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Abstract

In electrified railways, accurately measuring geometric parameters of pre-embedded tunnel channels is crucial for ensuring the
installation precision and operational stability of the railway overhead contact network system. However, traditional manual meas-
urement methods face challenges such as complex construction environments, stringent precision demands, and limited technical
capabilities, resulting in inefficiency, significant safety risks, and poor repeatability. To address these issues, this paper introduces
a novel framework based on total station point clouds. The framework comprises three key modules: point cloud preprocessing,
channel extraction, and geometric parameter measurement. During preprocessing, point clouds are aligned using principal compon-
ent analysis (PCA), and interference points are removed to enhance data quality. For channel extraction, an Otsu-based curvature
threshold is first applied to preliminarily identify channel point clouds. Subsequently, a refined extraction process combining statist-
ical denoising and density-based clustering is employed to isolate the channel point clouds with greater precision. In terms of geo-
metric parameter measurement, an arc-based method is utilized for length measurement, while a generalized Gaussian distribution
(GGD)-based approach is adopted for depth estimation. Experimental results demonstrate that the proposed method significantly
improves channel extraction performance, achieving an F1-score improvement of up to 24.8%. Furthermore, the framework enables
millimeter-level depth estimation with a mean absolute error of 1.90 mm.

1. Introduction

In the construction of tunnels for electrified railways, pre-
embedded channels are an important facility in the catenary
engineering. They are used to fix the catenary suspension
columns, wire supports, and other equipment. These pre-
embedded channels are usually constructed synchronously dur-
ing the construction of the tunnel’s secondary lining. However,
due to various factors in the construction process, defects may
occur in them, which in turn will affect the subsequent con-
struction. It is a significant challenge to ensure the precision
and quality of these pre-embedded channel systems due to the
intricate tunnel environment and stringent construction require-
ments.

Conventionally, the method of manual measurement with the
help of trolleys is the most widely used one. This requires per-
sonnel to undertake work at elevated heights, which has the
disadvantages of low efficiency and high risk. With the de-
velopment of computer vision, methods based on image pro-
cessing technology have largely addressed the issue of high
risk and have improved efficiency and accuracy to a certain
extent (Archana and Jeevaraj, 2024). However, they are still
limited by the lack of comprehensive spatial information and
perform poorly in complex tunnel environments (Feng et al.,
2021).

With the extensive utilization of total stations in the field of ar-
chitecture, this paper proposes a novel framework. Its promin-
ent characteristic is the ability to automatically extract the chan-
nel point clouds from the entire tunnel point cloud and accur-
ately measure geometric parameters such as length and depth.
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The framework includes three crucial modules: Point Clouds
Preprocessing, Channel Extraction, and Geometric Parameters
Measurement. This proposed framework exhibits outstanding
performance in both the extraction of channels and the measure-
ment of geometric parameters. The contributions of this study
are outlined as follows:

• We introduce an integrated curvature analysis and Otsu-
based threshold selection technique for channel extraction.

• The method encompassing statistical denoising and
density-based clustering is applied to the point cloud to
optimize the extraction effect.

• Employing the generalized Gaussian distribution yields re-
liable depth estimation outcomes in intricate and challen-
ging complex environments.

• Experimental findings convincingly illustrate that the al-
gorithm put forward in this study exhibits outstanding per-
formance in both the extraction of channels and the estim-
ation of geometric parameters.

2. Related Work

In recent years, point clouds have been extensively utilized
in tasks encompassing localization (Li et al., 2023) (Li et al.,
2024b), detection (Feng et al., 2021) (Feng et al., 2024), and
reconstruction (Tang and Wang, 2024) (Li et al., 2024a) across
a wide array of fields, and substantial accomplishments have
been achieved. Additionally, with the continuous emergence of
the demands for automation and intelligence in the construction
of electrified railways, many studies have initiated the attempt
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Figure 1. Workflow of the proposed method, consisting of three modules: Point Clouds Preprocessing, Channel Extraction, and
Geometric Parameters Measurement.

to apply point clouds to detect railway tunnels. These studies
can be broadly categorized into three main approaches.

