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Abstract

Accurate segmentation of individual trees from Airborne Laser Scanning (ALS) point clouds is essential for urban greening man-
agement, ecological conservation, and biodiversity assessment. However, the complex canopy structures of subtropical broadleaf
forests, often characterized by multiple peaks, pose significant challenges for existing segmentation algorithms, leading to pre-
valent over-segmentation. To address this issue, we propose a novel tree segmentation framework that integrates high-resolution
RGB imagery with airborne LiDAR point clouds, enhancing the extraction of individual trees in subtropical broadleaf forests. Our
method first employs high-resolution imagery to delineate canopy boundaries, which serve as constraints to refine the clustering of
supervoxel-segmented point clouds. Furthermore, to mitigate both over- and under-segmentation, an optimization step is introduced
based on geometric shape features of tree crowns. Experimental validation conducted in Shenzhen, China, demonstrates the effect-
iveness of our approach, achieving an average recall of 0.902, precision of 0.890, and F1-score of 0.906 across two study areas.
Compared to conventional tree segmentation techniques, our method improves recall, precision, and F1-score by 9.6%, 12.2%, and
13.3%, respectively. These results highlight the advantages of integrating multi-modal remote sensing data for fine-grained tree
segmentation in complex forest environments.

1. Introduction

As cities continue to expand, the management and protection
of urban greening faces many challenges. Urban greening not
only directly affects vegetation coverage, air quality and ecolo-
gical diversity protection, but is also closely related to the phys-
ical and mental health of residents. Especially in the context
of increasingly serious air pollution and urban heat island ef-
fects, the role of greening is becoming more and more import-
ant (Schusler et al., 2018, Ziter et al., 2019). Therefore, accur-
ate and efficient detection and segmentation of single trees is of
great significance for the refined management of urban green-
ing, green development, and carbon emission monitoring, and
provides technical support for promoting the high-quality and
sustainable development of urban greening (O’Neil-Dunne et
al., 2014).

Traditional urban greening surveys mainly rely on field ground
measurements. However, this method is not only time-
consuming and laborious, but also cannot be carried out manu-
ally in many places due to environmental conditions (Yang et
al., 2022). With the rapid advancement of remote sensing tech-
nologies, remote sensing-based urban greening surveys offer
a viable alternative. While remote sensing techniques have
been widely applied in large-scale vegetation monitoring, the
increasing demand for fine-scale urban greening information
necessitates more precise tree-level remote sensing approaches.

The application of remote sensing technology in urban green-
ing monitoring has gained traction, particularly for conducting
repeatable and rapid assessments. Unmanned Aerial Vehicle
(UAV) remote sensing, equipped with high-resolution cameras,
captures detailed color information of vegetation, while Light
Detection and Ranging (LiDAR) sensors penetrate canopy lay-
ers to acquire precise three-dimensional structural attributes of

vegetation (Masek et al., 2015). In recent years, these techno-
logies have demonstrated substantial potential for urban veget-
ation surveys and monitoring.

Individual tree segmentation methods leveraging remote sens-
ing data can generally be classified into two categories: ap-
proaches based on high-resolution imagery and those utilizing
LiDAR data. High-resolution imagery captures intricate sur-
face details, facilitating the extraction of spatial variability and
texture features that enhance segmentation accuracy. Common
techniques for image-based tree segmentation include region
growing and watershed segmentation algorithms (Dalponte et
al., 2018, Heenkenda et al., 2015). However, these methods
often rely on manually set thresholds to control seed point ex-
pansion, leading to limited robustness (Ke and Quackenbush,
2011). On the other hand, LiDAR-based approaches capitalize
on the technology’s ability to acquire accurate vertical struc-
tural information, enabling the extraction of detailed forest fea-
tures. These methods typically include canopy height model
(CHM)-based watershed segmentation, region growing (Fang
et al., 2016, Zhen et al., 2015), point cloud-based clustering,
and deep learning-based point cloud segmentation (Zheng et
al., 2024, Henrich et al., 2023, Hao et al., 2021, Latella et al.,
2021). However, CHM-based segmentation techniques suffer
from several limitations: (a) the smoothing process determines
the number of detected trees, leading to inaccuracies; (b) un-
derstorey trees are often undetectable; and (c) interpolation and
smoothing introduce data loss. To address these issues, altern-
ative approaches, such as direct point cloud-based clustering
and region-growing algorithms, have been developed. Non-
etheless, their segmentation accuracy remains low in broadleaf
forests due to the presence of multiple canopy peaks (Yang et
al., 2019).

