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Abstract 

 

With the rapid development of artificial intelligence and autonomous driving technology, the demand for high-precision, high-

reliability and continuous positioning services has become increasingly obvious. However, in complex urban environments, GNSS 

signals are prone to the non-line-of-sight (NLOS) propagation effect, which leads to systematically large observation errors and then 

significantly reduces the navigation accuracy. To address this, we propose a tightly coupled LiDAR/IMU/GNSS navigation 

framework based on raw GNSS observations. Additionally, we incorporate LiDAR point cloud data to develop a NLOS satellite 

detection and correction module. This module constructs a 3D LiDAR point cloud map of the sensor’s surroundings and identifies 

NLOS signals by analysing the geometric relationships between the sensor, satellites, and the environmental map. Furthermore, 

reflection points from the surrounding environment are extracted and utilized for NLOS correction. The results of two groups of 

independent experiments show that the system positioning error after NLOS correction is reduced by 16.15%. Compared with the 

conventional integration system that adopts pseudorange difference information, the proposed framework achieves a 32.57% 

improvement in navigation accuracy under complex urban scenarios, demonstrating its effectiveness. 
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1. Introduction 

The rapid progress of technologies such as artificial intelligence 

and autonomous driving has led to a significant increase in the 

demand for high-precision navigation and positioning services. 

In the domains of autonomous driving and intelligent robotics, 

continuous and reliable position information is essential for 

critical tasks, including decision-making, control, and path 

planning (S. Kuutti et al., 2018; Vivacqua et al., 2017). 

Consequently, the development of a high-precision and highly 

robust navigation system is of paramount importance. 

 

As one of the most widely utilized navigation technologies, 

Inertial Navigation Systems (INS) can autonomously estimate a 

carrier's velocity, position, and attitude based solely on the 

output of an Inertial Measurement Unit (IMU). However, the 

inherent error accumulation in IMU measurements leads to a 

progressive degradation of navigation accuracy over time (Garg 

et al., 1978; Pinana-Diaz et al., 2011). Light Detection and 

Ranging (LiDAR), as a high-precision ranging sensor, enables 

both environmental perception and autonomous positioning. In 

complex outdoor environments, LiDAR provides stable 

distance measurements due to its strong anti-interference 

capability. Notably, LiDAR Odometry And Mapping (LOAM) 

methods (Zhang and Singh, 2014; Zhang and Singh, 2017), 

along with LeGO-LOAM (Shan and Englot, 2018), utilize 

IMU-derived data as a priori information for LiDAR frame-to-

frame matching, thereby improving accuracy. Nevertheless, 

error accumulation remains an unavoidable challenge in long-

range navigation tasks (Zhou, 2022). Global Navigation 

Satellite System (GNSS), a well-established absolute 

positioning technology, has been widely applied in aviation, 

marine navigation, and geological exploration, among other 

fields. Its primary advantages include extensive coverage and 

high positioning accuracy (Yang et al., 2011; Yang et al., 2019). 

However, in urban canyons, tunnels, and dense high-rise 

environments, GNSS signals are highly susceptible to occlusion 

and multipath effects, leading to significant positioning errors 

and reduced reliability in such complex settings. 

 

Although different types of sensors offer unique advantages, a 

single sensor alone is often insufficient to meet the positioning 

requirements in complex and dynamic environments. Multi-

sensor fusion, which leverages the strengths of each sensor 

while mitigating their inherent limitations, has proven to be an 

effective approach for achieving high-precision, robust, 

ubiquitous, and intelligent navigation and positioning in 

challenging scenarios. 

 

Existing fusion frameworks can be broadly categorized into two 

main methods: filter-based methods (Chiang et al., 2019; 

Chiang et al., 2020; Li et al., 2021; Nguyen-Ngoc et al., 2023; 

Wang et al., 2023) and factor graph-based methods (He et al., 

2023; Li et al., 2020; Liu et al., 2023). Among the filter-based 

methods, a representative example is FAST-LIO (Xu and Zhang, 

2021). This method employs iterative extended Kalman 

filtering (IEKF) to achieve tightly coupled between LiDAR 

points and IMU data, demonstrating exceptional robustness in 

high-speed motion, strong noise, and cluttered environments. 