The first category focuses on methods that attempt to obtain
depth information from 2D images for 3D modeling. For in-
stance, Lee et al. (2015) introduced a novel 3D model-based
depth estimation method, which can effectively generate high-
quality depth information for rigid objects during 2D to 3D ste-
reoscopic conversion. However, such methods encounter signi-
ficant challenges in practical applications. The generalization
ability of the models often falls short, and computational effi-
ciency remains a major issue, limiting their widespread use.

The second group of methods involves dimensionality reduc-
tion of 3D data. A cylinder fitting method (Duan et al.,
2021) was proposed for high-density incomplete cylindrical
point cloud data, generating a 2-D unwrapped depth map to re-
construct shield tunnel lining. Liu et al. (2022) developed a
ResNet-based model using MLS point cloud images to detect
water leakages in subway tunnels. Cui et al. (2024) unfolded
3D point clouds into 2.5D to obtain images and then used deep
learning semantic segmentation networks designed for images
to identify tunnel channels. While these dimensionality reduc-
tion techniques simplify point cloud processing, they inevitably
cause the loss of depth information. This makes it difficult to
accurately estimate the depth of channels, which is crucial for
railway tunnel construction and maintenance.

The third category consists of methods that directly process
point clouds. Huynh et al. (2021) utilized sparse point cloud
data for depth estimation. SPCNet (Ji et al., 2023), a semi-
supervised learning-based point cloud network, was designed
for the segmentation of 3D tunnel scenes. It leveraged un-
labeled point clouds to enhance segmentation performance
while reducing the labeling burden. Nevertheless, these direct-
processing methods have not fully exploited the spatial coordin-
ates and feature information inherent in point clouds, leaving
room for improvement in terms of accuracy and efficiency.

Although notable advancements have been achieved in tun-
nel crack detection and channel point cloud collection, current
methodologies still struggle to integrally extract and precisely

estimate the depth of pre-embedded channels. Hence, the de-
velopment of an approach capable of maximally leveraging 3D
point cloud data holds immense significance for enhancing the
accuracy and efficiency of railway tunnel channel inspection.

3. Method

This paper presents an extraction and geometric parameters
measurement method for the pre-embedded channels in elec-
trified railway tunnels based on point clouds. The workflow of
the proposed method is illustrated in Figure 1.

3.1 Point Clouds Preprocessing

3.1.1 Orientation Adjustment: Due to the different install-
ation positions of the total station, the orientation of the original
point cloud is misaligned with the world coordinate system
(WCS). Meanwhile, the direction of the pre-embedded chan-
nels is closely related to the direction of tunnel progression, and
it is usually perpendicular. Therefore, adjusting the direction of
the tunnel point cloud is extremely necessary. This adjustment
ensures that the direction of tunnel progression is parallel to
the x-axis of the WCS. To determine the tunnel’s progression
direction, we apply Principal Component Analysis (Abdi and
Williams, 2010).

Specifically, we select a small portion of the point cloud from
the tunnel roof according to the z-coordinates of the points, and
apply PCA to it. The eigenvector with the largest eigenvalue
is identified as the principal direction, representing the tunnel’s
progression. Then, we calculate the angle between this direc-
tion and the WCS x-axis, and rotate the original point cloud to
align it parallel to the x-axis. This alignment greatly facilitates
subsequent processing and geometric parameters measurement.
Based on prior knowledge, the effective scanning distance of
the total station is considerably greater than the distance from
the region of interest to the total station. To reduce the time and
space required for subsequent processing, we use the scanner
position as the center and set a bounding box in the xoy plane.
Then, point cloud within the x-axis interval [−x, x] are retained.
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3.1.2 Interference Removal: Owing to the characteristics
of the panoramic scanner, the scanner is capable of capturing
all the spatial information within its scanning range, including
the tunnel wall where the channels are situated and the objects
inside the tunnel, such as people, vehicles, ventilation duct, and
other facilities, as shown in Figure 2 (a). These interferences
inside the tunnel will significantly affect the accuracy of chan-
nel extraction. Consequently, this paper proposes a rapid and
efficient point cloud preprocessing method to remove the inter-
ferences inside the tunnel.

