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Abstract

With the rapid development of artificial intelligence and autonomous driving technology, the demand for high-precision, high-
reliability and continuous positioning services has become increasingly obvious. However, in complex urban environments, GNSS
signals are prone to the non-line-of-sight (NLOS) propagation effect, which leads to systematically large observation errors and then
significantly reduces the navigation accuracy. To address this, we propose a tightly coupled LiDAR/IMU/GNSS navigation
framework based on raw GNSS observations. Additionally, we incorporate LiDAR point cloud data to develop a NLOS satellite
detection and correction module. This module constructs a 3D LiDAR point cloud map of the sensor’s surroundings and identifies
NLOS signals by analysing the geometric relationships between the sensor, satellites, and the environmental map. Furthermore,
reflection points from the surrounding environment are extracted and utilized for NLOS correction. The results of two groups of
independent experiments show that the system positioning error after NLOS correction is reduced by 16.15%. Compared with the
conventional integration system that adopts pseudorange difference information, the proposed framework achieves a 32.57%

improvement in navigation accuracy under complex urban scenarios, demonstrating its effectiveness.

1. Introduction

The rapid progress of technologies such as artificial intelligence
and autonomous driving has led to a significant increase in the
demand for high-precision navigation and positioning services.
In the domains of autonomous driving and intelligent robotics,
continuous and reliable position information is essential for
critical tasks, including decision-making, control, and path
planning (S. Kuutti et al., 2018; Vivacqua et al., 2017).
Consequently, the development of a high-precision and highly
robust navigation system is of paramount importance.

As one of the most widely utilized navigation technologies,
Inertial Navigation Systems (INS) can autonomously estimate a
carrier's velocity, position, and attitude based solely on the
output of an Inertial Measurement Unit (IMU). However, the
inherent error accumulation in IMU measurements leads to a
progressive degradation of navigation accuracy over time (Garg
et al.,, 1978; Pinana-Diaz et al., 2011). Light Detection and
Ranging (LIiDAR), as a high-precision ranging sensor, enables
both environmental perception and autonomous positioning. In
complex outdoor environments, LIDAR provides stable
distance measurements due to its strong anti-interference
capability. Notably, LIiDAR Odometry And Mapping (LOAM)
methods (Zhang and Singh, 2014; Zhang and Singh, 2017),
along with LeGO-LOAM (Shan and Englot, 2018), utilize
IMU-derived data as a priori information for LIDAR frame-to-
frame matching, thereby improving accuracy. Nevertheless,
error accumulation remains an unavoidable challenge in long-
range navigation tasks (Zhou, 2022). Global Navigation
Satellite System (GNSS), a well-established absolute
positioning technology, has been widely applied in aviation,
marine navigation, and geological exploration, among other
fields. Its primary advantages include extensive coverage and

high positioning accuracy (Yang et al., 2011; Yang et al., 2019).

However, in urban canyons, tunnels, and dense high-rise
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environments, GNSS signals are highly susceptible to occlusion
and multipath effects, leading to significant positioning errors
and reduced reliability in such complex settings.

Although different types of sensors offer unique advantages, a
single sensor alone is often insufficient to meet the positioning
requirements in complex and dynamic environments. Multi-
sensor fusion, which leverages the strengths of each sensor
while mitigating their inherent limitations, has proven to be an
effective approach for achieving high-precision, robust,
ubiquitous, and intelligent navigation and positioning in
challenging scenarios.

Existing fusion frameworks can be broadly categorized into two
main methods: filter-based methods (Chiang et al., 2019;
Chiang et al., 2020; Li et al., 2021; Nguyen-Ngoc et al., 2023;
Wang et al., 2023) and factor graph-based methods (He et al.,
2023; Li et al., 2020; Liu et al., 2023). Among the filter-based
methods, a representative example is FAST-LIO (Xu and Zhang,
2021). This method employs iterative extended Kalman
filtering (IEKF) to achieve tightly coupled between LiDAR
points and IMU data, demonstrating exceptional robustness in
high-speed motion, strong noise, and cluttered environments.
However, the linearization errors inherent in the filtering
framework can degrade long-term accuracy. In the factor graph-
based approaches, LIO-SAM utilizes IMU pre-integration to
provide an initial estimate for LiDAR odometry (LO)
optimization (Shan et al., 2020). This framework innovatively
incorporates absolute GNSS observations as constraints to
enhance positioning accuracy. A further improvement integrates
visual information to achieve more precise real-time state
estimation and map construction (Shan et al., 2021). However,
the computational complexity of factor graph optimization
(FGO) increases with the number of nodes, posing challenges to
real-time performance. Additionally, in GNSS-denied
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environments, these systems remain susceptible to cumulative
errors.

