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Abstract 

LiDAR place recognition (LPR) plays a critical role in simultaneous localization and mapping (SLAM) and autonomous driving 

systems. However, current LPR methods exhibit significant performance degradation under rotational shifts, noise interference, point 

cloud sparsity, and long-term environmental changes. This limitation stems from their reliance on fixed-length global descriptors, 

which lack the capacity to preserve comprehensive scene information in complex scenarios. To address these challenges, we propose 

LPR-Mate, a lightweight universal reranking-based optimizer that enhances the robustness of existing LPR frameworks in challenging 

environments. LPR-Mate processes top-k retrieval candidates from baseline LPR methods through a dual-stage pipeline: (1) A fast 

trigger mechanism evaluates spatial consistency between query and candidate scenes, selectively activating reranking only for low-

confidence matches; (2) An independent reranking network refines candidate rankings by fusing local features, global descriptors, and 

spatial consistency scores through group and channel attention mechanisms. Extensive experiments on the Oxford RobotCar, NUS-

Inhouse, and MulRan datasets demonstrate that LPR-Mate achieves >96% recall in localization accuracy validation and delivers a 

32.34% average improvement in Recall@1 under rotational shifts, sparsity, and noise perturbations, while maintaining robustness for 

raw point clouds and long-term scenarios. As a plug-and-play module, LPR-Mate integrates seamlessly with diverse LPR 

architectures—including region-sampling and sparse-voxelization-based methods—without requiring retraining or structural 

modifications, ensuring computational efficiency and cross-architectural universality. 

1. Introduction

Place recognition involves retrieving geotagged databases to 

identify the submap most similar to captured scene data, thereby 

determining the current location. This capability is critical for 

robotic applications such as loop closure in simultaneous 

localization and mapping (SLAM) systems (Xu et al. 2022; 

Lehtola et al. 2016) and global localization in GPS-denied 

environments (Yu et al. 2021). While vision-based methods have 

seen significant advancements, their performance remains 

susceptible to environmental changes, including illumination 

variations, viewport shifts, and adverse weather conditions. In 

contrast, LiDAR place recognition (LPR) demonstrates greater 

robustness, benefiting from LiDAR’s inherent insensitivity to 

lighting variations and weather conditions. 

Most LPR methods encode scene point clouds into fixed-length 

global descriptors to enable rapid retrieval and localization 

through feature distance comparisons. Early approaches relied on 

handcrafted features, which exhibited limited robustness to scene 

variations and required manual parameter tuning. Recent 

advances in deep neural networks have significantly improved 

LPR accuracy by leveraging diverse LiDAR data representations, 

including raw point clouds (Uy and Lee 2018; Zhang et al. 2023), 

voxels (Komorowski 2021; Xu et al. 2021), bird’s-eye views 

(Luo et al. 2023), and range images (Stathoulopoulos et al. 2024). 

However, despite these advancements, global descriptor-based 

methods—though achieving strong performance on benchmark 

datasets such as Oxford RobotCar (Maddern et al. 2017) and 

NUS Inhouse (Maddern et al. 2017)—demonstrate notable 

accuracy degradation under real-world conditions due to 

temporal and spatial discrepancies between database 

construction and user-side localization. Two critical challenges 

arise: First, existing methods exhibit performance degradation 

when query point clouds are rotated relative to database submaps 

(evidenced in Table. 2). Such rotational discrepancies frequently 

occur during lane changes, turns, or multi-directional traversals, 

necessitating robust rotation-invariant retrieval capabilities. 

Second, environmental dynamics over time—including weather 

fluctuations, seasonal transitions, and structural alterations—

introduce point density variations and noise distribution 

disparities between query and database submaps, compromising 

long-term system reliability. 

The core limitation of current methods lies in their reliance on 

fixed-length global descriptors, which lack the granularity to 

resolve the aforementioned challenges. This dependency 

necessitates preprocessing steps (e.g., ground removal, 

downsampling) to eliminate redundant data, thereby preventing 

direct processing of raw point clouds. Moreover, the emphasis on 

global features motivates the development of complex local 

geometric extractors, yielding oversized models incompatible 

with resource-constrained devices. Recent works have 

introduced re-ranking methodologies like TReR (global feature 

enhancement) and SpectralGV (local spatial consistency 

evaluation) to refine localization. However, these methods 

neglect the integration of global and local features, creating 

suboptimal representation synergy; Additionally, the absence of 

localization quality assessment mechanisms prompts 

indiscriminate optimization attempts, yielding unwarranted 

computational costs without performance guarantees. 

