ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

Identification and Counting of Field Peanut Seedlings Using Improved Centernet from
UAY imagery

Zhisen Wang', Hongyu Zhao', Juntao Yang'*, Mingxuan Song!, Yirou Liu?, Zhenhai Li', Bo Bai?, Guowei Li?

ICollege of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
2Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, Shandong Province, China.

Keywords: Object detection, Bidirectional Feature Pyramid Network, Contrastive Loss, Seedling emergence rate, UAV imagery.

Abstract

The seedling emergence rate is a crucial indicator for evaluating the growth status of crops in agricultural production and can provide
valuable recommendations for subsequent crop planting and field management strategies. Currently, the determination of the
emergence rate relies on manual seedling counting, which is not only labour-intensive and time-consuming, but also prone to human
errors. Therefore, we utilize drone-captured images of peanut seedlings and employs deep learning networks to estimate seedling
numbers. Specifically, we incorporate the BIFPN (Bidirectional Feature Pyramid Network) feature fusion module into the original
Centernet model, which would combine multi-scale feature information. This modification not only enhances the accuracy of
identification but also improves the localization of seedlings. To address the issue of false positives caused by complex field
backgrounds in seedling recognition, we integrate the Contrastive Loss module to increase the discrepancy between positive and
negative samples. The results demonstrate that the proposed method significantly enhances both precision and recall rates for peanut
seedling recognition under three different scenes, compared to the original model. Furthermore, the proposed method is also applied

in real peanut breading field, fulfilling the practical requirements for emergence rate calculation.

1. Introduction

In agricultural production activities, the seedling emergence
rate is an important indicator to evaluate the growth status of
crops(Gotz and Bernhardt, 2010 , Abdin et al., 2000). The
seedling emergence rate reflects the impact of soil environment,
temperature, and moisture on crop emergence(Al-Mulla et al.,
2014 , Lindstrom et al., 1976). Combined with the planting
density of crops, it provides reasonable recommendations for
the proper planting of crops(Jin et al., 2017). To calculate the
seedling emergence rate of crops, it is necessary to accurately
obtain the number of seedlings. The traditional method of
counting seedlings is mainly through manual counting.
However, manual counting not only consumes excessive time
and effort but also has the drawback of low accuracy, leading to
a significant difference between the counted result and the
actual number of peanut seedlings, which fails to meet the
requirements of precision agriculture. Therefore, an efficient
and accurate method for counting peanut seedlings is needed.

In recent years, computer vision has been widely applied in
seedling recognition in precision agriculture(Andvaag et al.,
2024, Cui et al., 2023 , Bai et al., 2022 , Osco et al., 2021 , Tan
et al., 2022). The visual features of crops can help the model
capture the most distinguishable information in an image, so the
ability to extract visual features directly affects the accuracy
and efficiency of the model in crop recognition. With effective
visual feature extraction methods, the model can extract key
visual information from complex crop images, providing a
reliable foundation for subsequent recognition and counting.
Most researchers defined and designed appropriate visual
features based on prior knowledge. Frequently-used visual
features include edge, color, and texture(Liu et al., 2019 , Zou
et al., 2019, Jidong et al., 2016). Following this, the traditional
classifiers like Support Vector Machine (SVM), Decision Trees,
and K-Nearest Neighbors (KNN) based on these visual features
were used to achieve the purpose of prediction and
recognition(Zou et al., 2019 , Genaev et al., 2019 , Kuzdralinski
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et al., 2017 , Zhao et al., 2018). What’s more, some researchers
have also developed seedling models using features such as the
canopy area and leaf polygons of crops, achieving good
results(Gnadinger and Schmidhalter, 2017).

