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Abstract

LiDAR place recognition (LPR) plays a critical role in simultaneous localization and mapping (SLAM) and autonomous driving
systems. However, current LPR methods exhibit significant performance degradation under rotational shifts, noise interference, point
cloud sparsity, and long-term environmental changes. This limitation stems from their reliance on fixed-length global descriptors,
which lack the capacity to preserve comprehensive scene information in complex scenarios. To address these challenges, we propose
LPR-Mate, a lightweight universal reranking-based optimizer that enhances the robustness of existing LPR frameworks in challenging
environments. LPR-Mate processes top-k retrieval candidates from baseline LPR methods through a dual-stage pipeline: (1) A fast
trigger mechanism evaluates spatial consistency between query and candidate scenes, selectively activating reranking only for low-
confidence matches; (2) An independent reranking network refines candidate rankings by fusing local features, global descriptors, and
spatial consistency scores through group and channel attention mechanisms. Extensive experiments on the Oxford RobotCar, NUS-
Inhouse, and MulRan datasets demonstrate that LPR-Mate achieves >96% recall in localization accuracy validation and delivers a
32.34% average improvement in Recall@1 under rotational shifts, sparsity, and noise perturbations, while maintaining robustness for
raw point clouds and long-term scenarios. As a plug-and-play module, LPR-Mate integrates seamlessly with diverse LPR
architectures—including region-sampling and sparse-voxelization-based methods—without requiring retraining or structural
modifications, ensuring computational efficiency and cross-architectural universality.

1. Introduction

Place recognition involves retrieving geotagged databases to
identify the submap most similar to captured scene data, thereby
determining the current location. This capability is critical for
robotic applications such as loop closure in simultaneous
localization and mapping (SLAM) systems (Xu et al. 2022;
Lehtola et al. 2016) and global localization in GPS-denied
environments (Yu et al. 2021). While vision-based methods have
seen significant advancements, their performance remains
susceptible to environmental changes, including illumination
variations, viewport shifts, and adverse weather conditions. In
contrast, LIDAR place recognition (LPR) demonstrates greater
robustness, benefiting from LiDAR’s inherent insensitivity to
lighting variations and weather conditions.

Most LPR methods encode scene point clouds into fixed-length
global descriptors to enable rapid retrieval and localization
through feature distance comparisons. Early approaches relied on
handcrafted features, which exhibited limited robustness to scene
variations and required manual parameter tuning. Recent
advances in deep neural networks have significantly improved
LPR accuracy by leveraging diverse LiDAR data representations,
including raw point clouds (Uy and Lee 2018; Zhang et al. 2023),
voxels (Komorowski 2021; Xu et al. 2021), bird’s-eye views
(Luo et al. 2023), and range images (Stathoulopoulos et al. 2024).
However, despite these advancements, global descriptor-based
methods—though achieving strong performance on benchmark
datasets such as Oxford RobotCar (Maddern et al. 2017) and
NUS Inhouse (Maddern et al. 2017)—demonstrate notable
accuracy degradation under real-world conditions due to
temporal and spatial discrepancies between database
construction and user-side localization. Two critical challenges
arise: First, existing methods exhibit performance degradation
when query point clouds are rotated relative to database submaps
(evidenced in Table. 2). Such rotational discrepancies frequently
occur during lane changes, turns, or multi-directional traversals,
necessitating robust rotation-invariant retrieval capabilities.
Second, environmental dynamics over time—including weather
fluctuations, seasonal transitions, and structural alterations—
introduce point density variations and noise distribution
disparities between query and database submaps, compromising
long-term system reliability.

The core limitation of current methods lies in their reliance on
fixed-length global descriptors, which lack the granularity to

resolve the aforementioned challenges. This dependency
necessitates  preprocessing steps (e.g., ground removal,
downsampling) to eliminate redundant data, thereby preventing
direct processing of raw point clouds. Moreover, the emphasis on
global features motivates the development of complex local
geometric extractors, yielding oversized models incompatible
with  resource-constrained devices. Recent works have
introduced re-ranking methodologies like TReR (global feature
enhancement) and SpectralGV (local spatial consistency
evaluation) to refine localization. However, these methods
neglect the integration of global and local features, creating
suboptimal representation synergy; Additionally, the absence of
localization  quality — assessment  mechanisms  prompts
indiscriminate optimization attempts, yielding unwarranted
computational costs without performance guarantees.

