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Abstract 

 

Accurately and efficiently identifying rock mass structural planes and extracting their characteristic information is crucial for rock 

mass stability assessment. Three-dimensional (3D) laser scanning technology can significantly enhance both the efficiency and 

accuracy of structural plane surveying; however, current mainstream point cloud segmentation algorithms exhibit notable shortcomings, 

including blurred recognition of structural plane edges, insufficient segmentation accuracy, and poor integration precision among 

segmented blocks. To address these problems, this study proposes an improved multi-rule region growing point cloud segmentation 

method for rock structural planes. Specifically, plane fitting residuals are calculated from the point cloud data, and these residual values 

are then used to optimize seed point selection, thereby improving the segmentation accuracy of planar point sets. Next, considering the 

spatial relationship between the location of rock structural plane point clouds and their neighborhoods, a KD-tree data structure is 

employed to perform voxel downsampling for nearest-neighbor searching, and the RANSAC-based region growing algorithm is further 

refined. By adjusting the region growing segmentation parameters using multiple feature values and segmenting structural planes based 

on point cloud normal vector differences and final feature values, the proposed method facilitates the extraction of structural plane 

orientation, spacing, and extent, improving the overall segmentation quality. Experimental results demonstrate that the error between 

the segmented rock structural plane area and dimensions obtained by this method and those computed using CAD is only 1.07%, which 

meets the engineering error tolerance. Consequently, the proposed method provides stable and effective technical support for the 

identification and segmentation of rock structural planes. 

 

 

1. Introduction 

Rock mass stability assessment is of critical importance in 

geological engineering, mining, tunnel construction, and other 

related fields. As the weakest component within rock masses, 

rock structural planes—characterized by parameters such as 

orientation, trace length, strike, and dip—directly influence the 

mechanical behavior and stability of the rock mass. However, 

rock structural planes often exhibit interlaced distributions, and 

their complex geometric configurations and spatial relationships 

pose challenges to accurately and comprehensively identifying 

and evaluating them through traditional geological surveys. In 

recent years, the use of UAV photogrammetry and three-

dimensional laser scanning to acquire characteristic information 

of rock structural planes has enabled a more detailed 

representation of the three-dimensional features of rock masses, 

thereby providing more precise data for structural plane 

identification. Consequently, accurately and efficiently 

recognizing and extracting characteristic information about rock 

structural planes has become a crucial task in rock mass stability 

evaluation. 

 

In the process of extracting rock mass structural planes, 

especially under conditions where multiple planes are interlaced, 

existing point cloud segmentation methods face certain 

challenges. 3D point cloud region growing typically employs 

random sample consensus (RANSAC) to obtain seed points 

However, region growing based on RANSAC can be susceptible 

to segmentation instability, and when dealing with interwoven or 

complex geometries, it often suffers from insufficient 

segmentation accuracy. To overcome this limitation, Wang et al. 

proposed a multi-scale supervoxel segmentation method for point 

cloud data by integrating multiple features such as color, 

reflectivity, normal vectors, and principal directions, followed by 

graph-based segmentation (Wang et al., 2021). However, this 

algorithm relies on analyzing various point cloud attributes, 

which constrains its range of application scenarios. Building on 

these approaches, Liu et al. constructed an undirected graph using 

voxels as nodes and employed connected components for 

clustering, followed by a refined segmentation of under-

segmented objects via a normalized segmentation method 

(Haifeng et al., 2018). Nevertheless, this strategy requires 

filtering out ground points, which inevitably affects the 

segmentation of targets. Matsuzaki et al. randomly sampled seed 

points and determined whether their neighborhoods conformed 

to a pre-defined geometric model (Matsuzaki and Nonaka, 2024). 

However, this approach often suffers from false segmentations. 

Overall, while these methods have achieved notable progress, 

noise interference and blurred boundaries remain pressing 

challenges when handling complex structural planes. 

Consequently, there is a strong need for further algorithmic 

optimization to enhance segmentation accuracy and efficiency. 

