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Abstract

Motion averaging (MA) offers an efficient and mostly linear means for estimating image sets pose and provides a reliable initializ-
ation for large-scale structure-from-motion (SfM) pipelines. Nonetheless, MA, which comprises rotation and translation averaging
(RA & TA, respectively), can be severely affected by the presence of outliers that can greatly degrade the performance of the entire
optimization process or even lead to the divergence of the SfM solution. While robust loss functions have been applied to mitigate
outliers effect, their performance depends heavily on the choice of parameters and requires manual tuning and prior knowledge of
the residual distribution. To make MA more robust, we enhance it by incorporating an adaptive robust kernel that automatically
adjusts its parameter to the residual distribution. This adaptive behavior balances robustness and sensitivity, removing the need for
manual parameter tuning. In addition, to address the ill-posed nature of TA, we adopt a global positioning framework that jointly
estimates the camera and 3D point positions. Experimental results show how the adaptive robust kernel consistently outperforms
state-of-the-art fixed-parameter functions. It improves accuracy in both RA and global positioning, particularly in scenes with high
levels of noise or outliers. These results demonstrate the effectiveness of adaptive robust kernels for improving the reliability and
generalization of MA pipelines in challenging reconstruction scenarios.

1. INTRODUCTION

Structure from motion (SfM) is a foundational technique in
computer vision and photogrammetry that reconstructs the pose
and sparse 3D structure of an unordered image collection. Most
modern pipelines adopt a global approach, in which rotations
and translations are first solved between image pairs, and then
estimated globally through motion averaging (MA). MA is
typically decomposed into rotation and translation averaging
(RA & TA, respectively, Hartley et al., 2013; Eriksson et al.,
2019; Elnashef and Filin, 2022), where RA aims to estimate
global camera orientations from a graph of pairwise relative ro-
tations, and TA computes the positions of the camera based
on these orientations and relative translation directions. TA
per se is an ill-posed problem due to: i) the relative transla-
tion from two-view geometry lacking scale, ii) the sensitivity
of relative translation estimates to small baselines, and iii) the
degeneration of the reconstruction in the case of a collinear mo-
tion. Therefore, global positioning has been recently proposed
to perform a joint estimation of the camera and point positions
(Zhuang et al., 2018; Pan et al., 2024).

Current MA solutions perform well in many scenarios, but out-
liers which are common due to matching ambiguities, affect the
estimated relative motion and significantly degrade their per-
formance. To mitigate outlier influence, robust kernel functions
are usually applied to down-weight their effect (Chatterjee and
Govindu, 2018; Gao et al., 2021). Many kernels that have been
proposed over the years, and selecting one, and its paramet-
ers, is crucial for the algorithm performance due to its depend-
ence on the residual distributions. With the lack of prior know-
ledge about their distribution, it is difficult, in most scenarios, to
choose an optimal kernel and set its parameters. The common
solution is to resort to a trial-and-error until acceptable solu-
tion has been reached. Such approach translates to lengthy and
cumbersome processes, which are not always feasible.

In this paper, we propose the introduction of a new robust ker-
nel function to solve the MA problem. This function, first in-
troduced in Barron (2019) and later adapted by Chebrolu et al.
(2021), features adaptive properties that allow to relieve the
need for parameter tuning and distribution setup. As the pa-
per shows, the introduction of this kernel to both RA and global
positioning, contributes to the robustness of the MA solution in
the presence of outliers over varied residual distributions. By
integrating this solution into the GLOMAP framework we also
contribute to a more robust state-of-the-art SfM pipeline. Eval-
uation on the comprehensive and commonly used ETH3D data-
set (Schops et al., 2017), demonstrates how we consistently out-
perform conventional fixed-parameter robust losses in angular
and positional accuracy. As our results demonstrate, the ad-
aptive kernel proves particularly effective in challenging scenes
with high outlier rate, offering a robust and generalizable solu-
tion for MA in SfM.