To address these limitations, we propose LPR-Mate, a
lightweight universal reranking mechanism designed to reduce
the reliance of existing LPR methods on global descriptors and
enhance their robustness in challenging environments. Operating
as a plug-and-play post-optimizer, LPR-Mate processes the local
and global features from the top k initial retrieval candidates
(k=25 in this work) generated by existing LPR methods through
two sequential phases: First, a training-free trigger mechanism
computes spatial consistency scores between query and candidate
scenes to identify potential mismatches. If activated, the system
initiates reranking. Second, an independent reranking network
refines candidate rankings by fusing local features, global
descriptors, and spatial consistency scores via spatial-channel
attention mechanisms, thereby improving localization accuracy.
Comprehensive evaluations across three large-scale datasets—
Oxford RobotCar (Maddern et al. 2017), NUS-Inhouse (Uy and
Lee 2018), and MulRan (Jung et al. 2023; Kim et al. 2020)—
confirm the framework’s superior performance. LPR-Mate
achieves a >96% recall rate in validating localization accuracy
and delivers a 32.34% average improvement in Recall@1 metrics
under rotational shifts, noise, sparsity, and raw point cloud
conditions, significantly enhancing the robustness of existing
LPR methods in challenging environments.

2. Related Works

Learning global descriptor for LPR task: Global descriptors
compress scene information to enable efficient database retrieval
in LPR task, addressing the computational infeasibility of direct
pairwise submap comparisons. PointNetVLAD (Uy and Lee
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2018) pioneered this approach by combining PointNet-based
local feature extraction with NetVLAD-based global descriptor
fusion. Subsequent advancements refined this framework: PCAN
(Zhang and Xiao 2019) improved accuracy via a point contextual
attention module, LPD-Net (Liu et al. 2019) integrated hand-
crafted and graph-based features, and EPC-Net (Hui et al. 2022)
enhanced efficiency with lightweight ProxyConv. However,
reliance on computationally intensive operations like farthest
point sampling and k-nearest neighbor (KNN) searches limited
scalability for large-scale point cloud. Recent lightweight
architectures, such as LWR-Net (Zhang et al. 2023) and
MinkLoc3D (Komorowski 2021), reduced overhead using
random sampling or sparse voxelized representations. Extensions
like MinkLoc++ (Komorowski, Wysoczanska, and Trzcinski
2021) fused multimodal data, while MinkLoc3Dv2
(Komorowski 2022) introduced ranking-based losses. Despite
progress, these methods exhibit sensitivity to rotational variances,
sparse distributions, and noise, as validated by our experiments.
Reranking-based optimization for LPR task: Reranking
methods refine initial retrieval results by reordering candidates to
prioritize correct matches. While widely explored in image/text
retrieval through techniques like RANSAC-based geometric
verification (Avrithis and Tolias 2014) or transformer-driven
local feature alignment (Tan, Yuan, and Ordonez 2021), these
approaches face significant challenges in LiDAR applications
due to point clouds' massive data volume and complex 3D
geometry. Recent attempts to balance efficiency and accuracy
include Query Expansion (QE) (Radenovi¢, Tolias, and Chum
2019) that aggregates database features to augment queries, and
SuperGlobal (Shao et al. 2023) which enhances global
descriptors via GeM pooling variants (GeM+, Scale-GeM,
Regional-GeM) with top-k neighbor aggregation. However, such
methods remain computationally inefficient or insufficiently
robust for large-scale LiDAR scenarios. Most LPR research
focuses on improving global descriptor learning, leaving
reranking based on local features underexplored — existing
solutions like TReR's transformer-based global descriptor
reranking (Barros et al. 2023) or GIDP's training-set relationship
(Fan, Song, Liu, et al. 2023) mimicry achieve efficiency but
suffer from accuracy limitations in complex environments due to
fixed-length descriptor constraints. Conversely, SpectralGV
(Vidanapathirana et al. 2023) employs spectral geometric
verification with local features but neglects global-local feature
synergy. Crucially, current frameworks universally lack adaptive
triggering mechanisms, applying resource-intensive reranking
indiscriminately regardless of initial retrieval quality, thereby
incurring unnecessary computational costs.
3. Methodology

We propose LPR-Mate, a lightweight universal reranking
framework designed to enhance the localization accuracy of
existing LPR methods in challenging environments. LPR-Mate
processes the top k retrieval candidates’ information (k=25 in this
work), which include local regional information (denoted as L =
{P,, F,} andglobal descriptors( G ), where P, €
RMs*3  represents local region coordinates and Fy €
RNs%256 corresponds to local features. LPR-Mate operates
through two sequential phases: First, atraining-free trigger
mechanism evaluates retrieval reliability by computing spatial
consistency scores between query and candidate scenes. If
triggered (indicating low-confidence retrieval), the system
initiates reranking (Section 3.1).; Second, an independent
reranking network optimizes candidate rankings by fusing local
features, global descriptors, and spatial consistency scores via
spatial and channel attention mechanisms, prioritizing
geometrically coherent matches (Section 3.2). Implementation
details are elaborated in Section 3.3.