Due to its superior feature representation capabilities, deep
learning architectures gained increasing interests in extracting
and learning the visual features of crops from raw imagery.
When extracting visual features of crops, hierarchical feature
extraction is used, where simpler features are extracted in
shallow layers and more complex features are learned in deeper
layers. The advantage of this approach is that the model can
automatically select the most relevant features at different
levels, enhancing the model's ability to autonomously learn
crop features in an end-to-end manner(Nielsen, 2015). Among
them, Convolutional Neural Network (CNN) is the most typical
deep learning architectures. The hierarchical structure has made
it widely used in seedling prediction(Osco et al., 2021). Later,
some researchers improved the CNN network to develop the
Faster Region-based Convolutional Neural Network (R-CNN),
which incorporates a Region Proposal Network structure for
detecting crops or seedlings, achieving better results(Gao et al.,
2020 , Halstead et al., 2018). In the case of using the Centernet
network, some researchers employed Resnet50 as the backbone
network, combined with 900 images collected from the field,
achieving mean Average Precision (mAP) and Average Recall
(AR) of 79% and 73%, respectively(Lin and Guo, 2021).

Although the lightweight and speed improvements have
enhanced the efficiency of crop recognition in static images,
most datasets are collected with a single experimental
background. These models cannot be directly applied to
complex, high-resolution crop overlapping images(Tan et al.,
2022). Therefore, we have improved the original Centernet
model by adding the Bidirectional Feature Pyramid Network
(BiFPN) module, which enhances the model's ability to process
multi-scale features and perform well across different scenes.
Additionally, we introduced the Contrastive Loss module that
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Figure 1. Study area and peanut seedling examples: (a) Location of the study area; (b) Some examples from Laixi City and Ningyang
County, respectively.

Scene Location Date Flight Weather Camera type
1 May 28, 2023 15m Rainy
2 Laixi City May 31, 2023 15m Sunny
3 May 31, 2023 25m Sunny M3M
4 Ningyang City June 10, 2024 20m Sunny
Table 1. Introduction to peanut seedling data in different scenes
Scene Training set (images) Validation set (images) Test set (images)
1 Train1(424) Vall(53) Test1(53)
2 Train2(408) Val2(51) Test2(51)
3 Train3(144) Val3(18) Test3(18)
4 - - Test4(800)

Table 2. Statistical information of the training set, validation set, and test set in different scenes

strengthens the model's ability to recognize crops in complex
surface environments by making the model focus more on the
differences between positive and negative samples during
training, thereby improving the overall detection performance
of the model. Compared with existing methods, the improved
Centernet combining the BiFPN module and Contrastive Loss,
not only performs excellently in single-seedling detection but
also achieves effective recognition in environments with
seedling occlusion.

2. Materials and Methods
2.1 Data Acquisition and Processing

As shown in Figure 1, the data acquisition locations in this
paper are Laixi City in Qingdao, Shandong Province and
Ningyang County in Tai'an City, Shandong Province. The tool
used for data collection was the DJI Mavic 3M drone. We
created datasets for four different scenarios. The first three
datasets were collected in Laixi City, where the drone flight
heights were set at 15m, 15m, and 20m, respectively, with
corresponding drone speeds of 1m/s, 1.2m/s, and 1.5m/s. The
dataset for the fourth scenario, which focuses on peanut
seedlings, was obtained from Ningyang County, with the drone
flight height set to 25m and the corresponding speed set to 2m/s.
Except for the first scenario, where data was acquired after
rainfall, all other data were collected under clear weather
conditions.

For data processing, we split the data from the first three
scenarios into training, validation, and testing sets in a ratio of
8:1:1. As for the data from the fourth scenario, we did not

perform any splitting and used all the images as a test set to
evaluate the generalization performance of the proposed
method in real-world peanut seedling recognition.

2.2 Overall Architecture

Our proposed model incorporates two new modules: BIFPN
and Contrastive Loss that is derived from the idea of contrastive
clustering (Li et al., 2021), as shown in Figure 1. These two
modules play an important role in improving the performance
of recognition. BIFPN combines feature information with
positional information, strengthening the model's ability to
locate samples while ensuring recognition capability. This
reduces the Offset Loss and Size Loss in the loss function,
making the parameter updates more reasonable. The
Contrastive Loss module with its clustering features processes
the feature vectors of the positive and negative samples and
reduces the differences between similar samples while
increasing the differences between different samples, thus
improving the model's ability to distinguish between positive
and negative samples. These modules together form a more
rational sample recognition structure.