2. RELATED WORK

2.1 Rotation Averaging and Global Positioning

Early RA methods, (e.g., Govindu, 2004) studied linearization
of the problem based on quaternions and Lie algebra. Later,
Martinec and Pajdla (2007) directly dropped the nonlinear con-
straints for tractability. Some relaxation methods, such as the
semi-definite programming (SDP)-based relaxation (Carlone
and Calafiore, 2018; Chen et al., 2021) and Lagrangian dual-
ity (Eriksson et al., 2019), were adopted to make the problem
more tractable. Recent work has focused on improving robust-
ness and accuracy. For example, Chatterjee and Govindu (2013)
proposed a two-step solution using the l1 loss and iterated re-
weighted least squares (IRLS). Chatterjee and Govindu (2018)
compared the performance of different robust functions, such
as the l1, Huber, and Geman-McClure, in RA (Huber, 1992;
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Geman and McClure, 1985). The results demonstrated that l 1
2

and Geman-McClure performed best, but while these methods
mitigated the outliers impact, they relied on fixed-parameter
loss functions, which may not generalize across datasets with
different residual distributions. More recently, to further im-
prove the robustness, Zhang et al. (2023) incorporated the un-
certainty weighting based on measurement confidence, demon-
strating improved resilience to noise.

TA usually follows the application of RA, but because of scale
ambiguity and linear motion it may become more challenging.
Wilson and Snavely (2014) proposed a stabilization by us-
ing the direction-based cost and adding camera-to-point con-
straints, named 1DSfM. An alternative TA solution was intro-
duced by Manam and Govindu (2024), where direction and
displacement-based methods were fused. To solve the camera
positions more robustly, global positioning was recently pro-
posed to simultaneously estimate the cameras and 3D points
positions by measuring the direction from camera center to the
points (Pan et al., 2024). As a cost function, the authors built
upon the one proposed in Zhuang et al. (2018).

To address the effect of outliers on MA estimation, robust ker-
nel functions have found popularity. Among them, the l1,
Huber, and Geman-McClure loss functions are the widely used
one in MA (Hartley et al., 2013; Sidhartha and Govindu, 2021).
Nonetheless, they are unable to perform well in all situations,
and choosing the suitable loss and adjusting the parameters by
hand is required sometimes (Chebrolu et al., 2021). To handle
that, Barron (2019) proposed a generalized loss function that
covered several others, e.g., Cauchy, Geman-McClure, Welsch,
Leclerc and Charbonnier (Black and Anandan, 1996; Dennis Jr
and Welsch, 1978; Leclerc, 1989; Charbonnier et al., 1994). An
advantage it has over others is its ability to adjust the parameter
automatically and fit the data better than current loss functions.
Notwithstanding its shape parameter is only defined for posit-
ive values, which means the range of kernels it can adapt to is
not general. Hence, Chebrolu et al. (2021) proposed to truncate
the kernel, so that the modified robust function can adapt to all
ranges. We refer to their kernel as adaptive robust kernel in the
following. Though the kernel was verified with the application
in 3D registration and bundle adjustment, its performance in
MA setups is unclear. Therefore, we integrate it into the linear
form of RA and global positioning, to evaluate its performance.

2.2 SfM Framework

Over the years, two main paradigms were adopted to solve the
SfM problem: incremental and global approaches. Incremental
methods estimate the image set pose and 3D points sequentially,
while global ones estimate them simultaneously. Incremental
methods are considered more accurate as they are less sensitive
to outliers, but are more computationally expensive. Repres-
entative incremental methods include the Bundler, VisualSfM,
and COLMAP (Snavely et al., 2006; Wu, 2013; Schonberger
and Frahm, 2016), where the latter has become the standard
tool for 3D reconstruction due to its versatility and robustness
in many datasets. Because global methods are more consistent,
scalable, and efficient, more attention has been paid to them
in recent years. Representatives include the OpenMVG, Theia,
GlobalSfMpy, VGGSfM, and GLOMAP (Sweeney et al., 2015;
Moulon et al., 2017; Zhang et al., 2023; Wang et al., 2024;
Pan et al., 2024), where GlobalSfMpy and GLOMAP were de-
veloped based on COLMAP. GLOMAP has demonstrated bet-
ter performance than OpenMVG, Theia and COLMAP in terms

of accuracy and robustness. Therefore, our robust MA solution
has been integrated and evaluated within its framework.