Among segmentation strategies, normalized cut is a top-down
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method that partitions data based on similarity, treating points
or patches as graph vertices and using similarity weights to con-
struct a graph for segmentation. This approach effectively mit-
igates under-segmentation issues in forests with distinct can-
opy peaks, such as coniferous and temperate forests (Lee et al.,
2017). However, in complex forest structures, such as sub-
tropical broadleaf forests with multiple canopy peaks, exist-
ing methods often result in over-segmentation. Currently, no
comprehensive segmentation strategy has been specifically de-
signed to address the challenges posed by these forest types. To
bridge this gap, this study proposes a novel individual tree seg-
mentation method tailored for subtropical broadleaf forests by
integrating high-resolution imagery with airborne LiDAR point
clouds. The method optimizes tree segmentation by refining su-
pervoxel clustering results derived from airborne LiDAR data.
The main contributions of this study are as follows:

• Canopy Boundary-Constrained Supervoxel Clustering:
The proposed method leverages high-resolution imagery
to detect canopy boundaries and incorporates these bound-
aries as constraints to refine the supervoxel clustering of
LiDAR point clouds.

• Clustering Optimization for Improved Segmentation: To
mitigate both under-segmentation and over-segmentation,
the clustering results are further refined using geometric
shape features of individual trees.

The remainder of this paper is organized as follows: Section II
details the proposed methodology, including canopy boundary-
constrained supervoxel clustering and optimization techniques.
Section III presents experimental results and evaluates the seg-
mentation performance in the study area. Section IV concludes
the paper and discusses future research directions.

2. Method

In this study, UAV-based LiDAR and high-resolution RGB im-
agery are integrated for individual tree segmentation in sub-
tropical broadleaf forests. The proposed method consists of
three key stages: (1) data preprocessing, (2) canopy boundary-
constrained supervoxel clustering, and (3) segmentation refine-
ment. The overall framework is illustrated in Figure 1. In
Stage 1, the raw airborne LiDAR point cloud undergoes de-
noising, normalization, and ground filtering to ensure data qual-
ity. In Stage 2, supervoxel segmentation is performed using the
L0 Cut Pursuit algorithm(Landrieu and Obozinski, 2017), fol-
lowed by tree crown boundary detection from high-resolution
RGB imagery using the Detectree2(Ball et al., 2023) model.
The extracted tree crown boundaries serve as constraints to re-
fine the clustering of supervoxel segments, enhancing segment-
ation accuracy. In Stage 3, tree crowns with irregular shapes
from the initial segmentation are identified and refined through
re-segmentation and clustering to mitigate under-segmentation
and over-segmentation issues.

2.1 Data pre-processing

First, an progressive morphological filter is applied to separ-
ate the raw point cloud into ground and non-ground points.
Based on the ground point data, a nearest neighbor interpola-
tion method is used to generate a Digital Terrain Model (DTM).
To eliminate the influence of the terrain, the Z-coordinate of
each non-ground point is subtracted by the corresponding DTM

value, resulting in a normalized point cloud.For noise points
present in the point cloud, surface cleaning is performed using
the statistical outlier removal function in CloudCompare. Prior
to tree segmentation evaluation, the point cloud for each indi-
vidual tree is manually separated using CloudCompare, with
ground and understory points removed. Additionally, to en-
hance the visual effect, each tree’s point cloud is assigned
a random color for easier differentiation and evaluation (Fig-
ure 2(b)).For the multi-view high-resolution imagery, we used
Smart3D software to generate the corresponding orthophoto
(Digital Orthophoto Map, DOM) of the study area, as shown
in Figure 2(c).