For GNSS Non-Line-Of-Sight (NLOS) correction, one of the
most widely adopted approaches is 3D mapping-assisted
(3DMA) GNSS positioning (Kbayer and Sahmoudi, 2018;
Wang et al., 2013; Zhou, 2022). However, the effectiveness of
this method is heavily reliant on both the accuracy of the 3D
building model and the precision of the GNSS receiver’s initial
position estimate. In addition to 3DMA-based approaches,
fisheye camera-assisted methods have also been explored (Kato
et al., 2016; Sanchez et al., 2016). While these methods offer
potential improvements in NLOS detection, their performance
is highly sensitive to variations in lighting conditions, leading to
significant degradation in low-light environments or adverse
weather conditions.

Although significant progress has been made in the field of
multi-source sensor fusion navigation, existing methods still
need to be improved. In particular, there is a need to enhance
sensor complementarity, measurement error suppression, and
environmental adaptability to meet the demands for high-
precision and robust navigation and positioning. To address
these challenges, this study proposes a lightweight and highly
flexible LiDAR/IMU/GNSS tightly coupled navigation
framework. Inspired by the work of Wen (Wen et al., 2022), the
framework introduces an innovative LiDAR-assisted GNSS
NLOS detection and correction module. By leveraging LiDAR
point clouds to construct real-time environmental geometric
constraints, the system accurately detects NLOS signals. An
error compensation model is developed to correct the
contaminated GNSS observations based on the detection result.
The quality-optimized GNSS raw observations are then
integrated into the navigation solver, providing reliable global
constraints for the system, which significantly enhances
navigation accuracy and robustness in complex environments.

2. Methodology
2.1 Problem Description

The LIiDAR/IMU/GNSS framework proposed in this study is
implemented within the factor graph framework, as illustrated
in Figure 1. The system's state vector can be expressed as
follows:

x=[q",v',p",b"" (€]

where q denotes the attitude quaternion, v is the velocity
vector, p is the position vector, and b is the bias of the IMU.

Based on the principle of FGO, the carrier position estimation
problem can be formulated as a maximum a posteriori (MAP)
probability estimation, expressed as follows:

vy = H X I+ b 12, + 1y [}
- keB keB
m\!n 15x1 [ 5b, 2 s 2 (2)
2 (2 XV IR, + 080, 2

keB
where [|r, —H,X|P is the a priori information, r,(2p ,X)
denotes the IMU measurement residuals, X, denotes the IMU
measurement covariance matrix, dj and dg"k denote the

LiDAR point-to-line residuals and point-to-plane residuals in
the local coordinate system of the k-th frame of LiDAR in Map
frame (M-frame), %, and X, denote the corresponding
covariance matrices, respectively. rE,DYP,,YI denotes the residual
of the pseudorange difference, and o is the uncertainty of the

pseudorange measurement, initially calculated based on the
signal-to-noise ratio and elevation angle.
-

e e i D el

Pseudorange Factor  Pre-integration Factor  LIDAR Factor  Prior Factor

- pe
Figure 1. Factor graph model of LiDAR/INS/GNSS tightly
coupled system.
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2.2 LiDAR-Aided GNSS NLOS Satellite Detection

In areas with dense buildings and tree cover, GNSS signals are
often subject to NLOS propagation, leading to increased
observation errors and a significant degradation in positioning
accuracy. To mitigate the impact of NLOS on the performance
of GNSS/LIO fusion systems, this study proposes a novel
GNSS NLOS error correction method based on LiDAR point
clouds.