For some interferences with relatively low elevation, such as
the pavement, people, vehicles, etc., a height threshold H1 is
established to filter out points whose z-coordinates are lower
than H1. In this way, these interferences can be effectively re-
moved, resulting in a point cloud P = {p1, p2, · · · , pn}, and
pi = (xi, yi, zi), where n denotes the total number of points.

For the ventilation duct, it is usually a cylindrical structure
affixed to the tunnel wall at a high elevation. Overall, the
point cloud P approximates a semi-cylindrical surface. Con-
sequently, a method of filtering the point cloud by fitting a cyl-
indrical surface is proposed. Specifically, we retain the part of
the point cloud positioned at the top of the tunnel, whose z-
coordinates are usually greater than H2. In this way, the influ-
ence of the ventilation duct on the fitting effect can be avoided.
Then, we project this part of the point cloud onto the yoz plane
to obtain a set of two-dimensional scattered points distributed
in an arc shape, and use the least squares method to determine
the radius r and the center coordinates (yc, zc) of the optimal
fitting circle for these points. Since the extension direction of
the tunnel point cloud P is consistent with the x-axis direction,
r is also the radius of the cylindrical surface, and the straight
line passing through the point (0, yc, zc) and parallel to the x-
axis is the axis l of the cylindrical surface, and its equation is as
follows:

{
y = yc
z = zc

. (1)

Meanwhile, for ∀pi ∈ P , pi = (xi, yi, zi), i ∈ {1, 2, . . . , n},
calculate the Euclidean distance di from pi to the axis line l of
the cylindrical surface and ∆i as follows:

di =
√

(yi − yc)2 + (zi − zc)2, (2)

∆i = |di − r|. (3)

Due to the characteristic of the laser propagating in a straight
line, one side of a ventilation duct is captured in the point cloud,
and it will block the adjacent tunnel wall, creating a gap. Based
on this gap, we establish a tolerance value t, which determines
the maximum allowable deviation of the distance from point pi
to the cylindrical surface. As shown in Figure 2 (b), we retain
the points for which ∆i ≤ t, resulting in a refined tunnel point
cloud P ′ = {p′1, p′2, · · · , p′m}, where m is the number of points
in P ′.

3.2 Channel Extraction

The curvature is an important metric for characterizing the local
geometric features of each point in the point cloud. It reflects
the degree of surface variation at that point, namely the surface

Figure 2. Illustration of the removal of interferences in the
tunnel. (a) The point cloud Segment of the tunnel containing a
vehicle and a ventilation duct. (b) Removal of the ventilation

duct through the circle fitting.

Figure 3. Illustration of the differences in shape between
channels and the tunnel wall.

curvature degree. The tunnel point cloud shows apparent differ-
ences in shape between channels and the tunnel wall. As shown
in Figure 3, areas of channels exhibit noticeable protrusions,
whereas areas of the tunnel wall without channels are relatively
smooth. By leveraging the prior knowledge of channel design
specifications, analyzing the characteristics of curvature can aid
in the extraction of the channels.

This paper proposes a novel method for extracting channel point
clouds. Channel point clouds are extracted by the selection of
the curvature threshold, which is based on the Otsu algorithm.
Moreover, multi-region extraction in complex scenarios is op-
timized via a statistical-based denoising algorithm (Carrilho et
al., 2018) and a density-based clustering algorithm (Han et al.,
2020).

3.2.1 Calculating Curvatures: Since the acquired point
cloud is extremely dense, voxel downsampling is carried out on
the point cloud to balance computational efficiency and the pre-
servation of geometric features. Specifically, the space where
the point cloud P ′ lies is divided into cubes (voxels) with a size
of V , and the voxel to which each point belongs is ascertained
according to its coordinates. For each non-empty voxel, the
centroid of the voxel is selected as its representative point to
form a new point cloud P ′′. Through this voxel downsampling
approach, the data volume is substantially decreased. Mean-
while, the prevention of local feature loss is ensured.