Notably, existing LPR methods adopt an encoding paradigm
of "local feature extraction — global feature aggregation”,
inherently encapsulating both local and global feature
learning. LPR-Mate directly leverages the pre-trained network’s
local and global features generated during this process,
eliminating the need for architectural modifications or retraining
of the original LPR networks.

3.1 Trigger phase

The Trigger phase evaluates the reliability of retrieved candidates
to avoid unnecessary computational overhead from
indiscriminate  reranking. Inspired by  SpectralGV
(Vidanapathirana et al. 2023), we construct an undirected graph
D = (V, &) between the query and candidate scenes using local
regional positions P, and features F, . Vertices V =
{v1, v, ..., vy Jrepresent correspondences identified via nearest-
neighbour searches on local feature distances, where v, =
(P",Pf") links query and candidate local regions. Edges &
encode pairwise geometric compatibility via matching scores:
dgﬂ’z]

d?hr '

s = 127 = P = 1P S|
where [], = max (-,0) ensures non-negative scores, |||
denotes L2 distance, and d,y, is a threshold. Correspondence
pairs with d, ,, > dy,, receive zero scores (geometric
incompatibility, Fig. 1b), while preserved spatial relationships
yield high scores (Fig. 1a).
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Figure 1. Pairwise geometric compatibility analysis of retrieval
candidates: (a) Vertices with a high matching score; (b) Vertices
with a zero matching score.

The matching scores populate matrix M € RMs*Ns | and we seek
the inter-cluster C maximizing the Rayleigh quotient:

. c"Mc 5

¢ = argmax( e > 2)
Where ¢ € RVs*! is a binary cluster indicator vector. The
principal eigenvector of M approximates ¢, and the spatial
consistency (SC) score is computed as:

SC score = éTM¢é 3)

Unlike SpectralGV, which directly reranks candidates using
spatial compatibility, our method activates reranking only if the
top candidate’s SC score is not the highest. This lightweight,

training-free mechanism ensures computational efficiency while
preserving accuracy.
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3.2 Reranking phase

The reranking phase performs fine-grained scene comparisons by
leveraging multi-level features (local region features L =
{P,,, F;,-}, global descriptors G, and SC scores) rather than relying
solely on global descriptors. An independent network processes
these inputs to generate a probability vector Prob € R¥*!
representing the likelihood of each candidate being a correct
localization result (Fig. 2).
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Figure 2. The architecture of reranking network

The network employs three parallel branches for multi-level
feature encoding and fusion:

(1) Local Feature Enhancement: The local feature
enhancement branch refines candidate scene features through a
grouped attention mechanism interacting with query features:

Qg = W (F:), Ky = WI(FL),V = W,(F)), (4)

r T r

G
W= QuKJ, )
g=1
Ci _ w Ci
F nnancea = MLP(Softmax () V+FS).  (6)

where F/ and FLC;' denote local features of the query and i-th
candidate, WJ() and W7() are group-wise 1x1
convolutional layers that partition the feature map into G groups,

C

denoted as {Q,, K, € RNSX(E)|g =1,..,G}; and W,(")is alx
1 convolutional layer to generate the value feature map V €
RMs*C_ This grouped attention reduces computational complexity
from O(my%-C) to O(my?- (g+ G)) while  retaining
discriminative power. Where m,, represents the number of heads
in the multi-head attention mechanism. To maintain the network'’s
lightweight design, we utilize a single-head self-attention
mechanism with m;, = 1.

(2) Global Feature Enhancement: For the global descriptor
used in the retrieval phase, each channel is treated uniformly.
However, given that global descriptors encode abstract, compact
scene representations, feature channels inherently carry unequal
discriminative weights. To address this limitation, the global
feature enhancement branch introduces channel-wise attention to
address uniform channel treatment in global descriptors. As
formalized in Equations (7) and (8), we first compute the global
feature difference for the i-th candidate scene:

Byt gy = Fgt — 5t ™
where F;l and Fgcl" denote the query and candidate scene global
descriptors, respectively. A linear layer Linear(-) followed by a
sigmoid activation generates channel-wise attention weights of
dimension 1 x 256. The refined global feature F¢! €

gl_enhanced
R256 js then obtained via:

G _Q: . . Ci .
gcl_enhanced = Slgm01d(Llnear(Fgl_diff)) ®

glairf
(3) SC Score Fusion: The SC score fusion branch encodes
spatial consistency scores into the feature space:

Ci g C; C;
Fring = Linear;os6)(Fsg)) +Fy -+ )
Max(FS

ax( lr,enhunced)'

where FSCC' € R?! denote the SC score of i-th candidate scene,
which is subsequently expanded from a dimension of 1 to 256
using Linear; ;56 (-). The Max(-) represents max pooling. The
enhanced local feature and global feature are fused with the
encoded SC score through a summarization process to produce

final feature of the i-th candidate scene, denoted as Fe., , € R2%°.
The updated features of all candidate scenes are denoted as
Fenhanced € R¥*?56 | which is decoded into peobabilities
Equation (10). The linear mapping layer followed by the Sigmoid
function to transform the feature into the probability of each
scene being correctly localized. Based on this probability, the
candidate scenes can be reorganized.