3. Method

Given an image set, SfM estimates their pose and sparse 3D
structure from pairwise image matches. We focus on improv-
ing the robustness of MA by enhancing both RA and global
positioning (an alternative to TA) using an adaptive robust ker-
nel.

3.1 Models of Rotation Averaging and Global Positioning

Rotation averaging Given a set of relative rotations Rij

between the cameras, the RA problem is to estimate the global
rotations Ri and Rj that minimize the cost function:

arg min
Ri,Rj

∑
i,j

ρ(d(Rij , RjR
T
i )), (1)

where ρ(·) is the robust kernel function, and d(·) is a distance
measure between two rotations. Denoting ωij , ωi, and ωj as
the corresponding Lie algebra of Rij , Ri, and Rj , the distance
measure can be expressed as:

arg min
∆ωj ,∆ωi

∑
i,j

ρ(∥∆ωij − (∆ωj −∆ωi)∥), (2)

where ∆ relates to updates of the ω values. Further, denoting
the correction of the Lie algebra as ∆ωrel = ∆ωij , ∆ωglob =
[ω1, · · · , ωN ]T , the cost function becomes:

arg min
∆ωglob

∑
i,j

ρ(∥∆ωrel −Aij∆ωglob∥), (3)

where Aij = [· · · − I · · · I · · · ].

Global positioning Given a set of relative directions vik,
global positioning aims to minimize the difference between the
actual image rays and the measurements (Fig. 1). The measure-
ments vik can be obtained by projecting the pixel coordinates
pik to the camera frame, then transforming the direction to the
world frame by the global rotations obtained through RA. The
camera center position ci and the 3D point Pk can be estimated
by minimizing the cost function:

arg min
C,P,d

∑
i,k

ρ(∥vik − dik(Pk − ci)∥), (4)

where dik is a slack variable, acting as a normalization factor.

3.2 Adaptive Robust Kernel Function

Traditional robust loss functions such as Huber and Geman-
McClure require fixed shape parameters, which are often manu-
ally tuned and may not generalize well across scenes. To ad-
dress this, we adopt an adaptive kernel (Chebrolu et al., 2021),
which generalizes many classical robust losses through a learn-
able shape parameter α. The adaptive robust kernel function is
defined as:

L(α, c) = −
N∑
i=1

log
e−ρ(ri,α,c)

cZ(α)
=

N∑
i=1

(ρ(ri, α, c) + log cZ(α)) ,

(5)
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Figure 1. Global positioning. Yellow points are 3D object-space
points. Red, blue, and purple points are their projection. Dashed
lines represent the actual image rays, while solid lines denote the

direction of measurements.

where r is the residual, α and c (> 0) are the shape and scale
parameter that control the robustness of the kernel,

ρ(ri, α, c) =
|α− 2|

α

((
(ri/c)

2

|α− 2| + 1

)α/2

− 1

)
, (6)

and
Z(α) =

∫ τ

−τ

e−ρ(r,α,1)dr. (7)

When α = 2, the loss becomes quadratic; when α = 0, it
approximates the Cauchy loss; when α = −2, it becomes
the Geman-McClure loss; and as α → −∞, it approaches
the Welsch loss. Fig. 2 plots ρ(r, α, 1) for different α values.
Note that smaller α yields smaller ρ(r, α, c), but the inliers may
get penalized if the shape parameter is too small. Addressing
that, log cZ(α) acts as the penalty term to solve this matter.
Nonetheless, it is tricky to jointly learn both the shape and
scale parameters because they contribute to the cost function
together. They influence each other and it is unclear whether a
balanced state can be reached. So, the scale parameter is fixed
according to the measurement noise while the shape parameter
is learned by the distribution of residuals. Because the shape
parameter is fixed in the optimization process, the adaptive ker-
nel can be further written as:

L(α) = ρ(r, α) + logZ(α), (8)