For the calculation of curvature, we employ a method based
on k-nearest neighbor (KNN) and covariance matrix decom-
position. Specifically, for each point p′′i in the point cloud
P ′′, we utilize the KNN to identify its k nearest neighbor
points {p′′i1 , p

′′
i2 , · · · , p

′′
ik
}. Then, we normalize these points
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to obtain the neighborhood point coordinate matrix Xi =
{x1,x2, · · · ,xk}, where xj = p′′ij − p′′i , Calculating the co-
variance matrix Ci of Xi as follows:

Ci =
1

k − 1

k∑
j=1

(xj − x̄)(xj − x̄)T , (4)

where x̄ is the mean of the neighborhood points. However,
since the coordinates have been normalized, x̄ ≈ 0, it is simpli-
fied to

Ci ≈
1

k

k∑
j=1

xjx
T
j . (5)

Ci is a symmetric matrix, which characterizes the distribu-
tion characteristics of the neighborhood points in the three-
dimensional space. The eigenvalues λ1, λ2, λ3 can be derived
by performing the eigenvalue decomposition on Ci and the
curvatures δi can be calculated as follows:

Ci = V · Λ · V T , (6)

δi =
λ1

λ1 + λ2 + λ3 + ϵ
, (7)

where Λ = diag(λ1, λ2, λ3), λ1 ≤ λ2 ≤ λ3 and ϵ is added to
prevent division-by-zero errors.

3.2.2 Otsu-based Curvature Threshold Selection: To
achieve the separation of the channel points and the tunnel wall
points, we employed the Otsu algorithm. First, we excluded
those invalid points whose curvature is less than or equal to 0,
and normalized the valid points to the range of [0, 1] as follows:

Cvalid = {δi | δi > 0,∀p′′i ∈ P ′′}, (8)

δ′i =
δi −min(Cvalid)

max(Cvalid)−min(Cvalid)
. (9)

Then, the Otsu algorithm was utilized to determine the
threshold T ∗ that maximizes the between-class variance, and
T ∗ was mapped back to the original curvature range through
Equation 10 to obtain the threshold value, denoted as T . Fi-
nally, based on the T , the point cloud P ′′ was divided into
the channel point cloud with high curvature and the tunnel wall
point cloud with low curvature. The formulas are:

T = T ∗ · (max(Cvalid)−min(Cvalid)) + min(Cvalid), (10)

Pchannels = {p′′i | δi > T},
Pwall = {p′′i | δi ≤ T}.

(11)

3.2.3 Denoising and Clustering: The method based on
Otsu’s curvature threshold can retain the channel points relat-
ively well. However, due to the complex situations at the con-
struction site, there might exist cavities or other additional facil-
ities on the tunnel wall. The points in these areas may possess

Figure 4. Illustration of the channel extraction. (a) The point
cloud segment of interest. (b) The channel extraction results of
the Otsu-based curvature threshold method. The red rectangular
area indicates the false positive point. (c) The result of channel

clustering. The blue points and the green points signify two
channels, respectively.

curvature characteristics similar to those of the channel points,
and thus cannot be removed relying solely on the curvature.
Moreover, the distribution of these points is quite random. If
they are not removed, they will directly affect the results of sub-
sequent geometric parameters measurement.

The core idea of the statistical-based denoising algorithm (Car-
rilho et al., 2018) is to process data based on local statistical
characteristics, to remove noise or extract useful information.
This approach mainly relies on the relationships between each
point and its neighboring points. Specifically, for each point pi
in the point cloud, calculate its average distance to the nearest
nb neighbors points:

di =
1

k

k∑
j=1

∥pi − qj∥2. (12)

Subsequently, under the assumption that the neighborhood dis-
tances of all points adhere to a Gaussian distribution, compute
the global mean value µ and the standard deviation σ.

µ =
1

N

N∑
i=1

di, (13)

σ =

√√√√ 1

N − 1

N∑
i=1

(di − µ)2, (14)

τ = µ+ std ratio× σ, (15)

where std ratio is an adjustable parameter. Outlier points are
identified by setting a specific threshold value τ . Points that
meet the condition di ≤ τ are retained, thereby yielding the
filtered point cloud of the channels donoted as P ′

channels.