However, the linearization errors inherent in the filtering 

framework can degrade long-term accuracy. In the factor graph-

based approaches, LIO-SAM utilizes IMU pre-integration to 

provide an initial estimate for LiDAR odometry (LO) 

optimization (Shan et al., 2020). This framework innovatively 

incorporates absolute GNSS observations as constraints to 

enhance positioning accuracy. A further improvement integrates 

visual information to achieve more precise real-time state 

estimation and map construction (Shan et al., 2021). However, 

the computational complexity of factor graph optimization 

(FGO) increases with the number of nodes, posing challenges to 

real-time performance. Additionally, in GNSS-denied 
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environments, these systems remain susceptible to cumulative 

errors. 

 

For GNSS Non-Line-Of-Sight (NLOS) correction, one of the 

most widely adopted approaches is 3D mapping-assisted 

(3DMA) GNSS positioning (Kbayer and Sahmoudi, 2018; 

Wang et al., 2013; Zhou, 2022). However, the effectiveness of 

this method is heavily reliant on both the accuracy of the 3D 

building model and the precision of the GNSS receiver’s initial 

position estimate. In addition to 3DMA-based approaches, 

fisheye camera-assisted methods have also been explored (Kato 

et al., 2016; Sánchez et al., 2016). While these methods offer 

potential improvements in NLOS detection, their performance 

is highly sensitive to variations in lighting conditions, leading to 

significant degradation in low-light environments or adverse 

weather conditions. 

 

Although significant progress has been made in the field of 

multi-source sensor fusion navigation, existing methods still 

need to be improved. In particular, there is a need to enhance 

sensor complementarity, measurement error suppression, and 

environmental adaptability to meet the demands for high-

precision and robust navigation and positioning. To address 

these challenges, this study proposes a lightweight and highly 

flexible LiDAR/IMU/GNSS tightly coupled navigation 

framework. Inspired by the work of Wen (Wen et al., 2022), the 

framework introduces an innovative LiDAR-assisted GNSS 

NLOS detection and correction module. By leveraging LiDAR 

point clouds to construct real-time environmental geometric 

constraints, the system accurately detects NLOS signals. An 

error compensation model is developed to correct the 

contaminated GNSS observations based on the detection result. 

The quality-optimized GNSS raw observations are then 

integrated into the navigation solver, providing reliable global 

constraints for the system, which significantly enhances 

navigation accuracy and robustness in complex environments. 

 

2. Methodology 

2.1 Problem Description 

The LiDAR/IMU/GNSS framework proposed in this study is 

implemented within the factor graph framework, as illustrated 

in Figure 1. The system's state vector can be expressed as 

follows: 

 
      T T T T Tx [q ,v ,p ,b ]         (1) 

 

where q denotes the attitude quaternion, v is the velocity 

vector, p is the position vector, and b is the bias of the IMU. 

 

Based on the principle of FGO, the carrier position estimation 

problem can be formulated as a maximum a posteriori (MAP) 

probability estimation, expressed as follows: 
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where 2

p p||r H X || is the a priori information,  k

k 1

b

B br z ,Xˆ


 

denotes the IMU measurement residuals, bΣ  denotes the IMU 

measurement covariance matrix, 
M

ekd  and M

pkd  denote the 

LiDAR point-to-line residuals and point-to-plane residuals in 

the local coordinate system of the k-th frame of LiDAR in Map 

frame (M-frame), eΣ and pΣ  denote the corresponding 

covariance matrices, respectively. s

DD,ρ,r,tr  denotes the residual 

of the pseudorange difference, and ρσ is the uncertainty of the 

pseudorange measurement, initially calculated based on the 

signal-to-noise ratio and elevation angle.  

 

Figure 1. Factor graph model of LiDAR/INS/GNSS tightly 

coupled system. 

 

2.2 LiDAR-Aided GNSS NLOS Satellite Detection  

In areas with dense buildings and tree cover, GNSS signals are 

often subject to NLOS propagation, leading to increased 

observation errors and a significant degradation in positioning 

accuracy. To mitigate the impact of NLOS on the performance 

of GNSS/LIO fusion systems, this study proposes a novel 

GNSS NLOS error correction method based on LiDAR point 

clouds.  