 

In recent years, researchers have focused on automated or semi-

automated extraction of structural plane parameters—such as 

orientation, spacing, and trace length—from three-dimensional 

(3D) point clouds of rock masses (Song et al., 2024). Traditional 

manual methods involve selecting at least three points on the 

structural plane to compute its normal vector, thereby obtaining 

the relevant parameters. This approach, however, is time-

consuming, prone to subjectivity, and yields incomplete 

geometric information. Another strategy involves either 
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identifying principal curvature variations at point cloud vertices 

or searching for an optimal plane within the 3D model (Dumic 

and da Silva Cruz, 2025). Gigli et al. proposed a method wherein 

a cubic region is employed to search for coplanar point subsets, 

and clusters identified as belonging to the same structural plane 

are then merged (Gigli and Casagli, 2011). Nonetheless, the 

accuracy of this method is highly sensitive to the size of the cubic 

search region, leading to potential errors in cluster merging. Liu 

et al. presented a new structural plane grouping method that 

simultaneously considers orientation, trace length, and 

undulation (Liu et al., 2022). Nonetheless, the algorithm faces 

limitations in building high-density 3D point cloud models and 

accurately identifying and fitting complex structural planes, 

while also insufficiently addressing uncertainties in the statistical 

behavior of structural plane orientations. Meanwhile, Cao et al. 

developed a multi-task learning neural network that segments 

rock masses and calculates key parameters, facilitating accurate 

predictions of digital rock image segmentation, porosity, shear 

modulus, and bulk modulus (Cao et al., 2022). However, the 

relatively weak generalization capability of this model constrains 

its accuracy and robustness. 

 

In response to the aforementioned issues, this paper proposes a 

multi-rule region growing method for rock structural plane 

segmentation in point clouds. Building upon the original 

RANSAC algorithm, novel sampling strategies and scoring 

criteria are introduced to improve region growing, while 

incorporating the specific attributes of structural planes to 

enhance segmentation accuracy and robustness in scenarios with 

complex interwoven structural planes. The main contributions of 

this study are as follows: 

1. Proposing an improved RANSAC algorithm for fine-

grained segmentation of rock structural planes. 

2. Proposing an improved Graham Scan algorithm for 

precise extraction of structural plane boundaries. 

3. Employing nearest-neighbor searching to integrate 

larger structural plane clusters with adjacent smaller clusters, 

thereby enabling the extraction of critical structural plane 

information. 

 

By leveraging the distinctive features of rock structural planes, 

the proposed method achieves efficient and noise-resilient 

structural plane recognition and segmentation, with the aim of 

providing a technical reference for the acquisition of foundational 

data on rock structural planes. 

 

2. Method  

To accurately segment structural surfaces and extract key 

geometric information from rock mass point clouds, this paper 

proposes an improved multi-rule region-growing method for rock 

mass structural surface point cloud segmentation. First, the seed 

point selection in the region-growing algorithm is optimized by 

calculating the local plane fitting residuals of the point cloud, 

which reduces initial segmentation errors. Next, by combining 

KD-tree voxel downsampling with the improved RANSAC 

strategy, the method ensures efficient processing of large-scale 

point cloud datasets while enhancing the reliability of plane 

fitting in noisy data environments. This effectively improves the 

algorithm's adaptability to complex and irregular rock structures. 

Finally, a multi-feature constraint method is introduced to refine 

the segmentation results based on point cloud normal vector 

differences and feature thresholds, enabling the extraction of key 

geometric information such as structural surface attitude, area, 

and dimensions. This provides valuable insights for geological 

modeling and analysis. The specific implementation process of 

this method is illustrated in Figure 1. 

 

 

Figure 1. The general implementation flow of the method in this 

paper. 

2.1 Improved Region Growing Algorithm 

Region growing is a method of region segmentation based on the 

characteristics of the data. It compares the features of an arbitrary 

point with its surrounding points, merging data points with 

similar properties to achieve region identification and 

segmentation. The improved RANSAC algorithm proposed in 

this paper adopts a local sampling approach, obtaining new 

candidate planes in each iteration. At the same time, it calculates 

the score plane probability by considering both the number of 

points and the number of candidate planes, thus improving the 

plane fitting accuracy. Key issues that need to be addressed 

include: the selection of seed points, boundary judgment criteria, 

and the stopping condition for computation. 

2.1.1 Seed Point Selection: This paper introduces multiple 

feature values to determine a characteristic terminal value, which 

replaces the traditional curvature scalar for point cloud 

sorting(Xu et al., 2023). The characteristic terminal value 𝐹 is 

influenced by the spatial position of the points, with smaller 𝐹 

values indicating smoother regions. By selecting the point with 

the smallest characteristic terminal value as the initial point, the 

method ensures the rationality of the points while minimizing 

human interference, thus optimizing the computational results, as 

shown in Equation 1 and 2. 