Since the point cloud of the channels may contain multiple
channels, it is necessary to divide them into point clouds that
contain only a single channel to ensure the accuracy of the
measurement. To achieve this objective, we employed the DB-
SCAN algorithm to conduct a clustering analysis on the point
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cloud of multiple channels. DBSCAN, namely Density-Based
Spatial Clustering of Applications with Noise, is a classical
density-based clustering algorithm. It possesses the remark-
able capability to detect clusters of diverse and arbitrary shapes
without the need for prior determination of the exact number
of clusters. Moreover, it is proficient in discerning noise points
within the dataset.

DBSCAN involves four key concepts: Core Point, Dir-
ectly Density-Reachable, Density-Reachable, and Density-
Connected.

• Core Point: For a given point p, if there are at least
MinPts points (including itself) within its neighborhood
with a radius of ε, then this point is called a core point.

Nε(p) = {q ∈ D|dist(p, q) ≤ ε}, (16)

where Nε(p) represents the set of all points within the ε-
neighborhood of the point p, and dist(p, q) denotes the
distance separating the two points p and q.

• Directly Density-Reachable: A point q is considered to be
directly density-reachable from a point p if and only if p is
a core point and q lies within the ε-neighborhood of p.

• Density-Reachable: A point q is considered to be density-
reachable from a point p if there exists a sequence of points
p1, p2, . . . , pn, where p1 = p, pn = q, and for all i < n,
the point pi+1 is directly density-reachable from pi.

• Density-Connected: Two points p and q are considered to
be density-connected if there exists a point o such that both
p and q are density-reachable from o.

Specifically, first, initialize all the points within the point cloud
P ′
channels as unvisited points. Then, determine whether a point

is a core point. If a point p′channels does not satisfy the condi-
tion |Nϵ(p

′
channels)| ≥ MinPts, mark it as a noise point. Oth-

erwise, create a sub-point cloud, and add the point p′channels
and all the points that are directly density-reachable within
its ϵ-neighborhood to this sub-point cloud P ′

single. For each
newly added point, repeat the above steps until there are no
further new points that can be incorporated. In this way, a sub-
point cloud P ′

single for a single channel can be obtained. Sub-
sequently, continue to process the remaining unvisited points
until all points have been visited and all sub-point clouds have
been completely constructed. As shown in Figure 4, through the
DBSCAN algorithm, a series of sub-point clouds for a single
channel will be obtained.

3.3 Geometric Parameters Measurement

3.3.1 Arc-based Length Estimation: Since the point cloud
of the channel is distributed in an arc shape, this paper adopts
an arc-based method to measure the length of the channel. Spe-
cifically, the point with the minimum y-coordinate and the point
with the maximum y-coordinate in P ′

single are found, and the
chord length L is calculated as follows:

L =
√

(ymin − ymax)2 + (zmin − zmax)2 (17)

Then, according to and the radius r obtained in Section 3.1.2 ,
the arc length C is calculated as follows:

C = 2r · arcsin
(

L

2r

)
(18)

Parameter Value
Height threshold (H1) 3.5m
Height threshold (H2) 7.0m
Tolerance (t) 0.2m
Voxel size (V ) 0.015m
Neighbor points (k) 50
Small offset (ϵ) 1 × 10−8

Statistical filtering (nb neighbors) 15
Adjustable parameter (std ratio) 1.5
Least points (MinPts) 100
Neighbor radius (ε) 0.05m
Segmentation angle (θseg) 10◦

Step angle (θstp) 3◦

Shape parameter (β) 2

Table 1. Geometric Parameter Measuring.

3.3.2 GGD-based Depth Estimation: To rapidly obtain the
cross-section of the channel, a radian-based method is used to
segment the channel point cloud. Specifically, based on the cen-
ter coordinates (yc, zc) obtained in Section 3.1.2, the channel
point cloud P ′

single is segmented according to the preset seg-
mentation angle θseg and step angle θstp, thereby obtaining
multiple sub-point clouds P ′

single
1, P ′

single
2, . . . , P ′

single
s, s is

determined by the length of the channel and θstp.