3.3 Robust Motion Averaging with An Adaptive Kernel

With the adaptive robust kernel function, the cost function of
RA and global positioning can be expressed as:

min
∑

L(∥r(∆ω)∥) = min
∑

(ρ(∥r(∆ω)∥, α)+ logZ(α)),

(9)
min

∑
L(∥r(∆P )∥) = min

∑
(ρ(∥r(∆P )∥, α)+logZ(α)),

(10)
where r(∆ω) = ∆ωrel − Aij∆ωglobal, r(∆P ) = vik −
dik(Pk − ci). Because of their same form, we use the RA as an
example to demonstrate the optimization. Taking the derivat-
ives of the cost function with respect to the global rotations and

Figure 2. The plot of ρ(r, α, 1) for different α values.

the shape parameter, we have:

∂L

∂∆ω
=
∑ ∂ρ

∂∆ω
=
∑ ∂ρ

∂r

∂r

∂∆ω
=

1

2

∑(
∂ρ

∂r
/r

)
∂r2

∂∆ω
(11)

where, for simplification, r means r(∆ω). Now, defining
Φ(∥r∥) = ∂ρ

∂r
/r as the weight function, we can write

∂L

∂∆ω
=

1

2

∑
Φ(∥r∥) ∂r2

∂∆ω
. (12)

As for the derivative of the shape parameter, we have:

∂L

∂α
=
∑(

∂ρ

∂α
+

∂ logZ

∂α

)
. (13)

So, the optimal solution is obtained when

∂L

∂∆ω
= 0,

∂L

∂α
= 0. (14)

which is equivalent to the following optimization problem, if
we treat Φ(∥r∥) as a constant during each iteration:

minL′(α) = min
∆ω,α

∑
Φ(∥r∥)r2 + 2 logZ(α), (15)

We now deduce the equivalence between them.

∂L′

∂∆ω
=
∑

Φ(∥r∥) ∂r2

∂∆ω
, (16)

∂L′

∂α
=
∑(

∂(Φ(∥r∥)r2)
∂α

+ 2
∂ logZ

∂α

)
=
∑(

∂(Φ(∥r∥)r2)
∂r

∂r

∂α
+ 2

∂ logZ

∂α

)
=
∑(

Φ(∥r∥)2r ∂r
∂α

+ 2
∂ logZ

∂α

)
= 2

∑(
∂ρ

∂α
+

∂ logZ

∂α

)
.

(17)

The derivatives are the same as the original cost function, hence
their equivalence. The algorithm for robust rotation averaging
is summarized in Algorithm 1.
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Algorithm 1 Robust Rotation Averaging with Adaptive
Kernel
Input: Relative rotations Rij .
Output: Global rotations Ri, Rj , shape parameter α.

1: Initialize the global rotations Ri, Rj and the shape para-
meter α.

2: Compute the residuals r.
3: Find the optimal α to minimize Eq. (9) with Ceres.
4: Calculate the weight function Φ(∥r∥).
5: Solve the weighted least squares problem.
6: Update the global rotations.
7: Repeat steps 2-6 until convergence.

4. Experiments

We test our proposed method following its integration into the
GLOMAP library. There, the Geman-McClure is used for the
RA while the global positioning uses the Huber robust loss
function. For fair comparison we implement the Huber and
Geman-McClure functions for both RA and global positioning.
Thus, the performance of these three kernels can be compared
both in RA and global positioning. For RA, the adaptive kernel
is implemented within the GLOMAP pipeline using IRLS and
Ceres Solver (Agarwal et al., 2012). We use Ceres to calculate
the optimal α and then complete the optimization with IRLS.
For global positioning, we use the weight function Φ(∥r∥) to
weight the residual in Ceres and add the penalty term through
an additional residual block. The shape parameter α is initial-
ized to 1.0 and updated at each IRLS iteration while minimizing
the residuals. The integral term is approximated by cubic spline
interpolation in the optimization process. Therefore, it does not
increase the computational cost by much.