 

 

{
 
 

 
 𝑂 = (𝜆1 ∙ 𝜆2 ∙ 𝜆3)

1

3

𝐸 = −∑ 𝜆𝑖 ∙ ln 𝜆𝑖
𝑆
𝑖=1

𝑆 = 𝜆3/(𝜆1 + 𝜆2 + 𝜆3)

𝑉 = 1 − |〈[0 0 1], 𝑒3〉|

 (1) 

 𝐹 = √𝑂2 + 𝐸2 + 𝑆2 + 𝑉2 (2) 

 

Where 𝜆₁, 𝜆₂, and 𝜆₃ represent the eigenvalues corresponding to 

the neighborhood point matrix, while 𝑂, 𝐸, 𝑆, and 𝑉 denote the 

invariance of the point cloud, feature entropy, surface variation, 

and verticality, respectively. 𝑒3 represents the third eigenvector 

corresponding to the neighborhood point matrix. 
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2.1.2 Boundary Judgment Criteria: In natural environments, 

rock mass structural planes are typically formed by relatively 

regular planes and sharp edges. In field surveys, sharp edges are 

mainly used as boundaries, and structural planes with different 

orientations are grouped based on their characteristics. For the 

rock mass structural plane point cloud, planes with the same 

orientation should have the same or similar normal vectors. 

Therefore, the improved Graham Scan algorithm can be used to 

accurately segment the structural plane boundaries. The Figure 2 

shows the boundary delineation results of the Graham Scan 

algorithm and the improved Graham Scan algorithm, 

respectively. 

 

 

Figure 2. (a) Boundary detection using Graham Scan. (b) 

Boundary detection using modified Graham Scan. 

 

For boundary points 𝑆𝑖  and non-boundary points 𝑁𝑗 , suppose 

there are two new lines, 𝑆1_𝑁1 and 𝑁1_𝑆2. If the triangle formed 

by these two new lines and 𝑆1_𝑆2  does not contain any new 

boundary points, and the angle formed by 𝑆1_𝑁1  and 𝑁1_𝑆2 

satisfies the tolerance for concave angles, 𝑁1 will be considered 

a new boundary point. Additionally, the new boundaries can be 

determined using a recursive algorithm to calculate the new 

boundary points. 

 

2.1.3 Cessation of Growth Conditions: Due to the large 

number of planes resulting from the exhaustive combinations of 

points in the computation, unlimited iterations of the data would 

waste significant resources and time. To ensure efficiency and 

accuracy, this paper introduces voxel downsampling with KD-

tree nearest neighbor search, which controls the number of 

neighboring points while maintaining the original data's 

characteristics. Additionally, a maximum plane count 𝑇𝑚𝑎𝑥 and 

confidence threshold are set to halt the normal vector calculation, 

while a minimum cluster size 𝐶𝑚𝑖𝑛 is defined to stop the region 

growing process. During the computation, if Tmax is reached or 

if the result achieves sufficient confidence, the normal vector 

calculation can be stopped. Growth is halted when the number of 

points available for growth falls below 𝐶𝑚𝑖𝑛. 

 

2.2 Structural Surface Information Extraction  

2.2.1 Calculation of planar structure: The orientation of the 

structural plane is related to its azimuth. For point clouds, the 

corresponding attitude information must be derived through the 

normal vector. The attitude of the structural plane can be 

computed using the normal vector of the fitted plane, as described 

in Equation (3). Here, 𝛼  represents the dip direction of the 

structural plane, and 𝛽  represents the dip angle. In practical 

operations, the independent coordinate axes X and Y of the point 

cloud must correspond to the true east and true north directions, 

respectively. 

 

{
  
 

  
 
𝛽 = arccos 𝑐
𝑠 = 𝛼/ sin 𝛽
𝛼 = arcsin 𝑠   𝑎, 𝑏 ≥ 0

𝛼 = 360° − arcsin(−𝑠) 𝑎 < 0, 𝑏 > 0 

𝛼 = 180° − arcsin 𝑠  𝑎, 𝑏 > 0

𝛼 = 180° + arcsin 𝑠  𝑎 > 0, 𝑏 < 0

 (3) 

The spacing between structural planes is typically characterized 

by the distance between structural planes within the same group. 