2.3 Feature Fusion

To improve the model's performance in detecting peanut
seedlings and predicting their positions, we incorporated the
BIFPN into the Hourglass network. Compared to traditional
feature fusion modules, BIFPN has the following characteristics.
Firstly, BIFPN uses bidirectional feature fusion by introducing
bidirectional feature paths, allowing the visual features to be
fused and exchanged at each level. Specifically, it passes visual
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Figure 2. Flowchart for identification using the improved Centernet network.

features from the low layers, which carry more accurate
positional information, to the high layers, enhancing the
model's ability to locate peanut seedlings' positions. At the
same time, it passes visual features from the high layers, which
carry stronger semantic information, to the low layers,
improving the model's ability to recognize peanut seedlings.
Secondly, we removed nodes in BIFPN that only had one input
edge since these nodes do not perform feature fusion and
contribute little to the feature extraction network. Moreover, the
presence of these nodes increases the overall computational cost
and causes unnecessary resource consumption. Finally, unlike
traditional feature fusion, which simply stacks feature maps,
BIFPN adopts weighted feature fusion, which takes into
account that feature maps with different resolutions contribute
differently to the final fusion.

For the features to be fused at a certain layer , the first step is
to fuse with low-dimensional features 4, to obtain the
position of the peanut seedlings and shallow feature information.

in represents the features input from the backbone network.
Then, the preliminary fused feature is further fused with
the high-dimensional feature  _,, thereby obtaining the deep
feature information of the peanut seedlings. °“! represents the

output feature after feature fusion. is the corresponding
weight. is the corresponding bias.
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2.4 Loss function definition

Through observing the prediction results from the original
Centernet model, we found that the original Centernet model
might misidentify the soil background as peanut seedlings.
Therefore, in the loss calculation part of the original Centernet
model, we introduced the Contrastive Loss function module
using a weighted approach in the loss functions (HeatMap Loss,
Offset Loss, Size Loss) to enhance the model's ability to
recognize and cluster different samples at the feature level.
Specifically, we extracted the feature values of correctly
identified peanut seedlings and land background from the
current model, forming feature vectors to be used as input in the
Contrastive Loss function for both positive and negative
samples. By calculating the Contrastive Loss, we aimed to
increase the similarity between the same samples  , while
decreasing the similarity between different samples  , thus

better distinguishing between peanut seedlings and the land
background. Finally, the Contrastive Loss value was weighted
with the original loss value and used for backpropagation to
update the network parameters, resulting in a more accurate
model.

——log exp( /) 3)
¢ Lexp( /) +exp( /)
= Heatt offt sizet ¢ 4)

3. Experimentation and analysis
3.1 Training and Evaluation Procedure

In our implementation, training and evaluation are conducted
on a Windows 11 operating system equipped with an NVIDIA
GeForce RTX 3050Ti graphics card and 16GB of RAM, using
the PyTorch 2.1.0 deep learning framework and a Python 3.10
development environment. To obtain an initial trained model,
we first select ResNet50 and Hourglass as backbone networks
combined with the BiFPN feature fusion module to train the
data from scenes 1, 2, and 3. The resolution of the input images
is set to 512x512 pixels, the learning rate is initialized to 0.0007,
the batch size is set to 8, and the backbone is trained for 120
epochs without freezing to ensure model convergence.
Afterward, a Contrastive Loss module is added to fine-tune the
model. At this point, the learning rate is set to 0.0004, and the
backbone is frozen while training for an additional 40 epochs.
During the entire training process, the Adam optimizer is used.
The model's performance is evaluated every 5 epochs, and the
weight file is saved every 10 epochs. These settings guide the
model's training.

For accuracy evaluation, we calculate precision, recall, mean
average precision, and F1-Score based on 7P, FP, and FN to
assess the model's accuracy and stability. The higher values
these metrics, the better model performance.