 

Specifically, point clouds accumulated from historical LiDAR 

scans form a three-dimensional map of the carrier's current 

environment, and the density of the LiDAR point clouds in the 

line-of-sight direction of the carrier and the satellite is then 

analysed to determine whether the satellite is obscured. For 

NLOS satellites, the possible reflection paths of the satellite in 

map are searched to correct for NLOS errors in GNSS 

pseudorange observations. 

 

The correction process is divided into three main steps: 

detecting NLOS satellites, identifying NLOS reflection points, 

and correcting the NLOS error, which is shown in Figure 2. 

First, to detect NLOS satellites, the system uses consecutive 

multi-frame LiDAR point clouds to construct a local 

environmental map. The history keyframe poses are obtained 

from the previous sliding window optimization, so a more 

accurate local map can be constructed. And a kd-tree data 

structure is employed for efficient storage and management.  

 

According to its azimuth angle r , tα and elevation angle r , tε , 

combined with the carrier's initial position  M

0 t

M

t

M

tp x , y ,z , 

ray-tracing is performed along the satellite signal propagation 

direction. In detail, starting from 0p  , the carrier is moved 

incrementally along the satellite direction with a fixed step size 

Δd . The coordinates of the k-th sampling point can be 

calculated as: 
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After obtaining the new position, the LiDAR points in the 

neighbouring area will be searched by kd-tree, the number of 

which is noted as kN . If kN > limN , this indicates that there is 

an obstruction in the propagation path of the GNSS signal, then 

the satellite is considered as a NLOS satellite; otherwise there is 

no NLOS occurrence until the distance moved exceeds the 

maximum set distance D . 

 

Secondly, if the satellite is identified as an NLOS satellite, the 

NLOS errors present in the GNSS signal must be corrected for 

use in the multi-source sensor information fusion. For signal 

reflection, the path usually consists of two parts, the first part is 

from the GNSS satellite to the reflection point and the second 

part is the signal transmission from the reflection point to the 

antenna. Therefore, finding the possible reflection point of the 

reflected signal is a key problem for NLOS errors. Generally, 

the reflected part of the signal should have the same elevation 

angle as the expected direct signal. Accordingly, we will look 

for potential reflection points in the carrier’s local map. 

 

For NLOS satellites, the current local point cloud map is 

divided into U divisions at equal intervals according to a fixed 

resα  angle, where U=360/ resα . For each area, we search for the 

presence of occlusion along the direction of elevation angle r , tε  

following the method of searching NLOS above. If it exists, the 

occlusion point is identified in the direction of the height angle 

r , tε in the occlusion point cloud and the point  MM

t,k t,k t ,

M

kx , y ,z  is 

stored in the set Q. Each area is then traversed to find all 

potential reflection points. 

 

Finally, the distance from the GNSS antenna for each candidate 

reflection point in the set Q is calculated. The reflection point 
M

t,refP  with the smallest distance from the current carrier position 

is taken as the reflection point (Hsu, 2018) and this distance is 

denoted as R. And the NLOS correction quantity L

r,t  is as 

follows: 

 

      r,t r,t r,t r,t

M Rsec ε Rsec ε cos 2ε       (4) 

 

By incorporating the NLOS correction into the original GNSS 

observations, the impact of NLOS propagation on positioning 

accuracy can be effectively mitigated. Figure 3 illustrates the 

complete process of the LiDAR-based GNSS NLOS error 

correction algorithm. 

 

 
Figure 2. The NLOS detection and correction. 

 

 

Figure 3. LiDAR assisted GNSS correction of NLOS error 

process. 

 

2.3 LiDAR Odometry Factor  

Based on the roughness, the feature points can be classified into 

edge points and planar points, and the residual equations of the 

two types of feature point clouds are constructed separately to 

obtain the final LiDAR cost function. The residual construction 

of the two types of LiDAR feature points is shown in Figure 4. 

 

 

Figure 4. Residual construction for LiDAR (a) edge points and 

(b) planar points. 