To achieve precise estimation of the channel depth, a depth es-
timation algorithm based on the Generalized Gaussian Distri-
bution is proposed. Specifically, for a P ′

single
s, it is projected

onto the cross-section plane to achieve dimensionality reduc-
tion. As a result, the two-dimensional scatter points of the pro-
jected channel are obtained and denoted as Q. Then, an al-
gorithm utilizing the GGD (Novey et al., 2010) is employed to
fit the curve of these scatter points. The depth of the channel is
calculated based on the results of this curve fitting. This method
significantly enhances the accuracy and reliability of channel
depth estimation.

For each qi ∈ Q, qi = (xi, zi), the formulation of GGD is given
by:

f(qi, α, β, µ) =
β

2αΓ
(

1
β

)e(∣∣∣ qi−µ
α

∣∣∣)β

, (19)

where µ is the mean coordinates of Q, α represents the scale
parameter analogous to the standard deviation, β represents the
shape parameter influencing the form of the distribution, and
Γ denotes the gamma function involved in the normalization
process of the distribution.

4. Experiment and analysis

4.1 Data Description

In this study, we utilized the Topcon GTL-1200 total station to
acquire data from the electrified railway tunnel that was under
construction for our experiments. The laser scanning unit of
the Topcon GTL-1200 has a maximum measurable range of ap-
proximately 70 meters. It is capable of emitting 200,000 points
per second and attaining an accuracy of up to 2 millimeters. Our
dataset encompasses 36 railway tunnels. Each tunnel’s point
cloud data has dimensions of roughly 110 meters in length, 10
meters in width, and 10 meters in height. On average, each tun-
nel consists of approximately 16 million points, with the min-
imum distance between adjacent points being 0.2 millimeters.

For this experiment, we collected 36 tunnel point clouds and
randomly selected 15 tunnel point clouds with 30 channels.
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T Fixed T Otsu-based T Otsu-based T + Denoising & Clustering
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1 82.02 70.56 75.86 95.46 83.74 89.22 97.90 86.13 91.64
2 60.57 99.81 75.39 87.33 85.75 86.53 90.99 89.02 89.99
3 85.91 60.87 71.25 82.93 88.29 85.53 86.56 91.74 89.07
4 56.13 99.92 71.88 75.38 89.16 81.69 80.00 91.25 85.26
5 59.72 99.94 74.76 77.82 98.72 87.03 81.02 93.06 86.63
6 96.46 75.05 84.42 78.87 89.36 83.79 83.27 94.88 88.70
7 97.18 72.48 83.03 79.49 79.28 79.38 75.47 92.17 82.99
8 88.23 53.64 66.72 84.29 94.67 89.18 89.11 88.60 88.85
9 87.84 62.21 72.84 86.64 96.50 91.30 88.36 90.70 89.51
10 83.01 77.74 80.29 88.14 82.44 85.19 91.31 85.46 88.29
11 88.41 72.61 79.73 91.33 91.21 91.27 93.64 90.20 91.89
12 92.64 73.00 81.66 93.74 91.76 92.74 95.16 91.14 93.11
13 89.68 67.33 76.91 88.53 87.82 88.17 89.92 97.26 93.44
14 87.09 77.19 81.84 86.61 97.73 91.83 87.20 97.16 91.91
15 96.14 50.68 66.37 93.41 85.50 89.28 92.30 90.05 91.17

Table 2. Comparison of the channel extraction results (%) of different methods.

Figure 5. Illustration of the comparison of the channel extraction results of different methods. (a), (b), and (c) show the comparisons
of different methods regarding precision, recall, and F1-score, respectively. (d) shows the comparison of the channel extraction results

in Tunnel No. 13. (1) The ground truth. (2) The method is based on a fixed curvature threshold. (3) The Otsu-based curvature
threshold method. (4) The method that integrates the Otsu-based curvature threshold with denoising and clustering.

These tunnels were manually annotated as the ground truth of
the Channels extraction. Due to the difficulties in manually
measuring geometric parameters at the construction site, for the
length, we used the design standard values of the channels as
the ground truth. For the depth, instead of conducting manual
measurements on-site, we used the manual measurement data
obtained from the 3D point cloud as the ground truth. This me-
ticulous and stringent approach guarantees both the precision
and the validity of our results.