To address these limitations, we propose LPR-Mate, a 

lightweight universal reranking mechanism designed to reduce 

the reliance of existing LPR methods on global descriptors and 

enhance their robustness in challenging environments. Operating 

as a plug-and-play post-optimizer, LPR-Mate processes the local 

and global features from the top k initial retrieval candidates 

(k=25 in this work) generated by existing LPR methods through 

two sequential phases: First, a training-free trigger mechanism 

computes spatial consistency scores between query and candidate 

scenes to identify potential mismatches. If activated, the system 

initiates reranking. Second, an independent reranking network 

refines candidate rankings by fusing local features, global 

descriptors, and spatial consistency scores via spatial-channel 

attention mechanisms, thereby improving localization accuracy. 

Comprehensive evaluations across three large-scale datasets—

Oxford RobotCar (Maddern et al. 2017), NUS-Inhouse (Uy and 

Lee 2018), and MulRan (Jung et al. 2023; Kim et al. 2020)—

confirm the framework’s superior performance. LPR-Mate 

achieves a >96% recall rate in validating localization accuracy 

and delivers a 32.34% average improvement in Recall@1 metrics 

under rotational shifts, noise, sparsity, and raw point cloud 

conditions, significantly enhancing the robustness of existing 

LPR methods in challenging environments. 

2. Related Works

Learning global descriptor for LPR task: Global descriptors 

compress scene information to enable efficient database retrieval 

in LPR task, addressing the computational infeasibility of direct 

pairwise submap comparisons. PointNetVLAD (Uy and Lee 
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2018)  pioneered this approach by combining PointNet-based 

local feature extraction with NetVLAD-based global descriptor 

fusion. Subsequent advancements refined this framework: PCAN 

(Zhang and Xiao 2019) improved accuracy via a point contextual 

attention module, LPD-Net (Liu et al. 2019) integrated hand-

crafted and graph-based features, and EPC-Net (Hui et al. 2022) 

enhanced efficiency with lightweight ProxyConv. However, 

reliance on computationally intensive operations like farthest 

point sampling and k-nearest neighbor (KNN) searches limited 

scalability for large-scale point cloud. Recent lightweight 

architectures, such as LWR-Net (Zhang et al. 2023) and 

MinkLoc3D (Komorowski 2021), reduced overhead using 

random sampling or sparse voxelized representations. Extensions 

like MinkLoc++ (Komorowski, Wysoczańska, and Trzcinski 

2021) fused multimodal data, while MinkLoc3Dv2 

(Komorowski 2022) introduced ranking-based losses. Despite 

progress, these methods exhibit sensitivity to rotational variances, 

sparse distributions, and noise, as validated by our experiments. 

Reranking-based optimization for LPR task: Reranking 

methods refine initial retrieval results by reordering candidates to 

prioritize correct matches. While widely explored in image/text 

retrieval through techniques like RANSAC-based geometric 

verification (Avrithis and Tolias 2014) or transformer-driven 

local feature alignment (Tan, Yuan, and Ordonez 2021), these 

approaches face significant challenges in LiDAR applications 

due to point clouds' massive data volume and complex 3D 

geometry. Recent attempts to balance efficiency and accuracy 

include Query Expansion (QE) (Radenović, Tolias, and Chum 

2019) that aggregates database features to augment queries, and 

SuperGlobal (Shao et al. 2023) which enhances global 

descriptors via GeM pooling variants (GeM+, Scale-GeM, 

Regional-GeM) with top-k neighbor aggregation. However, such 

methods remain computationally inefficient or insufficiently 

robust for large-scale LiDAR scenarios. Most LPR research 

focuses on improving global descriptor learning, leaving 

reranking based on local features underexplored – existing 

solutions like TReR's transformer-based global descriptor 

reranking (Barros et al. 2023) or GIDP's training-set relationship 

(Fan, Song, Liu, et al. 2023) mimicry achieve efficiency but 

suffer from accuracy limitations in complex environments due to 

fixed-length descriptor constraints. Conversely, SpectralGV 

(Vidanapathirana et al. 2023) employs spectral geometric 

verification with local features but neglects global-local feature 

synergy. Crucially, current frameworks universally lack adaptive 

triggering mechanisms, applying resource-intensive reranking 

indiscriminately regardless of initial retrieval quality, thereby 

incurring unnecessary computational costs.  