 

Let point E be a corner point in the LiDAR k+1-th frame point 

cloud with coordinates 
 k E

M

1,
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
 , and its corresponding two 

corner points in the k-th frame point cloud with coordinates 
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M

k,a
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 
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X , then the corner point feature residuals can be 

expressed by the distance from point 
 k o

M

1,
X


 to the line where 

 
M

k,a
X  and 

 
M
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X points are located by the following formula: 
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Similarly, let point O be a plane point in the LiDAR k+1-th 

frame point cloud with coordinates 
 k P

M

1,
X


 , and its 

corresponding plane point coordinates in the k-th frame point 

cloud are 
 
M

k,c
X , 

 
M

k,d
X  and 

 
M

k,f
X  then the planar point feature 

residuals can be expressed by the point-to-plane distances from 

 k P

M

1,
X


 to the planes where the points

 
M

k,c
X  , 
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M

k,d
X  and

 
M
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X  

are located as the following equation: 
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2.4 Loop Closure Factor  

In this study, we present a robust loop closure detection method 

that integrates multimodal information, effectively addressing 

the loop closure detection challenges in SLAM systems within 

complex environments. The method combines geometric 

constraints with global descriptor techniques. For geometric 
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matching, a map-to-map ICP point cloud matching strategy is 

employed, replacing the traditional frame-to-frame approach. 

This significantly enhances the accuracy and robustness of 

point cloud alignment by aggregating point clouds from 

consecutive frames near the current frame to construct a local 

sub-map. To address geometric loop closure failures caused by 

error accumulation in large-scale scenes, a global descriptor-

based context scan loopback detection method is utilized. It 

projects the 3D point cloud onto a 2D polar coordinate space 

and constructs a height feature matrix with rotational invariance. 

As shown in Figure 5, the perceptual space is discretized into 

feature units with clear physical meaning, using n radial 

concentric rings and m axial rays. Each unit stores the 

maximum height value, preserving key geometric features 

while achieving data compression. This feature representation is 

robust to changes in viewing angle, and loop closure detection 

is accomplished through feature matrix similarity metrics, 

thereby mitigating the impact of cumulative errors. 

 

bin

 

Figure 5. Constructing the surrounding environment as a global 

descriptor based on context scanning matching loop closure 

detection. 

 

2.5 Double-Difference Pseudorange Factor  

The GNSS pseudorange observation P  is expressed as: 

 

 
s s

r r PP cdt cdt T I H H             (7) 

 

where,   is the Euclidean distance from the GNSS receiver to 

the satellite, c  is the propagation speed of light in vacuum, 

rdt and sdt the clock difference of the receiver and satellite, 

respectively. T  and I  are the tropospheric and ionospheric 

delays, rH  and 
sH  are the pseudorange hardware delays of the 

receiver and the satellite, respectively, and P  denotes the 

measurement noise of the pseudorange.  

 

To eliminate the effects of clock errors and atmospheric delays 

on pseudorange observations, the pseudorange double-

difference processing is performed between stations and 

satellites. The residual equation for pseudorange differencing is 

given as follows: 

 

       s s s w w s s w w

DD,ρ,r, t r, t e, t r, t e, t r, t e, t r, t e, tr P P P P ρ ρ ρ ρ            (8) 

 

where s

DD,ρ,r,tr  denotes the residual of pseudorange differencing, 

subscripts r  and e  denote rover and reference stations, and 

superscripts w  and s  are the reference satellite and other 

satellites, respectively. 

 

2.6 IMU pre-integration factor 

Typically, the sampling frequency of the IMU is higher than 

that of the LiDAR. Therefore, the IMU’s integrated values over 

a given time period can be used to provide an a priori position 

estimate for LiDAR at the next time step, facilitating faster 

convergence during LiDAR matching. However, since the IMU 

zero bias changes with each iteration, re-integrating based on 

the post-iteration values at every step would be time-consuming. 

To address this, we use IMU pre-integration and the residuals of 

the IMU pre-integration factors are expressed as follows: 
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3. Experiment and Results 

3.1 Performance of LiDAR-Assisted GNSS NLOS 

Detection 

To evaluate the effectiveness of the proposed method, 

experiments were conducted using a multi-sensor data 

acquisition platform. The platform comprises a multi-frequency, 

multi-mode high-precision Septentrio receiver, a VLP-16 

LiDAR, a high-resolution RGB camera, a HGuidei300 IMU, 

and a high-precision time synchronization board. All sensors 

are hardware-synchronized. The platform is shown in Figure 6. 

The results from the bidirectional smoothed commercial Inertial 

Explorer (IE) RTK/INS integrated solutions were used as the 

reference truth. The experimental data were collected at the 

School of Space Science and Technology, Shandong University, 

with two sets of experiments conducted: one on the internal 

courtyard (denoted as SDU1) and the other on the exterior 

(SDU2) of the building. During the experiments, the data 

collection platform was consistently surrounded by buildings or 

tall trees, which led to frequent NLOS conditions for GNSS. 

 

 

Figure 6. Data collection platform. 

 

Figure 7 (a) visualizes the LiDAR point cloud map and the 

geometric distribution of the satellites at an echo in the SDU1. 

At this moment, the system observed a total of 10 satellites, 9 of 

which were line-of-sight (LOS) satellites indicated by white 

circles. Only the PRN 4 satellite (marked in red) was identified 

as having NLOS propagation. The polar plot in Figure 7(b) 

further illustrates the elevation angle and azimuth angle of each 

satellite. Notably, despite the significantly lower elevation 

angles of satellites PRN 27 (25.54°) and 61 (29.46°) compared 

to PRN 4 (38.72°), no signal occlusion occurs. This is because 

the azimuths of PRN 27 and 61 are positioned at 175.89° and 
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185.71° (near due south), and the carrier is further away from 

the south wall at this time. In contrast, PRN 4 is located at an 

azimuth of 297.23° (northwest), and its signal propagation path 

is obstructed by nearby buildings. This obstruction is calculated 

to require an NLOS correction of 13.99 m. This observation 

confirms that satellite occlusion in an urban canyon 

environment is not only dependent on elevation angle, but is 

also closely related to the spatial distribution of surrounding 

buildings. 

 

 

Figure 7. (a) The geometric relationship between the satellites 

observed at a certain moment in SDU1 and the surrounding 

buildings, and (b) the corresponding elevation and azimuth 

angles of the satellite. 

 
Figure 8 shows the GNSS observation characteristics of two 

datasets. In the SDU1, the system cumulatively observed 7 GPS 

satellites, 5 GALILEO satellites, and 1 BDS satellite, with 

approximately 8 satellites maintaining stable tracking. The 

results of LiDAR-assisted NLOS detection showed that the 

NLOS occurred in GPS PRN 4 and 27 satellites. Notably, 

although PRN 27 is located in the low-elevation region to the 

south of the carrier (at an elevation angle of about 25°), the 

proximity of the carrier to the south wall at the end period of 

the experiment caused this satellite's signal to switch to NLOS. 

In the SDU2 experiment, the system observed a total of 8 GPS 

satellites and 6 GALILEO satellites, with 7 satellites 

maintaining stable tracking. The detection results indicated that 

intermittent NLOS phenomena are present in GPS PRN 4 and 

16, and GALILEO PRN 25 satellites. The analysis reveals that 

the reasons for the NLOS generation of satellites PRN 16 and 

25 are similar to that of PRN 27 in the SDU1 experiment, both 

showing a strong correlation with the spatial relationship 

between the satellites, the carrier and the surrounding buildings. 

 

 
Figure 8. Observable satellites of (a) SDU1 and (b) SDU2 and 

the NLOS periods. The grey dots represent observable satellites, 

and the red rectangle parts represent NLOS detected by 

proposed method. 

 

Figure 9, Figure 10 and Table 1 demonstrate the position error 

of the LiDAR/INS/GNSS integration navigation system with  

and without NLOS correction (denoted as LIGON and LIGO 

w/o N) . In the SDU1, the system with NLOS correction 

achieves a horizontal positioning accuracy of 0.694 m and a 3D 

positioning accuracy of 1.162 m, an improvement of 14.63% 

and 14.91% respectively over the uncorrected system. It can be 

observed that the uncorrected system has a maximum position 

error of approximately -1.4 m in the E direction, while the 

corrected system effectively limits this error. Despite the 

relatively low percentage of NLOS satellites in the SDU1, the 

correction algorithm consistently yields a stable improvement 

of 14.28% in U direction positioning accuracy. In the SDU2 , 

the horizonotal positioning accuracy improved by 17.45% in 

LIGON system, with the most significant enhancement 

observed in the U direction, where the U direction error was 

reduced from 1.571m to 1.259m. The experimental results 

demonstrate that the NLOS correction method significantly 

improves the performance of the integration navigation system, 

particularly for vertical positioning, which is more vulnerable to 

GNSS signal disruptions. Additionally, the method effectively 

suppresses sudden position bias in the U direction. 