Specifically, point clouds accumulated from historical LiDAR
scans form a three-dimensional map of the carrier's current
environment, and the density of the LiDAR point clouds in the
line-of-sight direction of the carrier and the satellite is then
analysed to determine whether the satellite is obscured. For
NLOS satellites, the possible reflection paths of the satellite in
map are searched to correct for NLOS errors in GNSS
pseudorange observations.

The correction process is divided into three main steps:
detecting NLOS satellites, identifying NLOS reflection points,
and correcting the NLOS error, which is shown in Figure 2.
First, to detect NLOS satellites, the system uses consecutive
multi-frame LiDAR point clouds to construct a local
environmental map. The history keyframe poses are obtained
from the previous sliding window optimization, so a more
accurate local map can be constructed. And a kd-tree data
structure is employed for efficient storage and management.

According to its azimuth angle o, and elevation angle ¢ .,
combined with the carrier's initial position p, =(x}",y\",z"),

t

ray-tracing is performed along the satellite signal propagation
direction. In detail, starting from p, , the carrier is moved

incrementally along the satellite direction with a fixed step size
Ad . The coordinates of the k-th sampling point can be
calculated as:

xth =Xth 4 + Adsin (o,  )cos(, )
Yeh = Yt + Adcos(a,  )cos(, , ) 3)
2} =2\, +Adsin(e, )
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After obtaining the new position, the LiDAR points in the
neighbouring area will be searched by kd-tree, the number of
which is noted as N, . If N, >N, , this indicates that there is

an obstruction in the propagation path of the GNSS signal, then
the satellite is considered as a NLOS satellite; otherwise there is
no NLOS occurrence until the distance moved exceeds the
maximum set distance D .

Secondly, if the satellite is identified as an NLOS satellite, the
NLOS errors present in the GNSS signal must be corrected for
use in the multi-source sensor information fusion. For signal
reflection, the path usually consists of two parts, the first part is
from the GNSS satellite to the reflection point and the second
part is the signal transmission from the reflection point to the
antenna. Therefore, finding the possible reflection point of the
reflected signal is a key problem for NLOS errors. Generally,
the reflected part of the signal should have the same elevation
angle as the expected direct signal. Accordingly, we will look
for potential reflection points in the carrier’s local map.

For NLOS satellites, the current local point cloud map is
divided into U divisions at equal intervals according to a fixed
a. angle, where U=360/ a,,, . For each area, we search for the

presence of occlusion along the direction of elevation angle ¢,

following the method of searching NLOS above. If it exists, the
occlusion point is identified in the direction of the height angle

&, in the occlusion point cloud and the point (!, yi\.zt} ) is

stored in the set Q. Each area is then traversed to find all
potential reflection points.

Finally, the distance from the GNSS antenna for each candidate
reflection point in the set Q is calculated. The reflection point

P with the smallest distance from the current carrier position

is taken as the reflection point (Hsu, 2018) and this distance is
denoted as R. And the NLOS correction quantity Aéﬁt is as

follows:
ABY, =Rsec(e, )+ Rsec(e,  )cos(2z, ) (4)

By incorporating the NLOS correction into the original GNSS
observations, the impact of NLOS propagation on positioning
accuracy can be effectively mitigated. Figure 3 illustrates the
complete process of the LiDAR-based GNSS NLOS error
correction algorithm.
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Figure 2. The NLOS detection and correction.
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Figure 3. LiDAR assisted GNSS correction of NLOS error
process.

2.3 LiDAR Odometry Factor

Based on the roughness, the feature points can be classified into
edge points and planar points, and the residual equations of the
two types of feature point clouds are constructed separately to
obtain the final LiDAR cost function. The residual construction
of the two types of LiDAR feature points is shown in Figure 4.

X,
Figure 4. Residual construction for LIiDAR (a) edge points and
(b) planar points.