However, due to the inherent randomness of point cloud data, 

there are three primary factors that influence the calculation of 

spacing:  

1. Variation in the size of structural planes: Structural 

planes vary in size, with larger clusters of structural planes 

adjacent to smaller clusters. This imbalance in the size 

distribution necessitates consideration of the differences in 

clustering when calculating the spacing between planes.  

2. Irregularity of structural planes: Structural planes are 

often irregular, meaning they are not perfectly parallel to 

one another. The arrangement and angles between these 

planes may vary, requiring the calculation of spacing to 

account for the angular differences and their impact on the 

overall spacing. 

3. Continuous and discontinuous states of structural 

planes: During the calculation, structural planes may exist 

in continuous or discontinuous states. In the continuous state, 

multiple structural planes are treated as a single unit, while 

in the discontinuous state, each plane is considered an 

individual unit. 

 

Considering the aforementioned factors, this study integrates and 

sorts the larger clusters of structural planes and their adjacent 

smaller clusters using nearest-neighbor search. A two-

dimensional projection plane is established to obtain the 

projection lines of the structural planes. Along the projection 

lines, orthogonal survey lines are constructed at fixed intervals. 

Finally, the distances between the intersection points of the 

orthogonal survey lines and the various projection lines are 

calculated, and the average of these distances is taken as the 

spacing between structural planes, as described in Equation (4). 

 

 𝐺𝑖,𝑗̅̅ ̅̅ =
∑ √[(𝑥𝑖−𝑥𝑗)

2
+(𝑦𝑖−𝑦𝑗)

2
]𝑛

𝑖,𝑗=1

𝑛
 (4) 

 

In the equation, 𝐺𝑖,𝑗̅̅ ̅̅  represents the average distance between the 

projection lines of the structural planes (in meters), 𝑥𝑖  and 𝑥𝑗  

denote the x-coordinate values of the two intersection points 

between the orthogonal survey lines and the projection lines, 

while 𝑦𝑖  and 𝑦𝑗  represent the y-coordinate values of the same 

intersection points. 𝑛  is the predefined interval between the 

orthogonal survey lines. 

 

In this paper, the extent of the structural plane is characterized by 

the length of the exposed discontinuous surface in the dip 
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direction and strike direction. A transformation matrix is used to 

assign an independent coordinate system to the merged structural 

planes, and the length in the corresponding direction is calculated 

to determine the extent. The specific calculation is as shown in 

Equation (5) and (6): 

 

 

{
 
 

 
 
𝑊= cos 𝜂 , 𝑋 = cos 𝜃
𝑌 = sin 𝜂 , 𝑍 = sin 𝜃

𝑅 = [
𝑊𝑍 −𝑋 𝑌𝑍
𝑊𝑋 𝑍 𝑌𝑋
−𝑌 0 𝑊

]
  (5) 

 
𝐿𝑃Dipdirection = max(𝑥

′) − min(𝑥′)

𝐿𝑃Direction = max(𝑦
′) − min(𝑦′)

 (6) 

 

Here, 𝜃 and 𝜂  represent the dip direction and dip angle of the 

merged structural plane, respectively. 𝐿𝑃Dipdirection refers to the 

extent of the dip direction in meters, while 𝐿𝑃Direction refers to 

the extent of the strike direction in meters. max(𝑥′) and min(𝑥′) 
represent the maximum and minimum values of the dip direction 

in the independent coordinate system, respectively, while 

max(𝑦′)  and min(𝑦′)  represent the maximum and minimum 

values of the strike direction in the independent coordinate 

system, respectively. 

 

2.2.2 Calculation of Structural Surface Dimensions: The 

size of the structural surface reflects its dimensions. Based on the 

contour points identified by the improved Graham Scan 

algorithm in Section 2.1.2, the Ear Clipping algorithm is used for 

triangulation, as shown in Figure 3. When point A is at a convex 

angle, line segment BC lies inside the polygon, and point A is 

removed, forming triangle ABC. This process continues until the 

polygon is fully subdivided into triangles, and the structural 

surface area is the sum of these triangle areas. 

 

 

Figure 3. Extraction of the plane area using the Ear Clipping 

algorithm. 

 

After obtaining the structural surface area 𝑆, an equivalent circle 

with the same area is used to represent the surface for simplicity 

and convenience in subsequent calculations. To do so, the center 

of the circle is defined as the mean coordinate of the surface's 

nodes, which serves as the centroid or the geometric center of the 

surface. This approach assumes that the structural surface can be 

approximated as a circle, simplifying the analysis. The radius is 

determined by the area equation  𝑆 = 𝜋𝑟2 . The radius 𝑟 is then 

calculated to characterize the dimensional information of the 

structural surface. 