The ETH3D dataset (Schonberger and Frahm, 2016) com-
prises of of 25 high-resolution multi-view indoor and outdoor
scenes (including the training and test data) with images, keypo-
ints, LiDAR depth, and millimeter-accurate groundtruth poses.
Because GLOMAP fails to solve the scene exhibition hall
(Pan et al., 2024), we use the other 24 scenes for validation.
COLMAP is used to extract and match the features, while the
relative rotations and translations are computed by PoseLib
(Larsson and contributors, 2020). We set the integral interval
to be τ = 10c, according to the practical implementation of
the adaptive robust kernel. For all evaluations, we report the
area under the recall curve (AUC) scores calculated from the
camera rotation and position error after globally aligning with
the ground truth using a robust RANSAC scheme (Schonberger
and Frahm, 2016).

4.1 Evaluation of Rotation Averaging

The results for the different robust functions are listed in
Table 1. Notably, Geman-McClure loss has been demonstrated
to perform well in RA (Chatterjee and Govindu, 2018). It
has better accuracy than Huber loss and achieves acceptable
accuracy. Nonetheless, the adaptive kernel outperforms it in
most scenes. In particular, the adaptive kernel achieves the
highest AUC scores in scenes with more outliers or complex
structures, such as botanical garden, statue, and terrains. The
new kernel also achieves better performance in simpler scenes,
where all kernels perform well (c.f., lounge), suggesting strong
adaptability to different residual distributions. This confirms
that learning the shape parameter from the residuals leads to
better robustness without sacrificing inlier sensitivity. Not-
ably, under the strictest threshold (AUC@1o), the adaptive ker-
nel achieves the highest average score (46.72), compared to

Geman-McClure (45.10) and Huber (34.77). However, the per-
formance drops in scenes like office, suggesting that the op-
timization may still fall into local minima, especially in cases
with fewer constraints or very ambiguous geometry. Even there,
the adaptive kernel can still achieve better performance than the
other two kernels.

Fig. 3 features the boxplots of the rotation errors of the six
scenes with the most images. The adaptive kernel has the smal-
lest median error in the first, third, and sixth boxplots and smal-
lest first quartile (Q1) in all scenes except the fourth boxplot,
which indicates that the adaptive kernel can provide more ac-
curate rotation estimation. Interestingly, for the living room
dataset (fourth boxplot)—where feature tracks are reliable and
outliers are rare—the adaptive kernel’s conservative weighting
slightly increases Q1 and Q3, but still achieves the lowest max-
imum error, indicating a safety margin against rare residual
spikes. Overall, Fig. 3 confirms that the adaptive kernel en-
hances robustness in both structured outdoor and cluttered in-
door environments, especially when traditional fixed-parameter
losses suffer from degraded performance due to residual hetero-
geneity.

Figure 3. Rotation errors of six scenes with most images.

To demonstrate that the shape parameter is learned from the re-
siduals in MA, we plot the iteration process of the shape para-
meter in the scene living room in Fig. 4 as an example. The
shape parameter converges to a stable value after ten iterations,
which is consistent with the distribution of residuals. The ad-
aptive kernel can automatically adjust the shape parameter to fit
the residuals, which is more efficient than manually tuning the
parameters.

4.2 Evaluation of Global Positioning

Table 2 reports the global positioning AUC under three distance
thresholds: 0.1m, 0.5m, and 1.0m. The adaptive kernel im-
proves positioning across most scenes and all thresholds. The
improvement is particularly significant at the stricter threshold
(AUC@0.1m), where the average score increases to 24.53 from
21.27 (Geman-McClure) and 19.91 (Huber). This suggests
that the adaptive kernel is more effective at rejecting outliers
in global positioning. In scenes such as office, relief 2, and
terrace 2, the adaptive kernel yields notable gains. However,
the performance is comparable in simpler or well-conditioned
scenes like botanical garden or observatory, indicating that the
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dataset AUC@1o AUC@3o AUC@5o

Geman-McClure Huber Adapt. Ker. Geman-McClure Huber Adapt. Ker. Geman-McClure Huber Adapt. Ker.