Prob = Sigmoid(Linear(Fe,hanced))- (10)
Due to the imbalance of correctly and incorrectly located scene
in the initial candidates, the re-ranking network utilize the Focal
loss function (Lin etal. 2017) for training, as shown in Equation
(11). Where Prob, represents the estimated probability of the t-
th scene in Prob, GtLab, denotes the ground truth label of the t-
th scene, and p; represents the probability assigned by the model
to the correct localization. The parameter a; € [0,1] acts as a
weighting parameter for adjusting the proportion of loss between
positive and negative samples, while y serves as a focusing
parameter that can be tuned to control the focusing effect. When
vy is set to a value greater than 0, more emphasis is placed on
challenging, misclassified examples; however, a value of y =0
reduces it to the standard cross-entropy loss.

FocalLoss(p;) = —a;(1 — p)" log(pe) , pr =

Prob, if GtLab, =1 (11)

{1 — Prob, otherwise

3.3 Implementation details

Two hierarchical encoding layers are implemented in the
reranking network, each maintaining a feature dimension of 256.
The local feature enhancement branch adopts grouped attention
with G = 4 groups. The probability decoding stage incorporates
three linear layers with output dimensions of 128, 64, and 1,
respectively. The Focal loss function is configured with a, =
0.25 and y = 2, following the recommendations of (Lin et al.
2017). All experiments are conducted on an Intel i7-9700k CPU
and an NVIDIA RTX 2070S GPU.
4. Experiments

4.1 Experimental setting

Benchmark datasets: Three large-scale datasets—Oxford
RobotCar (Maddern et al. 2017), NUS In-house (Uy and Lee
2018), and MulRan (Jung et al. 2023)—were utilized to evaluate
the proposed method. For comprehensive comparisons under
standardized conditions, the Oxford RobotCar and NUS In-house
datasets (collectively referred to as standardized point cloud
datasets) were employed. The Oxford RobotCar dataset
comprises 10 km urban trajectories captured in central Oxford
using a vehicle-mounted Sick LMS-151 LiDAR. The NUS In-
house dataset includes three segments: University Sector (U.S.,
10 km), Residential Area (R.A., 8 km), and Business District
(B.D., 5 km), collected with a Velodyne HDL-64 LiDAR. Both
datasets underwent preprocessing: non-informative ground
points were removed, point clouds were uniformly
downsampled to 4,096 points, and normalized to zero mean
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within [-1, 1]. Each submap was georeferenced using UTM
coordinates from GPS/INS data.

The MulRan dataset (raw point cloud dataset) was adopted to
assess performance under real-world challenges. It comprises
Ouster-64 LiDAR data collected across four distinct
environments: Daejeon Convention Center (DCC), KAIST,
Riverside, and Sejong City. To rigorously evaluate long-term
place recognition capabilities, the recently proposed MulRan-
Longterm subset (Jung et al. 2023) was constructed by
integrating Ouster-128 LiDAR data captured four years after the
original dataset. This subset also introduces sensor variance, as
the original database (Ouster-64) and query scans (Ouster-128)
differ in resolution. Notably, the MulRan dataset retains raw,
unprocessed point clouds—no ground removal or downsampling
was applied—to preserve real-world fidelity for robust
evaluation.

To generate training tuples, point cloud pairs with a distance of
less than 10m were defined as positive pairs, while more than
50m were defined as negative pairs. We further applied default
random rotations to each query submap to evaluate the
performance of methods under point cloud rotation, including
rotations around the Z-axis within #30 degrees and rotations
around the X-axis and Y-axis within 35 degrees.

Evaluation metrics: Performance was evaluated using
the Recall@K metric, —specifically Recall@1 (top match) and
Recall@1% (top 1% of candidates)—was applied. A query was
considered successfully localized if at least one of the top-K
retrieved database scans fell within 25m of the ground-truth
position. Computational efficiency was assessed via average
running time and model size (in millions of parameters, M).