2.2 Crown Boundary-Constrained Supervoxel Clustering

2.2.1 Crown Boundary Detectionl For canopy boundary
detection in high-resolution imagery, this study employs the
Detectree2 model. Detectree2 is based on the Mask R-CNN
framework, an extension of Faster R-CNN, incorporating a
branch for instance segmentation. The model achieves an
F1-score of approximately 0.64 for canopy detection in high-
resolution imagery. However, its performance is less effective
under certain conditions, particularly when the trees have fewer
leaves, low canopy color contrast, or closely spaced crowns.
Moreover, due to the accuracy of the DOM imagery and the
geometric correction issues when generating orthophotos from
multi-view imagery, the detected canopy boundaries often fail
to fully overlap with the corresponding tree crown point clouds,
as shown in Figure 3.

2.2.2 Point Cloud Supervoxel Segmentation In graph
cuts, a point cloud is often represented as a graph consisting
of nodes V with attributes and edges E connecting these nodes.
Thus, isolating or segmenting the point cloud in a graph cut can
be represented by the disruption or cutting of the edges in the
graph. Specifically, the graph G is a pair of sets G = (V , E) ,
where V is a set of N vertices and E is the set of edges. Each
edge wij ∈ E corresponds to a non-negative similarity weight
between two vertices i, j ∈ V . The goal of binary graph cut is
to partition the graph into two disjoint sets A and B by cutting
the edges connecting these two sets, such that A ∪ B = V and
A ∩ B = ∅ . The normalized cut method finds sets A and B
by minimizing an energy term. By recursively applying nor-
malized cut, this method can be extended to search for multiple
categories, until the process is terminated by a stopping rule.

The L0 Cut Pursuit algorithm is a graph-cut algorithm that
transforms the point cloud segmentation problem into a struc-
tured optimization problem of the graph. Various algorithms
have been proposed for this graph structure optimization prob-
lem. The L0 Cut Pursuit algorithm, in particular, minimizes the
objective function through graph structure regularization to it-
eratively cut the 3D point cloud into supervoxels with minimal
total variation. Each graph cut is the minimization process of
Equation 1, as follows:

min
x

∑
v

∥X(v)xv∥2 + λ
∑
(u,v)

Euvφ(Xu −Xv)

 (1)

where x is the optimization variable, v represents the nodes
in the graph, X denotes the point coordinates of each node,
Euv represents the weight between two nodes , which is typ-
ically defined as the inverse of the distance between the two
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Figure 1. Pipeline of the proposed methodology.

Figure 2. (a) Raw point cloud.(b) Result of manual individual
tree segmentation.(c) Digital Orthophoto Map.

Figure 3. Detectree2 canopy boundary detection effect.(a) and
(b) There are undetected canopy boundaries.(c) and (d) Detected

canopy boundary position offset.(e) The canopy boundary
detection is correct.

nodes.∥X(v)xv∥2 represents the squared Euclidean distance
between the node and the centroid.

In the L0 Cut Pursuit algorithm, the first term of the equation
is the quadratic fidelity term, which measures the difference

between the current segmentation (i.e., label assignment) and
the actual observations. The second term, φ(Xu − Xv), rep-
resents the edge-based regularization term, which evaluates the
differences between adjacent nodes. The regularization para-
meter λ controls the balance between fidelity and regulariza-
tion, determining the size of the resulting supervoxels after seg-
mentation. Figure 4 shows the supervoxel segmentation results
under different regularization parameters. It can be observed
that as the regularization parameter increases, the size of the
resulting supervoxels also increases. During supervoxel seg-
mentation of the point cloud data, certain individual trees can
be directly clustered, as shown in Figure 4(e). This approach
helps compensate for the reduced segmentation accuracy res-
ulting from the limited precision of the Detectree2 model in
detecting tree crown boundaries.

Figure 4. Supervoxel segmentation results for different
regularization parameters. (a) Original tree point cloud. (b)-(e)

Supervoxel segmentation results for regularization parameters of
0.5, 1, 2 and 4.