3. Methodology 

We propose LPR-Mate, a lightweight universal reranking 

framework designed to enhance the localization accuracy of 

existing LPR methods in challenging environments. LPR-Mate 

processes the top k retrieval candidates’ information (k=25 in this 

work), which include local regional information (denoted as 𝐋 =
{𝐏𝑙𝑟 , 𝐅𝑙𝑟}  and global descriptors ( 𝐺 ), where 𝐏𝑙𝑟 ∈
ℝ𝑁𝑠×3  represents local region coordinates and 𝐅𝑙𝑟 ∈
ℝ𝑁𝑠×256  corresponds to local features. LPR-Mate operates 

through two sequential phases:  First, a training-free trigger 

mechanism evaluates retrieval reliability by computing spatial 

consistency scores between query and candidate scenes. If 

triggered (indicating low-confidence retrieval), the system 

initiates reranking (Section 3.1).; Second, an independent 

reranking network optimizes candidate rankings by fusing local 

features, global descriptors, and spatial consistency scores via 

spatial and channel attention mechanisms, prioritizing 

geometrically coherent matches (Section 3.2). Implementation 

details are elaborated in Section 3.3.  

Notably, existing LPR methods adopt an encoding paradigm 

of "local feature extraction → global feature aggregation", 

inherently encapsulating both local and global feature 

learning. LPR-Mate directly leverages the pre-trained network’s 

local and global features generated during this process, 

eliminating the need for architectural modifications or retraining 

of the original LPR networks. 

3.1 Trigger phase 

The Trigger phase evaluates the reliability of retrieved candidates 

to avoid unnecessary computational overhead from 

indiscriminate reranking. Inspired by SpectralGV 

(Vidanapathirana et al. 2023), we construct an undirected graph 

𝐷 = (𝑉, ℰ) between the query and candidate scenes using local 

regional positions 𝐏𝑙𝑟 and features 𝐅𝑙𝑟 . Vertices 𝑉 =
{𝑣1, 𝑣2, … , 𝑣𝑁𝑠

}represent correspondences identified via nearest-

neighbour searches on local feature distances, where 𝑣𝑡 =

(𝑃𝑡
𝑞

, 𝑃𝑡
𝑐𝑖)  links query and candidate local regions. Edges ℰ 

encode pairwise geometric compatibility via matching scores: 

 
𝑚𝑠𝑣1𝑣2

= [1 −
𝑑𝑣1𝑣2

2

𝑑𝑡ℎ𝑟
2 ]

+

, 

 𝑑𝑣1𝑣2
= |‖𝑃1

𝑞
− 𝑃2

𝑞
‖ − ‖𝑃1

𝑐𝑖 − 𝑃2
𝑐𝑖‖| 

(1) 

where [∙]+ = max (∙ ,0)  ensures non-negative scores, ‖∙‖ 

denotes L2 distance, and 𝑑𝑡ℎ𝑟  is a threshold. Correspondence 

pairs with 𝑑𝑣1𝑣2
> 𝑑𝑡ℎ𝑟  receive zero scores (geometric 

incompatibility, Fig. 1b), while preserved spatial relationships 

yield high scores (Fig. 1a). 

 

Figure 1. Pairwise geometric compatibility analysis of retrieval 

candidates: (a) Vertices with a high matching score; (b) Vertices 

with a zero matching score. 