4.2 Enhancement offered by LPR-Mate

We selected four LPR methods as backbone—LWR-Net (Zhang
et al. 2023), MinkLoc3D (Komorowski 2021), SVT-Net (Fan et
al. 2022), and MinkLoc-v2 (Komorowski 2022)—to evaluate
LPR-Mate’s optimization efficacy across diverse LPR
architectures. Our selection prioritized divergent local feature
perception mechanisms: LWR-Net employs a region-sampling
and neighborhood-grouping strategy, while MinkLoc3D, SVT-
Net, and MinkLoc-v2 rely on sparse-voxelization-based regional
extraction. This methodological dichotomy between regional
sampling and voxelization paradigms ensures validation of LPR-
Mate’s adaptability.

We first evaluated the effectiveness of LPR-Mate's trigger
mechanism on existing methods under three environmental
challenges: rotational variance, noise interference, and point
cloud sparsity. Controlled perturbations were applied to query
scenes using three protocols: (1) pose variation via random
rotations (330 about the Z-axis, #5° about X/Y-axes); (2)
sparsity simulation by downsampling original point clouds at
predefined ratios; and (3) noise simulation through injection of
outlier points, constrained by a5 cm Euclidean distance threshold
from structural elements to ensure realistic noise patterns.

As demonstrated in Table 1, the trigger mechanism achieves
high activation recall rates (94.64% under rotation, 94.71% under
noise, 95.52% under sparsity) across diverse LPR backbone,
regardless of input feature types (local regions or sparse voxels).
A negative correlation exists between the trigger’s activation
ratio and the backbone’s Recall@]1. This indicates that when a
method excels in the retrieval stage (with a high Recall@1 rate),
the trigger phase exhibits a low activation ratio, thereby avoiding
the subsequent re-ranking computation and conserving
computational resources. Conversely, when a method performs
poorly in the retrieval stage, the trigger stage is promptly
activated to optimize the current localization performance
through the re-ranking stage.

With random rotation
Methods Recall@1 Trigger Trigger
(%) Ratio (%) Recall (%)
LWR-Net 39.85 68.74 92.46
MinkLoc3D 74.26 45.46 95.41
SVT-Net 72.12 49.92 96.08
MinkLoc-v2 84.57 36.73 94.60
With 80% downsampling ratio
Methods Recall@1 Trigger Trigger
(%) Ratio (%) Recall (%)
LWR-Net 33.89 73.81 91.89
MinkLoc3D 55.24 61.83 95.50
SVT-Net 44.23 68.10 97.35
MinkLoc-v2 70.95 48.68 94.10
With 256 outlier points
Methods Recall@1 Trigger Trigger
(%) Ratio (%) Recall (%)
LWR-Net 33.89 73.81 91.89
MinkLoc3D 60.91 58.30 96.29
SVT-Net 66.77 52.72 97.70
MinkLoc-v2 79.58 45.63 96.20
Table 1. Evaluation of trigger mechanism on Oxford RobotCar
Dataset

Figure 3 demonstrates LPR-Mate's systematic performance gains
when integrated with existing methods. Across rotational
perturbations, extreme sparsity, and outlier corruption scenarios,
the framework achieves 32.34% average (48.40% peak)
Recall@1 improvements - independent of base encoders'
structural paradigms (regional geometric neighborhoods in
LWR-Net or sparse voxel hierarchies in MinkLoc3D). While
effectively enhancing weak retrievers (+17.46% Recall@1 for
LWR-Net under 90 °rotations), performance remains candidate-
dependent:  Ground-truth exclusion in initial retrievals
necessitates either candidate pool expansion (top-50 vs. top-25)

or robust backbone selection for extreme conditions.
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Figure 3. Retrieval enhancement of existing methods by the
LPR-Mate under varying conditions of point cloud rotation,
outlier, and sparsity levels.
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4.3 Experiments on standardized datasets

In this experiment, we employed our previously proposed
method, LR-Net (Zhang et al. 2024), as the backbone to quantify
performance enhancements enabled by LPR-Mate optimization
(denoted as LR-Mate in comparative analyses). LR-Mate was
benchmarked  against 16  state-of-the-art  methods:
PointNetVLAD (PNVLAD) (Uy and Lee 2018), PCAN (Zhang
and Xiao 2019), LPD-Net (Liu et al. 2019), SOE-Net (Xia et al.
2021), EPC-Net (Hui et al. 2022), MinkLoc3D (MinkL3D)
(Komorowski 2021), MinkLoc++ (MinkL++) (Komorowski,
Wysoczanska, and Trzcinski 2021), MinkLoc-v2 (MinkLv2)
(Komorowski 2022), SVT-Net (Fan et al. 2022), PPT-Net (Hui
et al. 2021), LWR-Net (Zhang et al. 2023) , ERI-Net (Weng,
Zhang, and Li 2022), RPR-Net (Fan, Song, Zhang, et al. 2023),
VNI-Net (Tian et al. 2023), and RIA-Net (Hao, Zhang, and Su
2024). All methods were uniformly trained to generate 256-
dimensional global descriptors. Evaluations utilized authors’
publicly released code and pre-trained models where available.
For PPT-Net, model re-training was conducted owing to
unavailability of pre-trained weights. For ERI-Net, RPR-Net,
VNI-Net, and RIA-Net, results were reproduced from prior
studies under identical evaluation protocols, as original
implementations were partially incomplete or inaccessible.