2.2.3 Supervoxel clustering If the airborne point cloud is
directly constrained for clustering based on the obtained tree
crown boundaries, although some crown boundaries can be cor-
rectly matched with the corresponding point clouds, most de-
tected crown boundaries exhibit positional deviations from the
airborne point cloud. This affects the accuracy of tree segment-
ation, as shown in Figure 5, where the precision of the segment-
ation results is relatively poor.

To address the issue of positional deviations between canopy
boundaries and the airborne point cloud, this study proposes a
canopy boundary-constrained point cloud supervoxel clustering
method. Specifically, this method improves the clustering ac-
curacy by merging supervoxels whose voxel centers lie within
the same canopy boundary, as shown in Figure 6. This approach
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Figure 5. Direct point cloud clustering based on boundary
constraints.(a)Raw point cloud overlap with shp.(b)Clustering

results

effectively compensates for the decreased clustering perform-
ance caused by inaccuracies in the canopy boundary detection,
significantly enhancing both the accuracy and stability of the
segmentation process.

Figure 6. Supervoxels clustering based on boundary
constraints.(a) Supervoxel results overlap with shp.(b)

Clustering results.

2.3 Supervoxel clustering Result Optimization

Due to the nature of the L0 Cut Pursuit algorithm, which tends
to result in under-segmentation for small and tightly packed
tree crowns, as well as over-segmentation for large tree crowns.
Furthermore, the precision of the Detectree2 model in canopy
boundary detection can lead to several issues: a single can-
opy boundary may encompass multiple tree point clouds, or
a canopy boundary may fail to fully cover the corresponding
supervoxel centers of individual trees. These issues exacer-
bate both under-segmentation and over-segmentation problems
in the clustering results.To address these under-segmentation
and over-segmentation issues in the point cloud, this study pro-
poses a solution based on the shape features of the individual
tree segmentation results. By extracting shapes unreasonable

tree point clouds and optimizing the clustering results, the pro-
posed method improves the segmentation accuracy and effect-
ively avoids the occurrence of both under-segmentation and
over-segmentation.

Since most tree species in subtropical broadleaf forests have
crown projections that are nearly circular in the xy plane, this
study proposes a parameter based on the circularity of the crown
projection to extract unreasonable crowns. This includes para-
meters R1,R2 and R3 ,with the parameter expressions given in
Equation 2:

r1 =

√
S

π

R1 =
4πS

C2

R2 =
r1
r2

R3 =
r3
r4

(2)

Where, S is the crown projection area, C is the perimeter of
the crown projection boundary, r2 is the radius of the circum-
circle, r3 is the shortest distance from the center to the bound-
ary, r4 is the longest distance from the center to the boundary.
Based on the calculations from Equation 2, three thresholds for
R1,R2 and R3 were set as 0.6, 0.75, and 0.55, respectively, to
extract shapes unreasonable crowns from the clustering results.
Figure 7 illustrates the parameter values corresponding to dif-
ferent shapes unreasonable crowns.

Figure 7. Parameter values corresponding to tree crowns with
unreasonable shapes

After extracting shapes unreasonable crowns, this study uses
the L0 Cut Pursuit supervoxel segmentation algorithm to fur-
ther segment these unreasonable crowns. Since the overseg-
mented point clouds are generated by the L0 Cut Pursuit super-
voxel segmentation algorithm, re-segmentation of these over-
segmented point clouds does not have a significant impact.
Next, for each individual tree segmentation result, unreason-
able crowns are extracted again, and each unreasonable crown
is merged with its k neighboring crowns. During the merging
process, the parameter values of each merged crown are calcu-
lated using Equation 2, and the merging result with the highest
sum of R1,R2 and R3 parameters is selected. This process is
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repeated until the overlap ratio of the point clouds of the extrac-
ted unreasonable crowns between two consecutive iterations ex-
ceeds 90%.

2.4 Accuracy Evaluation

The accuracy of individual tree segmentation results is evalu-
ated using three measures: Recall, Precision, and F-score(Qin
et al., 2022) . Specifically, if a tree exists in the ground refer-
ence and is correctly segmented, it is considered a true positive
(TP). If the overlap between the predicted tree and the actual
tree is greater than 50%, it is deemed correctly segmented. If
a tree exists in the ground reference but is not segmented, it
is considered a false negative (FN). If a tree does not exist in
the ground reference but is segmented, it is considered a false
positive (FP). TP, FP, and FN represent correct segmentation,
over-segmentation, and under-segmentation, respectively. Pre-
cision represents the ratio of true positives to all detected trees,
while Recall represents the ratio of true positives to all ground
reference trees. F-score is the overall accuracy considering both
omission and false detection.

3. Experiments and Results

3.1 Dataset Descriptions

The study area is located in Shenzhen Bay Park, Shenzhen,
China, with geographic coordinates of 113°56’ 26” E, 22°30’
43” N. This area belongs to the subtropical broadleaf forest eco-
system and is characterized by high tree species diversity. The
dominant species include coconut trees, flame trees, fan palms,
and mangroves. Figure 8 illustrates the study area, which is di-
vided into two sub-areas. Area 1 features a relatively regular
arrangement of trees, with small differences in canopy size and
fewer species. Area 2, on the other hand, has a denser arrange-
ment of trees, with larger differences in canopy size and greater
species diversity.

Figure 8. The location of the study area in ShenZhenWan Park,
Shenzhen City of southern China.

The unmanned aerial vehicle (UAV) LiDAR data used in this
study were acquired in 2024 using the RIEGL VQ-1560i-DW
airborne LiDAR scanner. This device is a lightweight laser
scanner specifically designed for UAVs, offering high spatial
resolution and adaptability. During the data acquisition process,
the UAV flew at a constant speed of 190 km/h at an altitude of
450 meters, with the resulting airborne point cloud data density
approximately 45 points/m2. Simultaneously, high-resolution
imagery was captured by the UAV using the S4500 X 40 cam-
era in 2024, providing multi-view images with a resolution of 2
cm.

3.2 Evaluation of Tree Segmentation

Figure 9 shows the results of individual tree segmentation for
the two study areas. It can be observed that most of the
trees in both regions are correctly segmented. In Region 1,
where the tree arrangement is relatively simple, the segment-
ation results (Figure 9(a)) show that nearly all trees are ac-
curately segmented, with no noticeable over-segmentation or
under-segmentation. The boundaries between adjacent trees are
clearly visible, and the individual tree contours and detailed fea-
tures are well preserved. In Region 2, where the tree arrange-
ment is more complex, the segmentation results (Figure 9(b))
indicate that some closely spaced trees and larger trees with
wider crowns exhibit over-segmentation. However, the major-
ity of trees are still accurately segmented.

Figure 9. Individual tree segmentation results.(a) Study area 1
individual tree segmentation results.(b) Study area 2 individual

tree segmentation results.

To further assess the accuracy of the tree segmentation results,
this study conducted a precision evaluation for both study areas,
with the results shown in Table 1. In Area 1, the precision,
recall, and F1-score of tree segmentation were 0.927, 0.957,
and 0.942, respectively, demonstrating high segmentation ac-
curacy. In contrast, the precision, recall, and F1-score for tree
segmentation in Area 2 were 0.852, 0.847, and 0.849, represent-
ing a 9.3% decrease in the overall F1-score compared to Area
1. Specifically, in terms of precision, Area 2 showed a 7.5%
reduction in precision compared to Area 1. This difference is
mainly attributed to the denser arrangement of tree crowns in
Area 2, leading to more under-segmentation issues. Regarding
recall, Area 2 experienced an 11% decrease compared to Area
1. This difference is primarily due to the misclassification of
small, tightly clustered trees as a single large tree during seg-
mentation.

Method Site Prec Rec F1
Proposed Site 1 0.927 0.957 0.942

Site 2 0.852 0.847 0.849

Table 1. The accuracy assessment results of individual tree
segmentation.

3.3 Comparative Analysis

To evaluate the effectiveness of the proposed method, this study
compared it with several classic traditional tree segmentation
methods, including Li 2012(Li et al., 2012), PyCrown(Zörner
et al., 2018),Watershed(Zhao et al., 2014), Ams3d(Ferraz et
al., 2016), Silva (Silva et al., 2016),and MCRC(Lee et al.,
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2017). Figure 10 illustrates the partial segmentation results of
six methods in Study Area 1 and Study Area 2. As shown in
Table 2 and Table 3, the proposed method achieves the follow-
ing precision, recall, and F1 scores in the two study areas: Area
1: 0.866, 0.795, 0.829; Area 2: 0.927, 0.957, 0.942. Over-
all, regardless of whether the trees in Area 1 are more regu-
larly spaced with fewer species or the trees in Area 2 are more
densely arranged with higher species diversity, the proposed
method outperforms the other methods in terms of tree seg-
mentation accuracy.

In terms of precision, the proposed method’s precision is second
only to the watershed algorithm. Compared to other methods
excluding the watershed algorithm, it achieves improvements of
4.4% to 17.1% in Area 1 and 5.7% to 34.3% in Area 2. This in-
dicates that most of the tree crowns segmented by the proposed
method are correct. On the other hand, the lower precision of
Ams3d is likely due to its use of a mean-shift algorithm, which
was developed for coniferous forests and often detects multiple
tree apex points for a single tree in broadleaf forests, result-
ing in significant over-segmentation.In terms of recall, the pro-
posed method’s recall is second only to the MCRC algorithm.
Compared to other methods excluding the MCRC algorithm, it
achieves improvements of 1.1% to 22.7% in Area 1 and 6.5%
to 64.7% in Area 2. This indicates that the method is better at
identifying the true tree crowns and reducing omissions. The
Watershed algorithm has the lowest recall, suggesting a signi-
ficant under-segmentation problem that fails to capture most of
the tree crowns. The overall F1-score, which balances precision
and recall, is the highest for the proposed method. Compared
to other tree segmentation methods, the F1-score improves by
4.0%-10.6% in Area 1 and 7.8%-52.1% in Area 2, demonstrat-
ing the best balance between precision and recall.

Method Metrics
Pre Rec F1

Li2012 0.807 0.920 0.860
PyCrown 0.883 0.918 0.900
Watershed 0.990 0.730 0.836
Ams3d 0.756 0.946 0.844
Silva 0.879 0.914 0.896
MCRC 0.851 0.961 0.902
Proposed 0.927 0.957 0.942

Table 2. Segmentation accuracy of each method in area 1.

Method Metrics
Pre Rec F1

Li2012 0.693 0.782 0.735
PyCrown 0.795 0.718 0.755
Watershed 0.882 0.200 0.328
Ams3d 0.509 0.760 0.610
Silva 0.768 0.662 0.712
MCRC 0.702 0.855 0.771
Proposed 0.852 0.847 0.849

Table 3. Segmentation accuracy of each method in area 2.

3.4 Module evaluation

3.4.1 Comparison of clustering effects before and after
point cloud supervoxel segmentation To verify the impact
of supervoxel segmentation on the final tree segmentation res-
ults when performing point cloud clustering based on tree
crown boundaries, this study compares the precision of two
tree segmentation methods. The first method clusters the point
cloud data directly based on the detected tree crown boundaries,

Figure 10. Three-dimensional visualization of partial
segmentation results in Study Area 1 and Study Area 2.(a)

Li2012 segmentation results.(b) PyCrown segmentation
results.(c) Watershed segmentation results.(d) Ams3d

segmentation results.(e) Silva segmentation results.(f) MCRC
segmentation results.(g) Proposed method segmentation

results.(h) Groundtrue.

while the second method first performs supervoxel segmenta-
tion on the point cloud and then clusters the supervoxel seg-
mentation results based on the tree crown boundaries. The tree
segmentation results and their precision for both methods are
shown in Figure 11 and Table 4.