Precision = — %)
Recall = —— (6)
2 % x
Fi-—score = " @)
= -1
AP = [Recalls( ) —Recalls( + 1)] )
=0

x Precisions( )
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Figure 3. Comparison of the performance of different models across different scenes: (a) Scene 1; (b)Scene 2; (c) Scene 3.
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Figure 4. Peanut seedling identification performance of the model in different scenes: (a) Image to be identified; (b) Seedling
identification result; (c) Seedling identification heatmap.
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Figure 5. Examples of identification errors and curve of counting errors: (a) Examples of peanut seedling identification errors; (b)
Curve of peanut seedling counting errors in the plots.
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3.2 Result analysis

3.2.1 Ablation studies: We conducted ablation experiments
on peanut seedling data across three different scenes to test the
baseline model with and without the BIFPN feature fusion
module and the Contrastive Loss module. The results indicate
that both of these modules play a positive role in improving the
overall performance of the model. Specifically, the BIFPN
feature fusion module combines multi-dimensional feature
information, allowing the final output to include both the
high-dimensional features of the peanut seedlings and the
low-dimensional features and positional information. This
significantly enhances the model's ability to recognize and
locate peanut seedlings. On the other hand, the Contrastive Loss
module reduces the differences between peanut seedling
features while increasing the differences between peanut
seedlings and the soil background. This effectively addresses
the issue of mistakenly identifying land as peanut seedlings and
enhances the model's ability to recognize peanut seedlings in
complex terrain conditions. Overall, the collaborative effect of
the BIFPN feature fusion module and the Contrastive Loss
module strengthens the stability and accuracy of the peanut
seedling recognition model, proving their importance in
optimizing the baseline model.

Quantitative evaluation: According to the results, the
individual addition of the Contrastive Loss module and BIFPN
to each baseline shows excellent performance across different
datasets, especially when the BIFPN module is combined with
the Hourglass backbone network, which results in an AP
improvement of approximately 1.57%. When the Contrastive
Loss module is added to the BIFPN-Hourglass model, the
model achieves optimal peanut seedling recognition accuracy
and stability. In Scene 1, the improved network shows an AP
and FI1-Score increase of 2.73% and 1.91%, respectively,
compared to the original network. The experimental results
demonstrate that the improved model has excellent peanut
seedling recognition capability, which can be attributed to the
combination of the feature fusion module and contrastive
learning.

3.2.2  Qualitative evaluation: To provide a more intuitive
demonstration of the model's performance, we randomly
selected one image from the test set of each of the first three
scenes and applied the trained model for detection. As shown in
Figure 3, it can be observed that in all scenes, every peanut
seedling was accurately identified, with each red box
representing a successfully recognized seedling. In the peanut
seedling recognition heatmap, the color gradually changes from
yellow-green to red as it moves from the edge of the seedling to
the center, while the ground surface is shown in blue. This trend
in the heatmap indicates that in the model's recognition results,
the confidence score for the center of the peanut seedlings is
close to one. These results demonstrate that the improved
Centernet model has a high confidence score for identifying
peanut seedlings and performs excellently across different
scenes.

3.2.3 [Evaluate the seedling emergence: To verify the
model's ability to identify seedlings in real-world complex
terrain and its application performance, we applied the model to
peanut seedlings in Scene 4, which was not involved in the
training process. After testing 800 plots, it was found that the
model accurately predicted the number of peanut seedlings in
414 plots (51.75%), while in 683 plots (85.375%), the predicted

number of seedlings was within one of the manual count. Only
8 plots (1%) had a prediction error greater than three seedlings.
As shown in Figure 5, the statistical errors of peanut seedlings
in the plots were plotted as a curve, which generally conformed
to a normal distribution with zero as the mean. Finally, we
selected two peanut seedling plots with typical identification
errors. The main reasons for the errors were as follows:
Compared to the other clearly visible peanut seedlings, the ones
that were not identified are slightly blurred, leading to the
occurrence of false negatives. This issue can be mitigated by
appropriately adjusting the confidence interval.