Let point E be a corner point in the LiDAR k+1-th frame point

cloud with coordinates X(“ﬁ%) , and its corresponding two

corner points in the k-th frame point cloud with coordinates
X(“ﬁ’a) and X(Mk,b) , then the corner point feature residuals can be

M
(k+L0

X(“ﬁ,a) and X(’\lﬂgb) points are located by the following formula:

expressed by the distance from point X ) to the line where

Xitae) = Xlhay )< (Xleao =Xl

M M
‘X<k,a> = Xiin)

da = ‘( ®)

Similarly, let point O be a plane point in the LIiDAR k+1-th

frame point cloud with coordinates X(M and its

k+L,P) !
corresponding plane point coordinates in the k-th frame point

cloud are X, X, and X then the planar point feature

residuals can be expressed by the point-to-plane distances from

X(e.1p) 10 the planes where the points X X ;) and X{i

are located as the following equation:

- ‘(X(’\;A(ﬂ,o) - X(’\ﬁvd))-((xx,c) - X(’\;A(,d)) x (X(’\lﬂ<,c) - X(hﬂ,f)))‘ ©
(6t =Xt )< (Xt =Xt

2.4 Loop Closure Factor

In this study, we present a robust loop closure detection method
that integrates multimodal information, effectively addressing
the loop closure detection challenges in SLAM systems within
complex environments. The method combines geometric
constraints with global descriptor techniques. For geometric
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matching, a map-to-map ICP point cloud matching strategy is
employed, replacing the traditional frame-to-frame approach.
This significantly enhances the accuracy and robustness of
point cloud alignment by aggregating point clouds from
consecutive frames near the current frame to construct a local
sub-map. To address geometric loop closure failures caused by
error accumulation in large-scale scenes, a global descriptor-
based context scan loopback detection method is utilized. It
projects the 3D point cloud onto a 2D polar coordinate space

and constructs a height feature matrix with rotational invariance.

As shown in Figure 5, the perceptual space is discretized into
feature units with clear physical meaning, using n radial
concentric rings and m axial rays. Each unit stores the
maximum height value, preserving key geometric features
while achieving data compression. This feature representation is
robust to changes in viewing angle, and loop closure detection
is accomplished through feature matrix similarity metrics,
thereby mitigating the impact of cumulative errors.

bin

Figure 5. Constructing the surrounding environment as a global
descriptor based on context scanning matching loop closure
detection.

2.5 Double-Difference Pseudorange Factor

The GNSS pseudorange observation P is expressed as:
P=p+cdt, —cdt®+T+1+H, —H* +¢, (7)

where, p is the Euclidean distance from the GNSS receiver to
the satellite, ¢ is the propagation speed of light in vacuum,
dt, and dt’® the clock difference of the receiver and satellite,
respectively. T and | are the tropospheric and ionospheric
delays, H, and H° are the pseudorange hardware delays of the
receiver and the satellite, respectively, and ¢, denotes the
measurement noise of the pseudorange.

To eliminate the effects of clock errors and atmospheric delays
on pseudorange observations, the pseudorange double-
difference processing is performed between stations and
satellites. The residual equation for pseudorange differencing is
given as follows:

rSD,p,r,l = (Prs,t -P, ) - (Pr‘f‘; A ) - (Pi,t ~Pex ) - (P:\,It ~Pot ) (8)

where r5, . denotes the residual of pseudorange differencing,

subscripts r and e denote rover and reference stations, and
superscripts w and s are the reference satellite and other
satellites, respectively.

2.6 IMU pre-integration factor

Typically, the sampling frequency of the IMU is higher than
that of the LIDAR. Therefore, the IMU’s integrated values over
a given time period can be used to provide an a priori position
estimate for LIDAR at the next time step, facilitating faster
convergence during LIDAR matching. However, since the IMU
zero bias changes with each iteration, re-integrating based on
the post-iteration values at every step would be time-consuming.
To address this, we use IMU pre-integration and the residuals of
the IMU pre-integration factors are expressed as follows:
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3. Experiment and Results

3.1 Performance of LiDAR-Assisted GNSS NLOS

Detection

To evaluate the effectiveness of the proposed method,
experiments were conducted using a multi-sensor data
acquisition platform. The platform comprises a multi-frequency,
multi-mode high-precision Septentrio receiver, a VLP-16
LiDAR, a high-resolution RGB camera, a HGuidei300 IMU,
and a high-precision time synchronization board. All sensors
are hardware-synchronized. The platform is shown in Figure 6.
The results from the bidirectional smoothed commercial Inertial
Explorer (IE) RTK/INS integrated solutions were used as the
reference truth. The experimental data were collected at the
School of Space Science and Technology, Shandong University,
with two sets of experiments conducted: one on the internal
courtyard (denoted as SDU1) and the other on the exterior
(SDU2) of the building. During the experiments, the data
collection platform was consistently surrounded by buildings or
tall trees, which led to frequent NLOS conditions for GNSS.