botanical garden 41.46 39.64 43.41 49.47 48.79 50.09 51.02 50.61 51.39
boulders 48.28 39.19 46.98 70.56 65.74 68.96 77.41 75.45 75.36
bridge 36.47 24.78 38.10 71.01 57.28 71.77 79.76 71.45 80.32
courtyard 36.23 20.69 38.27 58.65 50.01 58.77 66.01 62.58 64.95
delivery area 50.58 18.57 51.94 69.26 41.97 69.56 75.18 56.72 75.80
door 13.24 14.86 13.24 42.62 44.31 42.24 64.93 66.52 64.70
electro 43.98 28.75 44.31 65.25 57.02 65.28 72.04 66.81 72.14
facade 58.24 51.11 66.07 71.84 68.29 74.96 77.84 74.72 80.12
kicker 40.35 27.03 39.11 62.73 57.12 62.16 68.61 65.24 69.53
lecture room 42.58 34.90 42.46 60.49 57.86 61.61 69.19 68.04 69.02
living room 63.87 61.27 63.71 84.47 84.14 84.83 89.50 89.91 89.67
lounge 64.51 46.49 69.90 77.06 70.37 78.86 87.97 82.06 89.23
meadow 14.11 5.78 14.11 18.04 9.90 18.04 18.82 15.42 18.82
observatory 84.07 81.02 85.18 92.22 91.21 92.59 93.85 93.24 94.07
office 49.02 51.57 48.59 68.81 69.03 68.11 73.59 73.73 73.17
old computer 39.65 20.22 46.26 58.16 39.48 60.44 63.13 51.78 64.55
pipes 38.52 34.61 39.00 66.58 64.84 66.61 76.12 75.35 75.86
playground 73.64 69.88 73.36 91.00 89.50 90.90 94.60 93.70 94.54
relief 48.49 41.25 49.12 74.72 70.21 75.88 82.44 78.58 82.95
relief 2 54.58 26.24 56.97 78.63 58.62 79.51 84.60 70.19 85.12
statue 27.88 23.01 29.57 61.06 55.88 61.00 69.36 66.26 69.33
terrace 32.47 18.29 34.48 58.46 50.48 58.94 68.53 65.26 68.32
terrace 2 69.74 47.16 71.34 79.25 67.09 79.99 83.75 75.48 84.42
terrains 10.42 8.11 15.86 42.42 25.54 48.57 57.32 40.89 63.66

Average 45.10 34.77 46.72 65.53 58.11 66.24 72.73 67.92 73.21

Table 1. Comparison of RA errors under 1o, 3o, and 5o thresholds using different robust kernels.

Figure 4. Iteration process of shape parameter α in the scene
living room.

benefit is most prominent in challenging cases. Fig. 5 shows
the position error distributions across six scenes with most im-
ages. The adaptive kernel nearly consistently achieves lower or
more concentrated errors compared to the fixed robust losses.
In the first, second, and third boxplots, the adaptive kernel has
both lower Q1 and medians, indicating improved accuracy and
consistency. In the fourth and fifth boxplots, it has narrow in-
terquartile. It can be summarized that the robust kernel can pro-
duce smaller medians in difficult scene and narrow interquart-
ile in easy scenes, which suggests the kernel’s effectiveness in
rejecting poor constraints that typically affect global position-
ing in reconstructions. To demonstrate that the shape para-
meter is also learned from the residuals in global positioning,
we plot the iteration process of the shape parameter in the scene
old computer in Fig. 6. In terms of a practical implementation,
we set the lower bound of the shape parameter αmin = −20 as
it does not have much difference with α = −∞ for large resid-
uals. So the parameter doesn’t converge after 5 iterations and
just reaches the lower bound. The shape parameter converges
to a stable value after 17 iterations, which is consistent with

Figure 5. Position errors of six scenes with most images.

the distribution of residuals. The adaptive kernel can automat-
ically adjust the shape parameter to fit the residuals, which is
more efficient than manually tuning the parameters. Note that
the IRLS is used in RA and Ceres is used in global positioning,
so the iteration process is obviously different from Fig. 4.