 

3. Experiment 

To validate the effectiveness and accuracy of the proposed 

method for identifying structural planes in field rock masses, a 

detailed experimental area was selected at an exposed rock face 

within a landslide located in China, as shown in Figure 4(a). The 

rear edge of the landslide is positioned near the top of the slope, 

at an elevation of approximately 3718 meters above sea level, 

with a vertical height difference of 834 meters from the top to the 

base of the slope. This significant elevation variation provides a 

representative section for the study of rock mass structural 

features. The landslide itself exhibits an elongated, planar shape, 

with the main sliding body presenting a wedge-like geometry, 

and the cross-sectional profile displaying a series of steep and 

gentle steps. 

 

The landslide extends approximately 1600 meters in length, with 

a maximum width of around 700 meters. The primary sliding 

direction of the landslide ranges from 82° to 102°, indicating a 

clear directional movement of the mass. A total of 7,297,495 

point clouds were captured from representative regions of the 

slope. Measurements revealed that the slope's gradient varies 

across its profile, with the front edge having a gradient ranging 

from 35° to 65°, indicating areas of moderate to steep terrain. The 

middle and rear sections exhibit a slightly less steep gradient, 

ranging from 35° to 55°. However, the back wall of the landslide 

features a significantly steeper local gradient, reaching up to 75°. 

These variations in slope gradient and topography contribute to a 

more complex rock mass structure, which is reflected in the point 

cloud data, as shown in the Figure 4(b). 

 

 
(a) 

 

(b) 

Figure 4. (a) shows the overall topographic relief of the study area 

of this paper. (b) illustrates the results of the point cloud 

preprocessing, showing the topographic details of the slope, 

including the slope change and related structural features. The 

yellow part is the steeper slope, and the green part is the relatively 

gentle location; the point cloud of the vegetation-covered area is 

not processed by the algorithm in this paper. 

 

The algorithm presented in this paper is capable of intelligently 

identifying structural planes within complex rock masses. A total 

of 59 structural planes were successfully identified, 

encompassing both large, prominent planes and smaller, more 

intricate planes that are often challenging to detect using 

traditional methods. The algorithm’s ability to differentiate 

between fine and minute planes. Each identified structural plane 
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is represented using distinct colors to facilitate clear 

differentiation and analysis. The color coding allows for easy 

visual identification of the various planes, providing a 

comprehensive overview of the spatial distribution and 

orientation of these features within the rock mass. As shown in 

Figure 5, the distinct colors correspond to individual structural 

planes, highlighting their respective characteristics, such as 

orientation, spacing, and size. This visualization aids in 

understanding the complexity and variability of the rock mass. 

 

 

Figure 5. The rock mass structural surface extraction is realized 

through the algorithm in this paper. 

According to the direction of the structural plane normal vector, 

the structural planes are divided into different dominant attitude 

groups, which allows a more detailed description of the rock 

mass. This classification result is shown in Figure 6, where each 

group corresponds to a set of unique structural planes with similar 

spatial orientation, which helps to identify key geological 

features and improve the accuracy of stability assessment. 

 
(a) 

 
(b) 

 

Figure 6. (a)The structural surfaces are shown without any 

grouping, where each individual surface is considered separately, 

displaying a diverse range of orientations and spatial distributions. 

This initial state illustrates the complexity of the rock mass, 

where numerous structural surfaces exist without any clear 

organizational structure, making it challenging to interpret the 

overall geological framework. (b) the structural surfaces are 

grouped according to the similarity in the direction of their 

normal vectors. 

Using the extracted information regarding the structural surfaces 

and slope attitudes, a Zippin projection map is generated to 

visually represent the spatial distribution of the principal 

structural surface poles. As shown in Figure 7, provides an 

essential tool for understanding the geometric relationships 

between the structural surfaces, as well as their spatial orientation 

relative to one another. The Zippin projection method is 

particularly useful for visualizing pole concentrations and 

identifying potential weak zones or regions of instability within 

the slope. 

 

 

Figure 7. Stereographic projection of research area. 