4.2 Implementation

For this paper, our algorithms have been implemented in
PyCharm 2020.1 and run on a PC with Intel Core i7-1165G7 @
2.8GHz, 16GB RAM. The parameter setting is listed in Table 1.

4.3 Ablation Experiments

Regarding the extraction of channels, we carried out three dis-
tinct experiments: channel extraction utilizing a fixed curvature
threshold, employing the Otsu-based curvature threshold, and
applying the integration of the Otsu-based curvature threshold
with denoising and clustering. As illustrated in Table 2, we
compared the precision, recall, and F1-score to showcase the
contribution of our designed architectures to the effectiveness
of channel extraction.

As shown in Figure 5, for the method relying on the fixed
threshold, there are two extreme scenarios. In Tunnel No. 4,
the method exhibits a recall of 99.92% but a precision of only
56.13%, where the extracted channel point cloud contains sub-
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Channel Length Depth
Length GT Ours diff1 Depth GT V diff2 Ours P1 Ours P2 Ours P3 Ours Avg diff3

1-1 2000.00 1989.39 10.61 31.16 35.73 4.57 31.57 34.77 32.60 32.98 1.82
1-2 2000.00 1980.30 19.70 31.72 33.35 1.63 32.82 31.54 32.29 32.22 0.50
2-1 2000.00 1977.88 22.12 28.91 33.84 4.93 29.97 31.98 30.76 30.90 1.99
2-2 2000.00 1968.01 31.99 28.80 29.49 0.69 28.14 32.69 28.20 29.68 0.88
3-1 2000.00 1977.59 22.41 26.72 35.75 9.03 28.65 25.40 26.04 26.70 0.02
3-2 2000.00 1970.12 29.88 27.70 33.84 6.14 28.39 30.98 26.37 28.58 0.88
4-1 2000.00 1979.28 20.72 28.03 31.57 3.54 30.77 31.77 29.61 30.72 2.69
4-2 2000.00 1965.37 34.63 27.99 29.49 1.50 30.15 30.85 26.68 29.23 1.24
5-1 2000.00 1987.21 12.79 29.29 36.23 6.94 29.75 25.69 26.68 27.37 1.92
5-2 2000.00 1962.84 37.16 27.93 34.37 6.44 30.79 25.89 27.94 28.21 0.28
6-1 2000.00 1965.18 34.82 30.69 27.51 3.18 32.76 34.28 37.47 34.84 4.15
6-2 2000.00 1972.44 27.56 31.08 26.82 4.26 32.55 29.90 29.27 30.57 0.51
7-1 2000.00 1963.22 36.78 29.28 42.03 12.75 30.90 39.16 35.04 35.03 5.75
7-2 2000.00 1963.15 36.85 28.98 27.51 1.47 32.81 33.15 36.18 34.05 5.07
8-1 2000.00 1990.45 9.55 29.48 34.66 5.18 32.76 30.14 29.32 30.74 1.26
8-2 2000.00 1973.40 26.60 28.81 32.32 3.51 31.78 29.52 28.89 30.06 1.25
9-1 2000.00 1962.41 37.59 30.08 29.67 0.41 28.53 30.93 29.36 29.61 0.47
9-2 2000.00 1975.11 24.89 28.89 22.06 6.83 27.62 28.80 26.79 27.74 1.15
10-1 2000.00 1962.11 37.89 28.50 40.24 11.74 29.65 31.84 29.16 30.22 1.72
10-2 2000.00 1974.93 25.07 27.03 34.42 7.39 28.61 30.19 28.52 29.11 2.08
11-1 3500.00 3503.58 3.58 28.00 41.36 13.36 32.22 35.37 32.91 33.50 5.50
11-2 3500.00 3515.79 15.79 27.35 36.40 9.05 33.82 31.85 27.67 31.11 3.76
12-1 3500.00 3514.11 14.11 29.30 36.05 6.75 30.58 33.08 33.00 32.22 2.92
12-2 3500.00 3507.48 7.48 28.15 35.99 7.84 28.66 32.34 31.91 30.97 2.82
13-1 3500.00 3503.40 3.40 27.76 21.54 6.22 27.28 27.00 27.90 27.39 0.37
13-2 3500.00 3504.98 4.98 27.66 29.97 2.31 29.29 27.80 27.04 28.04 0.38
14-1 3500.00 3503.82 3.82 26.13 29.97 3.84 28.20 27.54 27.91 27.88 1.75
14-2 3500.00 3498.71 1.29 28.29 33.81 5.52 31.48 28.26 27.96 29.23 0.94
15-1 2000.00 1962.42 37.58 27.54 35.91 8.37 29.52 30.65 27.71 29.29 1.75
15-2 2000.00 1958.52 41.48 29.56 22.14 7.42 32.66 28.54 31.15 30.78 1.22
Avg 22.44 28.69 32.47 5.76 30.30 1.90
S 12.60 5.14 3.32 2.19 1.54