4. Discussion

Centernet is an anchor-free detector that can accurately and
rapidly identify and count peanut seedlings. However, due to
complex soil backgrounds and weather variations, the detection
performance tends to decline. Therefore, we propose a series of
improved methods for detecting and counting peanut seedlings
in different scenarios, which will be discussed below.

4.1 The effect of BIFPN on detection results

We incorporate BIFPN to enhance the Hourglass model’s
ability to extract multi-scale features of peanut seedlings,
modifying the original feature map output. By this weighted
feature fusion approach, the output feature map combines the
advantages of both low-level and high-level features,
contributing to the improvement of the model's accuracy.
Compared to the baseline, BIFPN results in an AP improvement
of 0.56%, 1.85%, and 0.44% in three different scenes,
respectively. The improvement in the model's ability to
recognize peanut seedlings means that we can set a lower
confidence threshold during detection, which, to some extent,
reduces the occurrence of misidentifying weeds as peanut
seedlings.

4.2 The effect of Contrastive Loss on detection results

To improve the model's ability to recognize peanut seedlings in
complex terrains, we adopted a weighted approach to combine
Contrastive Loss with the original loss function. Contrastive
Loss increases the difference between positive and negative
samples while reducing the difference between identical
samples, thereby enhancing the model's ability to recognize
peanut seedlings. The results indicate that compared to the
baseline, Contrastive Loss brought an AP improvement of
2.29%, 1.51%, and 0.93% in three different scenes, respectively.
To verify whether Contrastive Loss also has similar advantages
when combined with other backbone networks, we incorporated
Contrastive Loss with ResNet50. The results showed that the
AP improved by 0.19% and 1.84% in scene one and scene two.

5. Conclusion

We propose a method for detecting the seedling emergence rate
of peanut seedlings based on the Centernet model in deep
learning. The proposed method has achieved state-of-the-art
results, with APs of 92.72%, 96.08%, and 95.37% in the three
scenes. In scene four, the proposed method predicted the
number of peanut seedlings in 85.38% of the plots with an error
of one or fewer compared to the manual result. The reason for
achieving such results is the incorporation of BIFPN into our
Centernet network and the combination of the original loss
function with Contrastive Loss. This design not only enables
high-precision peanut seedling detection in complex ground
surface conditions but also allows the detection of peanut
seedlings at different scales. In the future, we will explore the
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feature relationships between seedlings in different scenes and
strive to achieve seedling statistics under various complex
surface conditions with minimal annotation costs by integrating
existing detection models.

Acknowledgement

This work was jointly funded by the Shandong Provincial Key
Research and Development Program (grant numbers
2022LZGC021 and 2021LZGCO026), the Higher Education
Institutions Youth Innovation and Science & Technology
Support Program of Shandong Province under Grant
2024KJH062.

References

Abdin O, Zhou X, Cloutier D, et al. 2000. Cover crops and
interrow tillage for weed control in short season maize (Zea
mays). European Journal of Agronomy [J], 12: 93-102.

Al-Mulla Y A, Huggins D R, Stockle C O 2014. Modeling the
emergence of winter wheat in response to soil temperature,
water potential, and planting depth. Transactions of the ASABE
[J1,57: 761-775.

Andvaag E, Krys K, Shirtliffe S J, et al. 2024. Counting Canola:
Toward Generalizable Aerial Plant Detection Models. Plant
Phenomics [J], 6: 0268.

Bai Y, Nie C, Wang H, et al. 2022. A fast and robust method
for plant count in sunflower and maize at different seedling
stages using high-resolution UAV RGB imagery. Precision
Agriculture [J], 23: 1720-1742.

Cui J, Zheng H, Zeng Z, et al. 2023. Real-time missing seedling
counting in paddy fields based on lightweight network and
tracking-by-detection algorithm. Computers and Electronics in
Agriculture [J], 212: 108045.

Gao F, Fu L, Zhang X, et al. 2020. Multi-class fruit-on-plant
detection for apple in SNAP system using Faster R-CNN.
Computers and Electronics in Agriculture [J], 176: 105634.

Genaev M A, Komyshev E G, Smirnov N V, et al. 2019.
Morphometry of the wheat spike by analyzing 2D images.
Agronomy [J], 9: 390.

Gnédinger F, Schmidhalter U 2017. Digital counts of maize
plants by unmanned aerial vehicles (UAVs). Remote sensing [J],
9: 544.

Gotz S, Bernhardt H 2010. Produktionsvergleich von
Gleichstandsaat und Normalsaat bei Silomais. Landtechnik [J],
65:107-110.

Halstead M, Mccool C, Denman S, et al. 2018. Fruit quantity
and ripeness estimation using a robotic vision system. IEEE
robotics and automation LETTERS [J], 3: 2995-3002.

Jidong L, De-An Z, Wei J, et al. 2016. Recognition of apple
fruit in natural environment. Optik [J], 127: 1354-1362.

Jin X, Li Z, Yang G, et al. 2017. Winter wheat yield estimation
based on multi-source medium resolution optical and radar
imaging data and the AquaCrop model using the particle swarm
optimization algorithm. ISPRS Journal of Photogrammetry and
Remote Sensing [J], 126: 24-37.

Kuzdralinski A, Kot A, Szczerba H, et al. 2017. A review of
conventional PCR assays for the detection of selected
phytopathogens of wheat. Journal of molecular microbiology
and biotechnology [J], 27: 175-189.

Li Y, Hu P, Liu Z, et al. Contrastive clustering[C]//Proceedings
of the AAAI conference on artificial
intelligence.2021:8547-8555.

Lin Z, Guo W 2021. Cotton stand counting from unmanned
aerial system imagery using mobilenet and centernet deep
learning models. Remote sensing [J], 13: 2822.

Lindstrom M, Papendick R, Koehler F 1976. A model to predict
winter wheat emergence as affected by soil temperature, water
potential, and depth of planting 1. Agronomy Journal [J], 68:
137-141.

Liu X, Zhao D, Jia W, et al. 2019. A detection method for apple
fruits based on color and shape features. IEEE Access [J], 7:
67923-67933.

Nielsen M A. Neural
learning[C]//:Determination
USA,2015

networks and deep
press San  Francisco, CA,

Osco L P, De Arruda M d S, Gongalves D N, et al. 2021. A
CNN approach to simultaneously count plants and detect
plantation-rows from UAV imagery. ISPRS Journal of
Photogrammetry and Remote Sensing [J], 174: 1-17.

Tan C, Li C, He D, et al. 2022. Towards real-time tracking and
counting of seedlings with a one-stage detector and optical flow.
Computers and Electronics in Agriculture [J], 193: 106683.

Zhao B, Zhang J, Yang C, et al. 2018. Rapeseed seedling stand
counting and seeding performance evaluation at two early
growth stages based on unmanned aerial vehicle imagery.
Frontiers in Plant Science [J], 9: 1362.

Zou K, Ge L, Zhang C, et al. 2019. Broccoli seedling
segmentation based on support vector machine combined with
color texture features. IEEE Access [J], 7: 168565-168574.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License. 178



	Identification and Counting of Field Peanut Seedli
	UAV imagery
	1.Introduction
	2.Materials and Methods
	2.1Data Acquisition and Processing
	2.2Overall Architecture 
	2.3Feature Fusion
	2.4Loss function definition

	3.Experimentation and analysis
	3.1Training and Evaluation Procedure
	Figure 3. Comparison of the performance of differe

	3.2Result analysis
	3.2.1Ablation studies: We conducted ablation experiment
	3.2.2Qualitative evaluation: To provide a more intuitiv
	3.2.3Evaluate the seedling emergence: To verify the mod


	4.Discussion
	4.1The effect of BIFPN on detection results
	4.2The effect of Contrastive Loss on detection result

	5.Conclusion
	Acknowledgement
	References