Figure 6. Data collection platform.

Figure 7 (a) visualizes the LiDAR point cloud map and the
geometric distribution of the satellites at an echo in the SDU1.
At this moment, the system observed a total of 10 satellites, 9 of
which were line-of-sight (LOS) satellites indicated by white
circles. Only the PRN 4 satellite (marked in red) was identified
as having NLOS propagation. The polar plot in Figure 7(b)
further illustrates the elevation angle and azimuth angle of each
satellite. Notably, despite the significantly lower elevation
angles of satellites PRN 27 (25.54 and 61 (29.46< compared
to PRN 4 (38.729, no signal occlusion occurs. This is because
the azimuths of PRN 27 and 61 are positioned at 175.89<°and

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-213-2025 | © Author(s) 2025. CC BY 4.0 License. 216



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

185.71°(near due south), and the carrier is further away from
the south wall at this time. In contrast, PRN 4 is located at an
azimuth of 297.23°(northwest), and its signal propagation path
is obstructed by nearby buildings. This obstruction is calculated
to require an NLOS correction of 13.99 m. This observation
confirms that satellite occlusion in an wurban canyon

environment is not only dependent on elevation angle, but is
also closely related to the spatial distribution of surrounding
buildings.

(b)

Figure 7. (a) The geometric relationship between the satellites
observed at a certain moment in SDU1 and the surrounding
buildings, and (b) the corresponding elevation and azimuth

angles of the satellite.

Figure 8 shows the GNSS observation characteristics of two
datasets. In the SDUL, the system cumulatively observed 7 GPS
satellites, 5 GALILEO satellites, and 1 BDS satellite, with
approximately 8 satellites maintaining stable tracking. The
results of LiDAR-assisted NLOS detection showed that the
NLOS occurred in GPS PRN 4 and 27 satellites. Notably,
although PRN 27 is located in the low-elevation region to the
south of the carrier (at an elevation angle of about 259, the
proximity of the carrier to the south wall at the end period of
the experiment caused this satellite's signal to switch to NLOS.
In the SDU2 experiment, the system observed a total of 8 GPS
satellites and 6 GALILEO satellites, with 7 satellites
maintaining stable tracking. The detection results indicated that
intermittent NLOS phenomena are present in GPS PRN 4 and
16, and GALILEO PRN 25 satellites. The analysis reveals that
the reasons for the NLOS generation of satellites PRN 16 and
25 are similar to that of PRN 27 in the SDU1 experiment, both
showing a strong correlation with the spatial relationship
between the satellites, the carrier and the surrounding buildings.

a0 (a) | @ (b)

a16

E:]I:I

G16.

Figure 8. Observable satellites of (a) SDU1 and (b) SDU2 and
the NLOS periods. The grey dots represent observable satellites,
and the red rectangle parts represent NLOS detected by
proposed method.

Figure 9, Figure 10 and Table 1 demonstrate the position error
of the LIiDAR/INS/GNSS integration navigation system with
and without NLOS correction (denoted as LIGON and LIGO
w/o N) . In the SDU1, the system with NLOS correction
achieves a horizontal positioning accuracy of 0.694 m and a 3D

positioning accuracy of 1.162 m, an improvement of 14.63%
and 14.91% respectively over the uncorrected system. It can be
observed that the uncorrected system has a maximum position
error of approximately -1.4 m in the E direction, while the
corrected system effectively limits this error. Despite the
relatively low percentage of NLOS satellites in the SDUL, the
correction algorithm consistently yields a stable improvement
of 14.28% in U direction positioning accuracy. In the SDU2 ,
the horizonotal positioning accuracy improved by 17.45% in
LIGON system, with the most significant enhancement
observed in the U direction, where the U direction error was
reduced from 1.571m to 1.259m. The experimental results
demonstrate that the NLOS correction method significantly
improves the performance of the integration navigation system,
particularly for vertical positioning, which is more vulnerable to
GNSS signal disruptions. Additionally, the method effectively
suppresses sudden position bias in the U direction.

(b)

Figure 9. Error sequences of the LIGON and LIGO w/o N in the
SDUL.

Figure 10. Error sequences of the LIGON and LIGO w/o N in

the SDU2.
Dataset Scheme E N U
LIGOw/o N 0.528 0.451 0.932
SDU1
LIGON 0.446 0.385 0.797
LIGOw/o N 0.922 0992 1571
SDuU2
LIGON 0.782 0.852 1.259

Table 1. The accuracy statistics of the LIGON and LIGO w/o N
in the SDU1 and SDU2 datasets (unit: m)

3.2 The Comparative Experiments

In order to more fully validate the performance of the
LiDAR/INS/GNSS system with LiDAR-assisted NLOS
correction, a comparative analysis with other combined
navigation schemes was conducted. The experimental data were
collected using a data acquisition platform at the Shandong
University campus for two datasets: the open scene dataset
(SDU3) and the semi-open scene (SDU4) dataset. The
comparison schemes are as follows:

(1) L1O: The tightly coupled system of LiDAR and IMU.
(2) LIO-RTD: The LiDAR/INS system is loosely coupled with
double-difference pseudorange positioning results.
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(3) LIO-RTK: The loosely coupled integration between
LiDAR/INS and carrier phase differential positioning results.

(4) LIGO-N: The tightly coupled integration between
LiDAR/INS and raw differential pseudorange measurements,
fused with proposed NLOS detection and correction (proposed).

Figure 11 illustrates the scenarios and reference truth in SDU3,
which shows a more open environment where the surrounding
buildings are away from the platform and there is no severe
signal occlusion. The experiment utilizes the GPS, Galileo, and
BDS observations with an elevation angle of more than 15<
Figure 12 shows that the average number of visible satellites is
17.3 and the average DOP value is 2.4. It indicates a favourable
satellite geometry, providing strong a priori conditions for the
accurate GNSS positioning.

(a) e — (b)

(EL=15%)
1

SATELLITES
PDOP (EL >15%)

0 0
015 0220 0228 0218 0220 0228

Figure 12. (a) The number of observable satellites and (b)
PDOP in SDU3.

Figure 13 and Figure 14 are trajectories and position error
sequences of different navigation schemes in the SDU3. The
corresponding RMSE results are summarized in Table 1.The
error sequences and trajectory results show that the trajectory of
the LIO deviates significantly from the reference trajectory,
especially in the U direction. Furthermore, this deviation
increases with the accumulation of sensor errors and is partially
suppressed by the introduction of a loop closure factor when the
trajectory closes. The RMSE of the 3D position is 20.396 m.

In contrast, the trajectories of the LIO-RTD and LIGO-N
schemes, which incorporate GNSS information, are noticeably
closer to the reference truth. Partial view shows that the
trajectories of LIO-RTD and LIGO-N overlap due to no NLOS
conditions in the open scene. The error for both schemes is very
small, within 1 m in all directions. Accuracy in the E, N and U
directions is significantly improved compared to LIO,
especially in the U direction where the error is significantly
reduced. This demonstrates that the LIiDAR/INS scheme
achieves higher positioning accuracy when assisted by GNSS
global information, and there is little difference between loosely
and tightly coupled with GNSS in open scene.

In the open environment, due to the sufficient number of
observable satellites, the RTK achieves the superior positioning
performance. Therefore, the cumulative error of the LIO-RTK
system integrated with RTK is effectively suppressed and its
RMSE is less than 0.2 m the horizontal direction. The LIO-
RTK provides the highest positioning accuracy, with horizontal
and vertical position RMSE of 0241 m and 0.701 m
respectively.
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Figure 13. Different solutions in SDU3 include (a) horizontal
and (b) vertical trajectories, (c) and (d) are local trajectories.

Figure 14. Error sequences of different coupled navigation
schemes in directions (a) E, (b) N and (c) U in SDU3.