The evaluation results on the Oxford RobotCar dataset (Table 2)
demonstrate that most existing methods—excluding those
explicitly designed for rotation invariance (e.g., ERI-Net, RPR-
Net)—suffer accuracy degradation under query point cloud
rotations (within #309). For instance, PNVLAD and PCAN
exhibit >60% drops in Recall@1% under rotation. In contrast,
LR-Mate achieves state-of-the-art performance in both rotated
(Recall@1: 98.45%) and non-rotated (Recall@1: 98.52%)
scenarios, confirming its rotation invariance and superiority.

Recall @1 (%) Recall@1% (%)

Methods With Without With Without

rotation rotation rotation rotation
PNVLAD 15.01 62.76 31.31 81.01
PCAN 14.81 69.05 32.81 83.81
EPC-Net 59.78 86.84 80.93 95.19
MinkL3D 74.26 93.48 90.14 97.85
MinkL++ 80.79 93.90 92.75 98.15
MinkL-v2 | 82.68 96.25 95.15 98.87
PPT-Net 61.55 92.21 82.82 97.50
SVT-Net 63.52 93.70 84.11 97.80
SOE-Net 86.72 89.37 95.60 96.40
LWR-Net 40.41 93.76 62.67 98.32
ERI-Net 85.30 92.84 95.31 97.89
RPR-Net 81.10 81.00 92.20 92.20
VNI-Net 85.50 85.50 94.00 94.00
RIA-Net 89.74 91.23 96.22 96.84
LR-Net 88.75 89.00 96.17 96.19
LR-Mate 98.45 98.52 99.46 99.52

Table 2. Test on the Oxford RobotCar dataset with random
rotation within 30°

As shown in Table 3, we compare model size and average
runtime between LR-Mate and all baseline methods on the
Oxford RobotCar dataset. While LR-Mate incurs elevated
computational overhead (19ms average runtime compared to LR-
Net’s 10ms baseline) attributable to its two-stage architecture
(retrieval: 10ms; reranking: 6ms), its trigger mechanism (3ms
latency, 96.77% error recall rate in this experiment) ensures
operational efficiency. Critically, only 33.02% of queries activate
the reranking phase, meaning 66.98% of queries resolve within
13ms (retrieval + trigger latency). This adaptive framework
achieves an effective equilibrium between localization
robustness and operational efficiency.

Methods Av_erag'e Model_ size
running time (million)
PNVLAD 15ms 19.78
PCAN 55ms 20.42
EPC-Net 26ms 4.70
MinkLoc3D 12ms 1.06
MinkLoc++ 12ms 1.06
MinkLoc-v2 19ms 2.66
PPT-Net 22ms 13.39
SVT-Net 11ms 0.94
SOE-Net 22ms 19.40
LWR-Net 10ms 0.44
RPR-Net 238ms 1.10
VNI-Net 574ms 2.20
RIA-Net / 18.39
LR-Net 10ms 0.46
LR-Mate 19ms 0.97
Table 3. Model size and average running time on Oxford
RobotCar dataset

We further evaluated LR-Mate’s robustness against point cloud
sparsity and outlier perturbations. As demonstrated in Figure 4,
LR-Mate outperforms existing methods in maintaining
recognition accuracy under varying density and noise conditions.
Most current approaches, constrained by reliance on 256-channel
global descriptors, exhibit sensitivity to noise interference and
sparsity variations due to inherent dimensionality constraints. In
contrast, LR-Mate optimizes localization results through the
retrieval candidates, enhanced by trigger and re-ranking
mechanisms, which decouples robustness from descriptor
compactness, enabling reliable performance in degraded

environments.
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Figure 4. Robustness to the point cloud noise and sparsity on
the Oxford RobotCar dataset: (a) Average recall @1 changes
with point cloud sparsity; (b) Average recall @1% changes with
point cloud sparsity; (c) Average recall @1 changes with point
cloud noise; (d) Average recall @1% changes with point cloud
noise.

To verify the generalization capability of each method, we
evaluated models trained on the Oxford RobotCar dataset directly
on the NUS In-house datasets. As shown in Table 4, LPR-Mate
achieves state-of-the-art performance across all three scenes,
outperforming recent methods like RIA-Net and VNI-Net. While
the LR-Net (LR-Mate’s backbone) exhibits weaker
generalization (e.g., 83.74% Recall@1 in U.S. vs. RIA-Net’s
88.21%), the trigger and reranking components bridge this gap,
enhancing Recall@1 by 5.10% (U.S.), 4.61% (R.A.), and 5.62%
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(B.D.). This underscores the paradigm’s ability to refine initial
candidates and mitigate overfitting to training data.

performance gaps in long-term scenarios indicate room for
improvement.