Site Method Prec Rec F1
Site1 Before clustering 0.924 0.688 0.788

After clustering 0.870 0.901 0.885
Site2 Before clustering 0.750 0.614 0.675

After clustering 0.664 0.824 0.735

Table 4. The accuracy assessment results of individual tree
segmentation.

According to the results in Figure 11 and Table 4, when compar-
ing direct clustering based on detected tree crown boundaries
with first performing supervoxel segmentation and then clus-
tering based on tree crown boundaries, the first method shows
higher precision by 5.4% and 8.6% in the two study areas, re-
spectively, while its recall is 21.3% and 21% lower. This dif-
ference is primarily due to the denser tree arrangement in cer-
tain areas, where some tree crown boundaries were not detected
or where a single tree crown boundary encompassed multiple
trees. On the other hand, in simpler areas, tree crown boundar-
ies could be more accurately detected, leading to a higher preci-
sion for the first method, but a sharp decline in recall.However,
in terms of the overall evaluation metric, F1-score, the second
method outperforms the first in both study areas, with improve-
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Figure 11. Individual tree segmentation result.(a) Direct point
cloud clustering based on canopy boundaries.(b) Point cloud

supervoxel segmentation results are clustered based on canopy
boundaries (without clustering optimization).

ments of 9.7% and 6%, respectively.

3.4.2 Comparison of clustering results before and after op-
timization To verify the effectiveness of clustering optim-
ization on the tree segmentation results, this study compares
the segmentation precision of two methods. The first method
clusters the supervoxel segmentation results based on detected
tree crown boundaries without performing clustering optimiza-
tion, while the second method clusters the supervoxel segment-
ation results based on tree crown boundaries and subsequently
applies clustering optimization. The tree segmentation results
and their precision for both methods are shown in Figure 12 and
Table 5.

Figure 12. Individual tree segmentation results for clustering
optimization.

The results from Figure 12 , Figure 11 (b) and Table 5 reveal
that, compared to individual tree segmentation results without
clustering optimization, the segmentation accuracy after clus-
tering optimization shows significant improvements in both
study areas. Specifically, in Region 1 and Region 2, precision

Site Method Prec Rec F1
Site1 Before optimization 0.870 0.901 0.885

After optimization 0.927 0.957 0.942
Site2 Before optimization 0.664 0.824 0.735

After optimization 0.852 0.847 0.849

Table 5. The accuracy assessment results of individual tree
segmentation.

increased by 5.7% and 18.8%, recall increased by 5.6% and
2.3%, and the overall evaluation metric, F1-score, improved
by 5.7% and 11.4%, respectively. The improvement in pre-
cision in Area 1 is primarily due to the re-segmentation of
densely packed trees that were previously under-segmented. In
Area 2, the precision gain results from the re-segmentation of
closely spaced small trees and the effective clustering of over-
segmented large tree crowns.

4. Conclusion

This study presents a novel individual tree segmentation
method that integrates airborne LiDAR point clouds with
high-resolution imagery. The proposed approach was evalu-
ated in two study areas with varying complexity and bench-
marked against several traditional single-tree segmentation al-
gorithms. Experimental results demonstrate the effectiveness
of our method in subtropical broadleaf forests, achieving recall
rates of 0.957 and 0.847, precision rates of 0.927 and 0.852,
and F1-scores of 0.942 and 0.849. By leveraging the com-
plementary strengths of LiDAR-derived vertical structural fea-
tures and high-resolution RGB imagery-based texture features,
our method significantly mitigates both under-segmentation and
over-segmentation issues, leading to more accurate segment-
ation outcomes. Compared to traditional tree segmentation
techniques, our approach achieves an average improvement of
9.6%, 12.2%, and 13.3% in recall, precision, and F1-score, re-
spectively.

Despite these advancements, certain limitations remain. The
accuracy of tree crown boundary extraction from high-
resolution imagery can still be improved, and performance de-
creases in densely packed forest regions where tree crowns
overlap. Future research will focus on refining boundary de-
tection techniques and optimizing segmentation strategies to
further enhance accuracy and robustness across diverse forest
environments.
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