The total duration of the SDU4 experiment is about 8 minutes.
Compared to SDU3, the SDU4 dataset is a more complex
environment with trees and buildings on both sides of the road
and pedestrian activity. Figure 15 shows the test trajectory with
surrounding scenario, while Figure 16 illustrates the variation in
the number of observable satellites and the PDOP.

In SDU4, the number of observable satellites drops dramatically,
with an average of only 5.8 satellites visible. In addition, during
the period from 8:40 to 8:41, there were fewer than 4
observable satellites in some epochs due to the experimental
platform passing through an area obstructed by buildings. This
further increases the uncertainty of the positioning and causes
difficulties for GNSS positioning. Throughout the entire
experiment, the average PDOP is 3.7. However, during the
periods of 8:36-8:37 and 8:40-8:41, the PDOP value increases
significantly. Notably, during 8:40-8:41, the PDOP value
exceeds 9 due to building obstructions, indicating a
deterioration in satellite geometry and presenting greater
challenges for GNSS positioning.
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Figure 15. The SDUA4 trajectory with scenarios.
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Figure 16. (a) The number of observable satellites and (b)
PDOP in SDUA4.
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Figure 17 and Figure 18 show the trajectories and error
sequences for the SDU4 dataset. Due to the more complex
environment and poor quality of GNSS satellite observations,
the positioning accuracies of LIO-RTD, LIGO-N, and LIO-
RTK are degraded compared to the open SDU3. As with SDU3,
the LIO trajectories deviate significantly from the reference
truth. In contrast, the error between the trajectories of the
integration systems coupled with GNSS information and the
true trajectory is smaller. The local image reveals that the
LIGO-N trajectory is closer to the reference truth trajectory
than that of LIO-RTD. When the number of observable
satellites is less than 4, GNSS cannot complete the solution, so
LIO-RTD is not constrained by valid global information in
some echoes.

On the contrary, LIGO-N is still able to reduce the systematic
error using the pseudorange difference information in this case.
In addition, by conducting NLOS detection and correction, the
errors in GNSS pseudorange observations are eliminated and
LIGO-N performs better than the LIO-RTD. Overall, the 3D
positioning accuracy of LIGO-N is improved by 32.57%
compared to LIO-RTD, with the most significant improvement
observed in the U direction, reducing the error from 1.747 m to
1.161 m. However, LIDAR/INS/RTK still achieves the highest
positioning accuracy, owing to the carrier-based differential
positioning mode of GNSS RTK.

o = (a) 50 (b)
1
|

U(m)

0

A -5 0 400 'E‘m
Nim) ~~ Em) N(m)
T

Figure 17. Different solutions in SDU4 include (a) horizontal
and (b) vertical trajectories, (c) and (d) are local trajectories.

Figure 18. Error sequences of different coupled navigation
schemes in directions (a) E, (b) N and (c) U in SDUA4.

Dataset  Solution E N )
LIO 2.919 1.263 20.396
SDU3 LIO-RTD 0.353 0.331 0.934
LIO-RTK 0.173 0.168 0.701
LIGO-N 0.316 0.343 0.997
LIO 1.401 1.814 22.733
LIO-RTD 0.819 0.772 1.747
SDU4 LIGO-
RTK 0.330 0.274 0.840
LIGO-N 0.574 0.535 1.161

Table 2. Statistics on the accuracy of navigation results of
different solutions (unit: m)

4, Conclusions

In this study, a tightly coupled LiDAR/IMU/GNSS navigation
framework is proposed, along with the construction of a
LiDAR/INS/GNSS FGO model. Additionally, a LiDAR-
assisted GNSS NLOS satellite detection method is introduced.
Experimental results validate the effectiveness of the method
and assess the positioning accuracy of the framework in various
scenarios. The results show that in environments prone to
NLOS, the proposed NLOS detection and correction method
effectively compensates for GNSS errors, leading to an overall
improvement in positioning accuracy for the LIDAR/INS/GNSS
integrated navigation system by approximately 16.15%. In open
environments, the framework does not exhibit significant
advantages, but in complex environments, the NLOS-corrected
combined navigation scheme notably enhances positioning
accuracy by 32.57%. It also ensures continuous GNSS
information constraints on the system, thereby improving
navigation stability and robustness compared to the system
without NLOS correction.
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