U.S. R.A. B.D. DCC KAIST RiverSide

Methods | R@1 |R@1% | R@1 |R@1% | R@1 | R@1% Methods | R@1 |R@1% | R@1 | R@1% | R@1 | R@1%

(%) (%) (%) (%) (%) (%) (%) %) | (W) %) | (%) (%)
PNVLAD | 18.16 | 33.76 | 15.17 | 28.42 | 17.39 | 26.12 MinkL3D | 0.67 18.01 | 4.72 3143 | 2.28 25.94
PCAN 10.56 | 25.00 | 11.95 | 23.31 | 12.99 | 19.42 ||SVT-Net | 455 | 4053 | 423 | 51.42 | 299 | 31.39
EPC-Net 60.10 | 80.54 | 51.89 | 70.77 | 57.48 | 69.44 MinkLv2 | 12.12 | 4459 | 7.71 3499 | 2.63 27.12
MinkL3D | 57.17 | 68.27 | 44.88 | 60.54 | 46.13 | 63.79 LR-Net 21.10 | 70.96 | 6.56 42.46 | 9.48 46.14
MinkL++ | 65.91 | 81.83 | 57.11 | 76.20 | 65.73 | 75.94 LR-Mate | 60.78 | 72.03 | 41.06 | 44.89 |36.31| 45.75
MinkLv2 | 6147 | 80.80 | 47.37 | 64.38 | 63.83 | 72.99 Table 5. Test on long-term MulRan dataset
PPT-Net 4253 | 69.08 | 40.59 | 61.56 | 54.83 | 68.14 .
SVT-Net | 53.47 | 69.00 | 52.28 | 68.34 | 67.44 | 78.76 | 4.5 Ablation study
SOE-Net | 77.32 | 90.71 | 76.08 | 89.78 | 76.35 | 81.32 . . i i
LWR-Net | 5502 | 66.04 | 4522 | 6088 | 56.08 | 68.15 Given that LPR-Mate utilizes a non-learning trigger stage, the
RPR-Net | 83.80 | 93.80 | 8330 | 91.30 | 8040 | 86.80 evaluation focuses on the contributions of distinct learning
VNI-Net | 8530 | 9500 | 8330 | 9150 | 81.40 | 86.80 branches within its reranking network. To quantify their
RIA-Net 8821 | 9658 | 8636 | 9254 | 8346 | 89.03 individual impacts, three ablated variants of the re-ranking
LR-Net 8374 | 95.79 | 8216 | 9153 | 79.80 | 86.22 | subnetwork were generated: (1) LPRMate-WoLF (excluding the
LR-Mate 88.84 96.92 86.77 94.85 85.42 92.27 local feature enhancement branch), (2) LPRMate-WoGF

Table 4. Test on NUS In-house datasets using the model trained
on the Oxford RobotCar dataset

4.4 Experiments on raw point cloud dataset

Due to hardware constraints imposed by the large-scale raw point
clouds, many existing methods face challenges in directly
utilizing such data for training and testing. Consequently, we
adopt lightweight models—MinkLoc3D, MinkLoc-v2, SVT-Net,
and LR-Net—for comparative analysis. As illustrated in Table 5
(where R@1 denotes Recall@1 and R@1% denotes Recall@1%),
existing methods exhibit varying degrees of accuracy
degradation when applied to raw point clouds. This decline arises
primarily from the abundance of low-texture redundant features,
particularly  from ground points, which weaken the
discriminative capacity of global descriptors aggregated by
conventional frameworks. In contrast, LR-Mate achieves
superior performance in unprocessed raw point cloud scenarios
by integrating global feature retrieval with local region
comparisons to enhance scene matching precision. This
improvement highlights LR-Mate’s efficacy in optimizing scene

recognition methodologies under complex environmental
conditions.
DCC KAIST RiverSide

Methods | R@1 |R@1% | R@1 | R@1% | R@1 | R@1%

) | %) | (%) | (%) | (%) | (%)
MinkL3D | 16.06 | 39.91 | 17.95 | 43.38 |15.04 | 40.65
SVT-Net | 27.71 | 71.05 | 29.35 | 80.23 |19.46 | 58.88
MinkLv2 | 31.61 | 80.35 | 37.96 | 90.81 |24.18| 55.30
LR-Net 86.39 | 97.79 | 81.85 | 95.20 |61.95| 84.05
LR-Mate | 95.61 | 99.95 | 93.13 | 96.80 | 75.90| 85.83