 

 

Figure 9. Error sequences of the LIGON and LIGO w/o N in the 

SDU1. 

 

 

Figure 10. Error sequences of the LIGON and LIGO w/o N in 

the SDU2. 

 

Dataset Scheme E N U 

SDU1 
LIGO w/o N 0.528 0.451 0.932 

LIGON 0.446 0.385 0.797 

SDU2 
LIGO w/o N 0.922 0.992 1.571 

LIGON 0.782 0.852 1.259 

Table 1. The accuracy statistics of the LIGON and LIGO w/o N 

in the SDU1 and SDU2 datasets (unit: m) 

 

3.2 The Comparative Experiments 

In order to more fully validate the performance of the 

LiDAR/INS/GNSS system with LiDAR-assisted NLOS 

correction, a comparative analysis with other combined 

navigation schemes was conducted. The experimental data were 

collected using a data acquisition platform at the Shandong 

University campus for two datasets: the open scene dataset 

(SDU3) and the semi-open scene (SDU4) dataset. The 

comparison schemes are as follows: 

 

(1) LIO: The tightly coupled system of LiDAR and IMU. 

(2) LIO-RTD: The LiDAR/INS system is loosely coupled with 

double-difference pseudorange positioning results. 
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(3) LIO-RTK: The loosely coupled integration between 

LiDAR/INS and carrier phase differential positioning results. 

(4) LIGO-N: The tightly coupled integration between 

LiDAR/INS and raw differential pseudorange measurements, 

fused with proposed NLOS detection and correction (proposed). 

 

Figure 11 illustrates the scenarios and reference truth in SDU3, 

which shows a more open environment where the surrounding 

buildings are away from the platform and there is no severe 

signal occlusion. The experiment utilizes the  GPS, Galileo, and 

BDS observations with an elevation angle of more than 15°. 

Figure 12 shows that the average number of visible satellites is 

17.3 and the average DOP value is 2.4. It indicates a favourable 

satellite geometry, providing strong a priori conditions for the 

accurate GNSS positioning. 

 

 

Figure 11. The SDU3 trajectory and scenarios. 

 

 

Figure 12. (a) The number of observable satellites and (b) 

PDOP in SDU3. 

 

Figure 13 and Figure 14 are trajectories and position error 

sequences of different navigation schemes in the SDU3. The 

corresponding RMSE results are summarized in Table 1.The 

error sequences and trajectory results show that the trajectory of 

the LIO deviates significantly from the reference trajectory, 

especially in the U direction. Furthermore, this deviation 

increases with the accumulation of sensor errors and is partially 

suppressed by the introduction of a loop closure factor when the 

trajectory closes. The RMSE of the 3D position is 20.396 m. 

 

In contrast, the trajectories of the LIO-RTD and LIGO-N 

schemes, which incorporate GNSS information, are noticeably 

closer to the reference truth. Partial view shows that the 

trajectories of LIO-RTD and LIGO-N overlap due to no NLOS 

conditions in the open scene. The error for both schemes is very 

small, within 1 m in all directions. Accuracy in the E, N and U 

directions is significantly improved compared to LIO, 

especially in the U direction where the error is significantly 

reduced. This demonstrates that the LiDAR/INS scheme 

achieves higher positioning accuracy when assisted by GNSS 

global information, and there is little difference between loosely 

and tightly coupled with GNSS in open scene. 

 

In the open environment, due to the sufficient number of 

observable satellites, the RTK achieves the superior positioning 

performance. Therefore, the cumulative error of the LIO-RTK 

system integrated with RTK is effectively suppressed and its 

RMSE is less than 0.2 m the horizontal direction. The LIO-

RTK provides the highest positioning accuracy, with horizontal 

and vertical position RMSE of 0.241 m and 0.701 m 

respectively. 

 

 

Figure 13. Different solutions in SDU3 include (a) horizontal 

and (b) vertical trajectories, (c) and (d) are local trajectories. 

 

 

Figure 14. Error sequences of different coupled navigation 

schemes in directions (a) E, (b) N and (c) U in SDU3. 

 

The total duration of the SDU4 experiment is about 8 minutes. 

Compared to SDU3, the SDU4 dataset is a more complex 

environment with trees and buildings on both sides of the road 

and pedestrian activity. Figure 15 shows the test trajectory with 

surrounding scenario, while Figure 16 illustrates the variation in 

the number of observable satellites and the PDOP. 

 

In SDU4, the number of observable satellites drops dramatically, 

with an average of only 5.8 satellites visible. In addition, during 

the period from 8:40 to 8:41, there were fewer than 4 

observable satellites in some epochs due to the experimental 

platform passing through an area obstructed by buildings. This 

further increases the uncertainty of the positioning and causes 

difficulties for GNSS positioning. Throughout the entire 

experiment, the average PDOP is 3.7. However, during the 

periods of 8:36-8:37 and 8:40-8:41, the PDOP value increases 

significantly. Notably, during 8:40-8:41, the PDOP value 

exceeds 9 due to building obstructions, indicating a 

deterioration in satellite geometry and presenting greater 

challenges for GNSS positioning. 
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Figure 15. The SDU4 trajectory with scenarios. 

 

 

Figure 16. (a) The number of observable satellites and (b) 

PDOP in SDU4. 

 

Figure 17 and Figure 18 show the trajectories and error 

sequences for the SDU4 dataset. Due to the more complex 

environment and poor quality of GNSS satellite observations, 

the positioning accuracies of LIO-RTD, LIGO-N, and LIO-

RTK are degraded compared to the open SDU3. As with SDU3, 

the LIO trajectories deviate significantly from the reference 

truth. In contrast, the error between the trajectories of the 

integration systems coupled with GNSS information and the 

true trajectory is smaller. The local image reveals that the 

LIGO-N trajectory is closer to the reference truth trajectory 

than that of LIO-RTD. When the number of observable 

satellites is less than 4, GNSS cannot complete the solution, so 

LIO-RTD is not constrained by valid global information in 

some echoes.  

 

On the contrary, LIGO-N is still able to reduce the systematic 

error using the pseudorange difference information in this case. 

In addition, by conducting NLOS detection and correction, the 

errors in GNSS pseudorange observations are eliminated and 

LIGO-N performs better than the LIO-RTD. Overall, the 3D 

positioning accuracy of LIGO-N is improved by 32.57% 

compared to LIO-RTD, with the most significant improvement 

observed in the U direction, reducing the error from 1.747 m to 

1.161 m. However, LiDAR/INS/RTK still achieves the highest 

positioning accuracy, owing to the carrier-based differential 

positioning mode of GNSS RTK. 

 

 

Figure 17. Different solutions in SDU4 include (a) horizontal   

and (b) vertical trajectories, (c) and (d) are local trajectories. 

 

 

Figure 18. Error sequences of different coupled navigation 

schemes in directions (a) E, (b) N and (c) U in SDU4. 

 

 

 

 

Dataset Solution E N U 

SDU3 

LIO 2.919 1.263 20.396 

LIO-RTD 0.353 0.331 0.934 

LIO-RTK  0.173 0.168 0.701 

LIGO-N  0.316 0.343 0.997 

SDU4 

LIO 1.401 1.814 22.733 

LIO-RTD 0.819 0.772 1.747 

LIGO-

RTK 
0.330 0.274 0.840 

LIGO-N 0.574 0.535 1.161 

Table 2. Statistics on the accuracy of navigation results of 

different solutions (unit: m) 

 

4. Conclusions 

In this study, a tightly coupled LiDAR/IMU/GNSS navigation 

framework is proposed, along with the construction of a 

LiDAR/INS/GNSS FGO model. Additionally, a LiDAR-

assisted GNSS NLOS satellite detection method is introduced. 

Experimental results validate the effectiveness of the method 

and assess the positioning accuracy of the framework in various 

scenarios. The results show that in environments prone to 

NLOS, the proposed NLOS detection and correction method 

effectively compensates for GNSS errors, leading to an overall 

improvement in positioning accuracy for the LiDAR/INS/GNSS 

integrated navigation system by approximately 16.15%. In open 

environments, the framework does not exhibit significant 

advantages, but in complex environments, the NLOS-corrected 

combined navigation scheme notably enhances positioning 

accuracy by 32.57%. It also ensures continuous GNSS 

information constraints on the system, thereby improving 

navigation stability and robustness compared to the system 

without NLOS correction. 
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