5. CONCLUSIONS

This paper introduced enhanced RA and global positioning
forms by incorporating an adaptive robust kernel into the MA
framework. The adaptive kernel adjusts its shape parameter
based on the residual distribution, enabling it to down-weight
outliers more effectively than fixed-parameter loss functions.

The proposed method was integrated into the GLOMAP
pipeline and evaluated on the ETH3D dataset. Quantitative res-
ults demonstrate consistent improvements over standard robust
kernels such as Huber and Geman-McClure, particularly under
stricter angular and positional error thresholds. The adaptive
kernel achieves higher average AUC scores in both rotation av-
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dataset AUC@0.1m AUC@0.5m AUC@1.0m
Geman-McClure Huber Adapt. Ker. Geman-McClure Huber Adapt. Ker. Geman-McClure Huber Adapt. Ker.

botanical garden 32.56 32.65 32.80 48.39 48.38 48.51 50.86 50.86 50.92
boulders 5.93 6.67 6.34 47.17 44.96 48.49 62.05 60.94 62.71
bridge 1.68 5.76 4.35 12.38 19.82 21.43 20.41 26.42 28.39
courtyard 3.64 3.39 5.15 29.82 28.01 35.64 43.73 38.59 50.05
delivery area 14.06 2.18 12.87 51.03 26.03 54.30 60.74 48.19 62.38
door 0.00 0.00 0.00 18.31 24.62 17.85 37.64 41.32 37.35
electro 12.12 0.00 8.14 42.03 33.35 40.91 54.56 49.86 53.68
facade 33.32 15.24 33.56 62.50 54.12 62.62 70.09 65.33 70.14
kicker 20.52 14.87 21.91 53.07 51.05 54.91 62.49 62.87 65.07
lecture room 11.94 6.34 11.67 51.79 44.21 50.27 64.84 64.15 64.16
living room 61.40 56.20 47.83 86.41 84.99 82.56 90.13 89.42 88.20
lounge 21.25 36.09 23.09 68.55 72.03 68.74 75.94 77.68 76.04
meadow 4.12 0.00 0.00 16.43 8.99 14.71 21.55 17.55 20.69
observatory 66.08 66.45 66.92 90.25 90.33 90.42 93.27 93.31 93.36
office 0.00 17.41 24.03 36.73 61.57 63.64 59.61 72.86 74.13
old computer 6.15 3.12 6.83 45.54 45.18 46.75 55.18 55.00 55.78
pipes 34.04 35.73 37.64 76.56 77.58 78.99 88.28 88.79 89.49
playground 46.79 49.33 39.79 87.33 87.90 83.62 93.67 93.95 92.09
relief 23.29 10.24 20.69 67.47 59.55 66.25 78.37 74.07 77.87
relief 2 49.04 40.68 51.77 69.04 66.62 69.45 71.61 70.40 71.82
statue 49.47 56.74 49.39 75.82 76.80 75.79 78.82 79.31 78.81
terrace 11.61 12.96 11.21 53.84 50.66 52.46 65.29 62.32 64.85
terrace 2 0.00 3.89 71.21 34.70 39.48 75.78 60.97 64.15 76.35
terrains 1.55 1.94 1.58 15.03 15.55 14.59 24.95 25.33 25.27

average 21.27 19.91 24.53 51.67 50.49 54.95 61.88 61.36 63.73

Table 2. Comparison of global positioning errors under 0.1m, 0.5m, and 1.0m thresholds using different robust kernels.

Figure 6. Iteration process of shape parameter α in the scene
old computer.

eraging and global positioning tasks, indicating improved ro-
bustness and accuracy.

These findings confirm the potential of adaptive robust kernels
in challenging multi-view reconstruction scenarios. Notably, in
this paper, the scale parameter is fixed according to the meas-
urement noise. However, the noise level may not always be
known in practice. So, our aim in future work is to explore how
to make the scale parameter adaptive. Our plan is also to in-
vestigate the potential of adaptive kernels in other works, such
as deep learning-based SfM, to further enhance robustness and
accuracy in large-scale 3D reconstruction.
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