Table 4. Test on original MulRan dataset

To further evaluate the performance of existing methods in long-
term LPR scenarios, we conducted experiments using the
recently updated MulRan dataset, which incorporates 4-year
longitudinal data featuring structural environmental changes and
sensor configuration shifts (from OS1-64 to 0S2-128 LiDAR
sensors). As shown in Table 5, all benchmarked methods exhibit
substantial performance degradation under these challenging
conditions. For instance, MinkLoc-v2’s Recall@1% at KAIST
drops from 90.81% to 34.99%, whereas the proposed method
retains relatively robust accuracy. This resilience is attributed to
the LPR-Mate’s ability to correct temporal misalignments via
local feature comparison, even when initial candidates from LR-
Net are suboptimal. The results underscore the LPR-Mate’s
adaptability to environmental and sensor variations, though

(excluding the global feature enhancement branch), and (3)
LPRMate-WoSC (excluding the SC-score fusion branch). As
summarized in Table 6, removing any branch reduced overall
performance, with the most pronounced degradation observed for
LPRMate-WoLF, underscoring the critical role of local feature
enhancement in reranking optimization.

Model Recall@1 (%) | Recall@1% (%)
LPR-Mate 98.45 99.46
LPRMate-WoLF 90.90 96.31
LPRMate-WoGF 96.66 99.31
LPRMate-WoSC 93.73 98.11

Table 6. Ablation study on the Oxford RobotCar dataset
4.6 Discussion

The experimental results demonstrate that LPR-Mate offers
several advantages. First, LPR-Mate can adapt to diverse existing
LPR  methods—whether local-region-based or  sparse-
voxelization-based—and effectively supports optimization.
Second, the non-learning-based trigger phase accurately assesses
initial retrieval correctness, enabling non-blind optimization by
activating reranking only when necessary, thereby improving
efficiency. Third, the reranking network effectively addresses
challenging scenarios (e.g., point cloud rotation, noise, sparsity,
or temporal variations), achieving state-of-the-art retrieval
accuracy in complex environments. Furthermore, LPR-Mate
operates as a plug-and-play module: it directly utilizes local
features and global descriptors from existing LPR networks
without requiring architectural or training adjustments, ensuring
seamless integration with pre-trained models. Figure 5 illustrates
LPR-mate’s performance under rotational perturbations, noise,
sparsity, and raw point clouds. While global descriptor-based
initial retrieval may produce structurally similar false candidates
under adverse conditions, LPR-Mate enables accurate final
matching through local feature comparison.
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Figure 9. Retrieval and localization results of LPR-Mate under
the influence of point cloud rotation, noise, sparsity, and raw
point cloud.

Despite these strengths, LPR-Mate has limitations. First, its
reranking efficacy depends on the initial retrieval candidates; if
correct scenes are absent from these candidates (e.g., in extreme
environments), reranking cannot recover them. Expanding the
candidate pool mitigates this issue. Second, storing local region
features increases storage demands compared to conventional
LPR methods. Future work could explore feature compression
techniques to reduce memory overhead while preserving
optimization performance.
5. Conclusions

In this study, we propose LPR-Mate, a universal post-
optimization method designed to enhance localization
performance in challenging scenarios. LPR-Mate processes the
top-k retrieval candidates’ information (k=25 in this work)
generated by existing LPR methods through a two-stage pipeline:
trigger phase and reranking phase. The trigger phase evaluates
candidate spatial consistency across local regions without
requiring training, thereby enabling selective activation of
reranking. When initial retrievals are accurate, reranking remains
inactive to preserve computational efficiency. In cases requiring
refinement, the reranking phase integrates local features, global
descriptors, and spatial consistency scores. A group-transformer
architecture facilitates local-region feature interaction, while
channel attention dynamically reweights global descriptor
channels to optimize candidate rankings. Extensive experiments
validate LPR-Mate’s state-of-the-art robustness against point
cloud rotation, noise, sparsity, and long-term environmental
variations. As a plug-and-play post-optimization module, LPR-
Mate seamlessly integrates with existing LPR pipelines—
including both local-region and sparse-voxelization-based
approaches—without  requiring  retraining or structural
modifications.

Despite these advancements, certain limitations persist. First,
LPR-Mate’s efficacy depends on the quality of initial retrieval
candidates; scenarios lacking correct candidates within the input
pool may compromise reranking efficacy. Second, the storage
overhead for local features poses practical constraints. Future
work could investigate lightweight alternatives, such as
compressed local feature representations or enhanced spatial
consistency metrics, to reduce memory demands. Additionally,
integrating LPR-Mate into SLAM systems could further
demonstrate its applicability in real-world robotic navigation
tasks.
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