The matching scores populate matrix 𝐌 ∈ ℝ𝑁𝑠×𝑁𝑠 , and we seek 

the inter-cluster ∁ maximizing the Rayleigh quotient: 

 𝑐̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 (
𝑐𝑇𝐌𝑐

𝑐𝑇𝑐
) (2) 

Where 𝑐 ∈ ℝ𝑁𝑠×1  is a binary cluster indicator vector. The 

principal eigenvector of 𝐌  approximates 𝑐̂ , and the spatial 

consistency (SC) score is computed as: 

 𝑆𝐶 𝑠𝑐𝑜𝑟𝑒 = 𝑐̂𝑇𝐌𝑐̂ (3) 

Unlike SpectralGV, which directly reranks candidates using 

spatial compatibility, our method activates reranking only if the 

top candidate’s SC score is not the highest. This lightweight, 

training-free mechanism ensures computational efficiency while 

preserving accuracy. 
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3.2 Reranking phase 

The reranking phase performs fine-grained scene comparisons by 

leveraging multi-level features (local region features 𝐋 =
{𝐏𝑙𝑟 , 𝐅𝑙𝑟}, global descriptors 𝐺, and SC scores) rather than relying 

solely on global descriptors. An independent network processes 

these inputs to generate a probability vector 𝐏𝐫𝐨𝐛 ∈ ℝ𝑘×1 , 

representing the likelihood of each candidate being a correct 

localization result (Fig. 2). 

 

Figure 2. The architecture of reranking network 

The network employs three parallel branches for multi-level 

feature encoding and fusion: 

(1) Local Feature Enhancement: The local feature 

enhancement branch refines candidate scene features through a 

grouped attention mechanism interacting with query features: 

 𝐐𝑔 = 𝑊𝑞
𝑔

(𝐅𝑙𝑟
𝐶𝑖), 𝐊𝑔 = 𝑊𝑘

𝑔
(𝐅𝑙𝑟

𝑞
), 𝐕 = 𝑊𝑣(𝐅𝑙𝑟

𝐶𝑖)), (4) 

 𝐖 = ∑ 𝐐𝑔𝐊𝑔
𝑇

𝐺

𝑔=1

, (5) 

 𝐅𝑙𝑟_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝐶𝑖 = 𝑀𝐿𝑃(Softmax (

𝐖

√𝐶
) 𝐕 + 𝐅𝑙𝑟

𝐶𝑖). (6) 

where  𝐅𝑙𝑟
𝑞

 and 𝐅𝑙𝑟
𝐶𝑖  denote local features of the query and i-th 

candidate, 𝑊q
𝑔(∙)  and 𝑊𝑘

𝑔(∙)  are group-wise 1 × 1 

convolutional layers that partition the feature map into 𝐺 groups, 

denoted as {𝐐𝑔, 𝐊𝑔 ∈ ℝ
𝑁𝑠×(

C

G
)
|𝑔 = 1, … , 𝐺}; and 𝑊𝑣(∙) is a 1 ×

1  convolutional layer to generate the value feature map 𝐕 ∈
ℝ𝑁𝑠×C. This grouped attention reduces computational complexity 

from 𝑂(𝑚h
2 ⋅ 𝐶)  to 𝑂(𝑚h

2 ⋅ (
𝐶

𝐺
+ 𝐺))  while retaining 

discriminative power. Where 𝑚h represents the number of heads 

in the multi-head attention mechanism. To maintain the network's 

lightweight design, we utilize a single-head self-attention 

mechanism with 𝑚h = 1. 

(2) Global Feature Enhancement: For the global descriptor 

used in the retrieval phase, each channel is treated uniformly. 

However, given that global descriptors encode abstract, compact 

scene representations, feature channels inherently carry unequal 

discriminative weights. To address this limitation, the global 

feature enhancement branch introduces channel-wise attention to 

address uniform channel treatment in global descriptors. As 

formalized in Equations (7) and (8), we first compute the global 

feature difference for the i-th candidate scene: 

 𝐅𝑔𝑙_𝑑𝑖𝑓𝑓

𝐶𝑖 = 𝐅𝑔𝑙
𝐶𝑖 − 𝐅𝑔𝑙

𝑞
 (7) 

where 𝐅𝑔𝑙
𝑞

 and 𝐅𝑔𝑙
𝐶𝑖  denote the query and candidate scene global 

descriptors, respectively. A linear layer Linear(∙) followed by a 

sigmoid activation generates channel-wise attention weights of 

dimension 1 × 256. The refined global feature 𝐅𝑔𝑙_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝐶𝑖 ∈

ℝ256 is then obtained via: 

 
𝐅𝑔𝑙_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

𝐶𝑖 = Sigmoid(Linear(𝐅𝑔𝑙_𝑑𝑖𝑓𝑓

𝐶𝑖 )) ∙

𝐅𝑔𝑙_𝑑𝑖𝑓𝑓

𝐶𝑖 . 
(8) 

(3) SC Score Fusion: The SC score fusion branch encodes 

spatial consistency scores into the feature space: 

 
𝐅𝐹𝑖𝑛𝑎𝑙

𝐶𝑖 = Linear[1→256](𝐅𝑆𝐶
𝐶𝑖 )) + 𝐅𝑔𝑙_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

𝐶𝑖 +

𝑀𝑎𝑥(𝐅𝑙𝑟_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝐶𝑖 ). 