To quantitatively assess the accuracy and effectiveness of the 

proposed method, a comparison is made between the structural 

surface area and dimension calculations obtained using the 

proposed method and those calculated by CAD software, which 

is commonly used for precise geometric analysis. Table 1 

presents a detailed comparison of the structural surface area 

results derived from both methods. This comparison allows for 

the evaluation of the proposed method's accuracy in estimating 

the surface areas of the structural planes, highlighting any 

discrepancies or alignment with the results from the CAD 

software. In addition to the surface area, the dimensions of the 

structural planes are also considered, providing further insight 

into the proposed method’s ability to capture the true geometrical 

characteristics of the rock mass. 

 
Structural 

Surface 

Group 

Structural 

Surface 

Area (m2) 

Error 

Rate% 

Structural 

Surface 

Dimensions (m) 

Error 

Rate % 
 Our  CAD Our  CAD 

J1 21.28 21.46 0.86% 3.72 3.74 0.43% 

J1 15.41 15.45 0.15% 2.47 2.45 0.89% 

J1 12.42 12.42 0.02% 2.18 2.18 0.32% 

J1 29.55 29.53 0.05% 4.74 4.73 0.38% 

J1 66.73 66.74 0.03% 7.16 7.18 0.27% 

J2 17.28 17.14 0.84% 2.90 2.87 1.07% 

J2 19.57 19.58 0.09% 3.27 3.29 0.34% 

J2 48.56 48.61 0.12% 4.52 4.53 0.35% 

J2 12.78 12.79 0.09% 2.25 2.28 0.18% 

J3 41.14 40.89 0.60% 4.23 4.22 0.24% 

J3 24.85 24.80 0.21% 3.81 3.80 0.26% 

J3 19.21 19.17 0.21% 3.16 3.16 0.03% 

J4 28.98 29.02 0.16% 4.65 4.63 0.39% 

J4 13.64 13.85 1.53% 2.24 2.29 0.71% 

J5 9.90 9.91 0.15% 1.69 1.70 0.59% 

Table 1. Comparison of discontinuity dimension data between 

Polyworks and our algorithm. 
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From the error rates presented in Table 1, the maximum error rate 

for the surface area calculations does not exceed 2%, with a few 

instances showing an error rate as low as 1.53%. The maximum 

error rate for the dimension calculations does not exceed 1.07%, 

further validating the accuracy of the proposed method. These 

low error rate reflect the method's ability to correctly capture the 

overall size and extent of the structural planes, even in complex 

rock mass configurations. 

 

The primary factor contributing to these small error rates lies in 

the ruggedness of the plane edges. As the structural planes often 

exhibit irregular and jagged edges, some edge points may be lost 

during the subdivision process, leading to minor inaccuracies in 

the final area and dimension calculations. Despite this, the overall 

performance of the method remains within an acceptable 

threshold, ensuring that it provides a reliable means for 

identifying and quantifying structural planes in rock masses. 

 

4. Conclusion 

This paper proposes an improved region growing algorithm 

based on the RANSAC algorithm and applies it to the recognition 

and extraction of rock mass structural surfaces from point clouds. 

The proposed method demonstrates excellent performance in 

model recognition and segmentation, particularly in regions with 

sharp edges, where it can effectively and comprehensively 

identify point cloud data. By leveraging the method presented in 

this study, a classification and recognition of structural surfaces 

in typical slope rock masses were conducted. The primary joint 

surfaces and bedding planes were segmented with high accuracy 

and completeness, allowing for the extraction of crucial 

information regarding the rock mass, such as the orientation, 

spacing, and extent of the main structural surfaces. 

 

The effectiveness of this method is highlighted by its ability to 

handle complex rock mass structures, including those with 

intricate and irregular features. In contrast to traditional 

algorithms that struggle with sharp or irregular boundaries, the 

improved region growing algorithm maintains its robustness, 

ensuring the accurate identification of both fine and coarse 

structural features. 

 

In addition to the structural surface segmentation, the proposed 

method also extracts detailed geometric information, such as the 

orientation and spacing of the joints, which are essential for rock 

mass classification, slope stability analysis, and the design of 

engineering structures in mountainous or geologically complex 

areas. 

 

Overall, the proposed method provides a reliable and efficient 

tool for rock mass structural surface extraction, offering 

significant improvements over existing techniques. Its ability to 

handle complex point cloud data and accurately segment and 

analyze rock mass structures makes it an invaluable tool for 

geotechnical engineering, geological research, and other related 

fields. 
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