Table 3. Experimental results of geometric parameters measurement. V : The depth measured by the RANSAC-based method (Wang
et al., 2023). diff1: The absolute difference of length Ours and Length GT. diff2: The absolute difference of depth V and Depth

GT. diff3: The absolute difference of depth Ours Avg and Depth GT.

Figure 6. Fitting results of channel segment point clouds:
method (Wang et al., 2023) (first row), our method (second row).

stantial noise points. In contrast, for Tunnel No. 7, the method
achieves a precision of 97.18% but a recall of only 72.48%,
with the structural gaps in the extracted point cloud. These res-
ults lead to lower F1-scores, revealing that a fixed curvature
threshold is incapable of adeptly dealing with diverse tunnel
point clouds. The Otsu-based curvature threshold mitigates
this issue, while the approach combining statistical denoising
and density-based clustering further enhances channel extrac-
tion performance, achieving an F1-score improvement of up to
24.8%.

4.4 Comparative Experiments

In terms of the measurement of geometric parameters, our
method yields accurate and consistent results as shown in
Table 3.

Regarding the length measurement, the maximum percentage

Figure 7. Illustration of the depth distributions of the
RANSAC-based method (Wang et al., 2023) and the GGD-based

method.

of absolute error between the measured length and the ground
truth is 2.074%, with an average of 22.44 mm and a standard
deviation of 12.60 mm. For depth measurement, as shown in
Figure 6, we employed the GGD-based method to select three
sub-point clouds from the point cloud of a single channel for
measurement, obtaining Ours P1, Ours P2, Ours P3, and
then calculated their average values Ours Avg. As shown in
Figure 7, the average values of depth measurements by our
method ranged from 26.70 mm to 35.03 mm, with a mean of
30.30 mm and a standard deviation of 2.19 mm. Compared
with the ground truth, the absolute errors ranged from 0.02 mm
to 5.75 mm, with an average of 1.90 mm and a standard devi-
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ation of 1.54 mm. In contrast, the depth measurement values
of a plane fitting algorithm using RANSAC (Wang et al., 2023)
ranged from 21.54 mm to 42.03 mm, with an average of 32.47
mm and a standard deviation of 5.14 mm. In addition, its abso-
lute errors range from 0.41 mm to 13.36 mm, and the average
and the standard deviation reach 5.76 mm and 3.32 mm, re-
spectively.

From the above experiments, it can be observed that our method
provides more accurate depth values. On the other hand, the
standard deviation of the depth obtained by our method is sig-
nificantly smaller than that of the method (Wang et al., 2023).
This indicates that our method yields more reliable and consist-
ent results, with smaller systematic error.

5. Conclusion

Pre-embedded channels play an extremely crucial role in elec-
trified railway tunnels. They are the key to the efficient in-
stallation and operation of the railway overhead contact sys-
tem. Measuring their geometric parameters is an essential task
before installing relevant facilities. Based on the point cloud
data collected from the total station, this paper proposes an
automated framework that enables the extraction and measure-
ment of the channels. Moreover, accurate and consistent results
verified by experiments have been achieved for both processes.
This framework provides an efficient and safe technology for
inspection tasks. Future work will focus on enhancing the ro-
bustness of existing algorithms. Additionally, according to the
emerging requirements of railway construction, supplementary
algorithms will be designed to enable the measurement of a
broader spectrum of geometric parameters.
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