(9) 

where 𝐅𝑆𝐶
𝐶𝑖 ∈ ℝ1  denote the SC score of i-th candidate scene, 

which is subsequently expanded from a dimension of 1 to 256 

using Linear[1→256](∙). The 𝑀𝑎𝑥(∙) represents max pooling. The 

enhanced local feature and global feature are fused with the 

encoded SC score through a summarization process to produce 

final feature of the i-th candidate scene, denoted as 𝐅𝐹𝑖𝑛𝑎𝑙
𝐶𝑖 ∈ ℝ256.  

The updated features of all candidate scenes are denoted as 

𝐅𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅 ∈ ℝ𝑘×256 , which is decoded into peobabilities 

Equation (10). The linear mapping layer followed by the Sigmoid 

function to transform the feature into the probability of each 

scene being correctly localized. Based on this probability, the 

candidate scenes can be reorganized. 

𝐏𝐫𝐨𝐛 = Sigmoid(Linear(𝐅𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅)). (10) 

Due to the imbalance of correctly and incorrectly located scene 

in the initial candidates, the re-ranking network utilize the Focal 

loss function  (Lin et al. 2017) for training, as shown in Equation 

(11). Where 𝑃𝑟𝑜𝑏𝑡 represents the estimated probability of the t-

th scene in 𝐏𝐫𝐨𝐛, 𝐺𝑡𝐿𝑎𝑏𝑡 denotes the ground truth label of the t-

th scene, and 𝑝𝑡 represents the probability assigned by the model 

to the correct localization. The parameter 𝛼𝑡 ∈ [0,1] acts as a 

weighting parameter for adjusting the proportion of loss between 

positive and negative samples, while γ serves as a focusing 

parameter that can be tuned to control the focusing effect. When 

γ is set to a value greater than 0, more emphasis is placed on 

challenging, misclassified examples; however, a value of γ = 0 

reduces it to the standard cross-entropy loss. 

FocalLoss(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡) , 𝑝𝑡 =

{
𝑃𝑟𝑜𝑏𝑡 𝑖𝑓 𝐺𝑡𝐿𝑎𝑏𝑡 = 1

1 − 𝑃𝑟𝑜𝑏𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

(11) 

3.3 Implementation details  

Two hierarchical encoding layers are implemented in the 

reranking network, each maintaining a feature dimension of 256. 

The local feature enhancement branch adopts grouped attention 

with 𝐺 = 4 groups. The probability decoding stage incorporates 

three linear layers with output dimensions of 128, 64, and 1, 

respectively. The Focal loss function is configured with 𝛼𝑡 =
0.25 and 𝛾 = 2, following the recommendations of (Lin et al. 

2017). All experiments are conducted on an Intel i7-9700k CPU 

and an NVIDIA RTX 2070S GPU. 

4. Experiments 

4.1 Experimental setting 

Benchmark datasets: Three large-scale datasets—Oxford 

RobotCar (Maddern et al. 2017), NUS In-house (Uy and Lee 

2018), and MulRan (Jung et al. 2023)—were utilized to evaluate 

the proposed method. For comprehensive comparisons under 

standardized conditions, the Oxford RobotCar and NUS In-house 

datasets (collectively referred to as standardized point cloud 

datasets) were employed. The Oxford RobotCar dataset 

comprises 10 km urban trajectories captured in central Oxford 

using a vehicle-mounted Sick LMS-151 LiDAR. The NUS In-

house dataset includes three segments: University Sector (U.S., 

10 km), Residential Area (R.A., 8 km), and Business District 

(B.D., 5 km), collected with a Velodyne HDL-64 LiDAR. Both 

datasets underwent preprocessing: non-informative ground 

points were removed, point clouds   were uniformly 

downsampled to 4,096 points, and normalized to zero mean 
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within [-1, 1]. