidate planes in each iteration. At the same time, it calculates
the score plane probability by considering both the number of
points and the number of candidate planes, thus improving the
plane fitting accuracy. Key issues that need to be addressed
include: the selection of seed points, boundary judgment criteria,
and the stopping condition for computation.

2.1.1  Seed Point Selection: This paper introduces multiple
feature values to determine a characteristic terminal value, which
replaces the traditional curvature scalar for point cloud
sorting(Xu et al., 2023). The characteristic terminal value F is
influenced by the spatial position of the points, with smaller F
values indicating smoother regions. By selecting the point with
the smallest characteristic terminal value as the initial point, the
method ensures the rationality of the points while minimizing
human interference, thus optimizing the computational results, as
shown in Equation 1 and 2.
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Where A4, 1,, and A3 represent the eigenvalues corresponding to
the neighborhood point matrix, while 0, E, S, and V denote the
invariance of the point cloud, feature entropy, surface variation,
and verticality, respectively. é; represents the third eigenvector
corresponding to the neighborhood point matrix.
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2.1.2 Boundary Judgment Criteria: In natural environments,
rock mass structural planes are typically formed by relatively
regular planes and sharp edges. In field surveys, sharp edges are
mainly used as boundaries, and structural planes with different
orientations are grouped based on their characteristics. For the
rock mass structural plane point cloud, planes with the same
orientation should have the same or similar normal vectors.
Therefore, the improved Graham Scan algorithm can be used to
accurately segment the structural plane boundaries. The Figure 2
shows the boundary delineation results of the Graham Scan
algorithm and the improved Graham Scan algorithm,
respectively.

Figure 2. (a) Boundary detection using Graham Scan. (b)
Boundary detection using modified Graham Scan.

For boundary points S; and non-boundary points N;, suppose
there are two new lines, S;_N; and N;_S,. If the triangle formed
by these two new lines and S;_S, does not contain any new
boundary points, and the angle formed by S;_N; and N;_S,
satisfies the tolerance for concave angles, N; will be considered
a new boundary point. Additionally, the new boundaries can be
determined using a recursive algorithm to calculate the new
boundary points.

2.1.3 Cessation of Growth Conditions: Due to the large
number of planes resulting from the exhaustive combinations of
points in the computation, unlimited iterations of the data would
waste significant resources and time. To ensure efficiency and
accuracy, this paper introduces voxel downsampling with KD-
tree nearest neighbor search, which controls the number of
neighboring points while maintaining the original data's
characteristics. Additionally, a maximum plane count T,,,, and
confidence threshold are set to halt the normal vector calculation,
while a minimum cluster size C,,;,, is defined to stop the region
growing process. During the computation, if Tmax is reached or
if the result achieves sufficient confidence, the normal vector
calculation can be stopped. Growth is halted when the number of
points available for growth falls below Cy, ;.

2.2 Structural Surface Information Extraction

2.2.1  Calculation of planar structure: The orientation of the
structural plane is related to its azimuth. For point clouds, the
corresponding attitude information must be derived through the
normal vector. The attitude of the structural plane can be
computed using the normal vector of the fitted plane, as described
in Equation (3). Here, a represents the dip direction of the
structural plane, and S represents the dip angle. In practical
operations, the independent coordinate axes X and Y of the point
cloud must correspond to the true east and true north directions,
respectively.
(/? = arccos ¢

|s=a/sinf
a = arcsins a,b =0 3
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The spacing between structural planes is typically characterized
by the distance between structural planes within the same group.
However, due to the inherent randomness of point cloud data,
there are three primary factors that influence the calculation of
spacing:

1. Variation in the size of structural planes: Structural
planes vary in size, with larger clusters of structural planes
adjacent to smaller clusters. This imbalance in the size
distribution necessitates consideration of the differences in
clustering when calculating the spacing between planes.

2. lrregularity of structural planes: Structural planes are
often irregular, meaning they are not perfectly parallel to
one another. The arrangement and angles between these
planes may vary, requiring the calculation of spacing to
account for the angular differences and their impact on the
overall spacing.

3. Continuous and discontinuous states of structural
planes: During the calculation, structural planes may exist
in continuous or discontinuous states. In the continuous state,
multiple structural planes are treated as a single unit, while
in the discontinuous state, each plane is considered an
individual unit.

Considering the aforementioned factors, this study integrates and
sorts the larger clusters of structural planes and their adjacent
smaller clusters using nearest-neighbor search. A two-
dimensional projection plane is established to obtain the
projection lines of the structural planes. Along the projection
lines, orthogonal survey lines are constructed at fixed intervals.
Finally, the distances between the intersection points of the
orthogonal survey lines and the various projection lines are
calculated, and the average of these distances is taken as the
spacing between structural planes, as described in Equation (4).

w’] _ Xij=1 [(xi—xnj) +(vi-vj) ] @)

In the equation, TJ represents the average distance between the
projection lines of the structural planes (in meters), x; and x;
denote the x-coordinate values of the two intersection points
between the orthogonal survey lines and the projection lines,
while y; and y; represent the y-coordinate values of the same

intersection points. n is the predefined interval between the
orthogonal survey lines.

In this paper, the extent of the structural plane is characterized by
the length of the exposed discontinuous surface in the dip
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direction and strike direction. A transformation matrix is used to
assign an independent coordinate system to the merged structural
planes, and the length in the corresponding direction is calculated
to determine the extent. The specific calculation is as shown in
Equation (5) and (6):

(W= cosn,X =cosf
Y

=sinn,Z =sinf
Wz -X YZ (5)

R=\WX Z YX

=Y 0 w
LPDipdirection = max(x") — min(x") ®)

LPpjrection = max(y") — min(y")

Here, 6 and n represent the dip direction and dip angle of the
merged structural plane, respectively. LPpjpgirection refers to the
extent of the dip direction in meters, while LPp;rection refers to
the extent of the strike direction in meters. max(x') and min(x")
represent the maximum and minimum values of the dip direction
in the independent coordinate system, respectively, while
max(y") and min(y") represent the maximum and minimum
values of the strike direction in the independent coordinate
system, respectively.

2.2.2  Calculation of Structural Surface Dimensions: The
size of the structural surface reflects its dimensions. Based on the
contour points identified by the improved Graham Scan
algorithm in Section 2.1.2, the Ear Clipping algorithm is used for
triangulation, as shown in Figure 3. When point A is at a convex
angle, line segment BC lies inside the polygon, and point A is
removed, forming triangle ABC. This process continues until the
polygon is fully subdivided into triangles, and the structural
surface area is the sum of these triangle areas.

C 7

Figure 3. Extraction of the plane area using the Ear Clipping
algorithm.

After obtaining the structural surface area S, an equivalent circle
with the same area is used to represent the surface for simplicity
and convenience in subsequent calculations. To do so, the center
of the circle is defined as the mean coordinate of the surface's
nodes, which serves as the centroid or the geometric center of the
surface. This approach assumes that the structural surface can be
approximated as a circle, simplifying the analysis. The radius is
determined by the area equation S = mr? . The radius r is then
calculated to characterize the dimensional information of the
structural surface.

3. Experiment

To validate the effectiveness and accuracy of the proposed
method for identifying structural planes in field rock masses, a
detailed experimental area was selected at an exposed rock face
within a landslide located in China, as shown in Figure 4(a). The
rear edge of the landslide is positioned near the top of the slope,

at an elevation of approximately 3718 meters above sea level,
with a vertical height difference of 834 meters from the top to the
base of the slope. This significant elevation variation provides a
representative section for the study of rock mass structural
features. The landslide itself exhibits an elongated, planar shape,
with the main sliding body presenting a wedge-like geometry,
and the cross-sectional profile displaying a series of steep and
gentle steps.

The landslide extends approximately 1600 meters in length, with
a maximum width of around 700 meters. The primary sliding
direction of the landslide ranges from 82<to 102< indicating a
clear directional movement of the mass. A total of 7,297,495
point clouds were captured from representative regions of the
slope. Measurements revealed that the slope's gradient varies
across its profile, with the front edge having a gradient ranging
from 35<to 65 indicating areas of moderate to steep terrain. The
middle and rear sections exhibit a slightly less steep gradient,
ranging from 35<to 55< However, the back wall of the landslide
features a significantly steeper local gradient, reaching up to 75<
These variations in slope gradient and topography contribute to a
more complex rock mass structure, which is reflected in the point
cloud data, as shown in the Figure 4(b).

(b)

Figure 4. (a) shows the overall topographic relief of the study area
of this paper. (b) illustrates the results of the point cloud
preprocessing, showing the topographic details of the slope,
including the slope change and related structural features. The
yellow part is the steeper slope, and the green part is the relatively
gentle location; the point cloud of the vegetation-covered area is
not processed by the algorithm in this paper.

The algorithm presented in this paper is capable of intelligently
identifying structural planes within complex rock masses. A total
of 59 structural planes were successfully identified,
encompassing both large, prominent planes and smaller, more
intricate planes that are often challenging to detect using
traditional methods. The algorithm’s ability to differentiate
between fine and minute planes. Each identified structural plane
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is represented using distinct colors to facilitate clear
differentiation and analysis. The color coding allows for easy
visual identification of the various planes, providing a
comprehensive overview of the spatial distribution and
orientation of these features within the rock mass. As shown in
Figure 5, the distinct colors correspond to individual structural
planes, highlighting their respective characteristics, such as
orientation, spacing, and size. This visualization aids in
understanding the complexity and variability of the rock mass.

Figure 5. The rock mass structural surface extraction is realized
through the algorithm in this paper.

According to the direction of the structural plane normal vector,
the structural planes are divided into different dominant attitude
groups, which allows a more detailed description of the rock
mass. This classification result is shown in Figure 6, where each
group corresponds to a set of unique structural planes with similar
spatial orientation, which helps to identify key geological
features and improve the accuracy of stability assessment.

Zy»

Figure 6. (a)The structural surfaces are shown without any
grouping, where each individual surface is considered separately,

displaying a diverse range of orientations and spatial distributions.

This initial state illustrates the complexity of the rock mass,
where numerous structural surfaces exist without any clear
organizational structure, making it challenging to interpret the
overall geological framework. (b) the structural surfaces are
grouped according to the similarity in the direction of their
normal vectors.

Using the extracted information regarding the structural surfaces
and slope attitudes, a Zippin projection map is generated to
visually represent the spatial distribution of the principal
structural surface poles. As shown in Figure 7, provides an
essential tool for understanding the geometric relationships
between the structural surfaces, as well as their spatial orientation
relative to one another. The Zippin projection method is
particularly useful for visualizing pole concentrations and
identifying potential weak zones or regions of instability within
the slope.

Figure 7. Stereographic projection of research area.

To quantitatively assess the accuracy and effectiveness of the
proposed method, a comparison is made between the structural
surface area and dimension calculations obtained using the
proposed method and those calculated by CAD software, which
is commonly used for precise geometric analysis. Table 1
presents a detailed comparison of the structural surface area
results derived from both methods. This comparison allows for
the evaluation of the proposed method's accuracy in estimating
the surface areas of the structural planes, highlighting any
discrepancies or alignment with the results from the CAD
software. In addition to the surface area, the dimensions of the
structural planes are also considered, providing further insight
into the proposed method’s ability to capture the true geometrical
characteristics of the rock mass.

Structural Structural Structural

Surface Surface Error Surface Error

Group Area (m¥)  Rate% _ Dimensions (m) Rate %

Our CAD Our CAD

J1  21.28 21.46 0.86% 3.72 3.74 0.43%
J1 1541 15.45 0.15% 247 245 0.89%
J1 1242 12.42 0.02% 2.18 2.18 0.32%
J1 2955 29.53 0.05% 4.74 4.73 0.38%
J1  66.73 66.74 0.03% 7.16 7.18 0.27%
J2  17.28 17.14 0.84% 290 2.87 1.07%
J2 1957 19.58 0.09% 3.27 3.29 0.34%
J2  48.56 48.61 0.12% 452 453 0.35%
J2  12.78 12.79 0.09% 225 2.28 0.18%
J3 4114 40.89 0.60% 4.23 4.22 0.24%
J3 2485 24.80 0.21% 3.81 3.80 0.26%
J3  19.21 19.17 0.21% 3.16 3.16 0.03%
J4  28.98 29.02 0.16% 4.65 4.63 0.39%
J4  13.64 13.85 153% 224 229 0.71%
J5 9.90 9.91 0.15% 169 1.70 0.59%

Table 1. Comparison of discontinuity dimension data between
Polyworks and our algorithm.
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From the error rates presented in Table 1, the maximum error rate
for the surface area calculations does not exceed 2%, with a few
instances showing an error rate as low as 1.53%. The maximum
error rate for the dimension calculations does not exceed 1.07%,
further validating the accuracy of the proposed method. These
low error rate reflect the method's ability to correctly capture the
overall size and extent of the structural planes, even in complex
rock mass configurations.

The primary factor contributing to these small error rates lies in
the ruggedness of the plane edges. As the structural planes often
exhibit irregular and jagged edges, some edge points may be lost
during the subdivision process, leading to minor inaccuracies in
the final area and dimension calculations. Despite this, the overall
performance of the method remains within an acceptable
threshold, ensuring that it provides a reliable means for
identifying and quantifying structural planes in rock masses.

4. Conclusion

This paper proposes an improved region growing algorithm
based on the RANSAC algorithm and applies it to the recognition
and extraction of rock mass structural surfaces from point clouds.
The proposed method demonstrates excellent performance in
model recognition and segmentation, particularly in regions with
sharp edges, where it can effectively and comprehensively
identify point cloud data. By leveraging the method presented in
this study, a classification and recognition of structural surfaces
in typical slope rock masses were conducted. The primary joint
surfaces and bedding planes were segmented with high accuracy
and completeness, allowing for the extraction of crucial
information regarding the rock mass, such as the orientation,
spacing, and extent of the main structural surfaces.

The effectiveness of this method is highlighted by its ability to
handle complex rock mass structures, including those with
intricate and irregular features. In contrast to traditional
algorithms that struggle with sharp or irregular boundaries, the
improved region growing algorithm maintains its robustness,
ensuring the accurate identification of both fine and coarse
structural features.

In addition to the structural surface segmentation, the proposed
method also extracts detailed geometric information, such as the
orientation and spacing of the joints, which are essential for rock
mass classification, slope stability analysis, and the design of
engineering structures in mountainous or geologically complex
areas.

Overall, the proposed method provides a reliable and efficient
tool for rock mass structural surface extraction, offering
significant improvements over existing techniques. Its ability to
handle complex point cloud data and accurately segment and
analyze rock mass structures makes it an invaluable tool for
geotechnical engineering, geological research, and other related
fields.
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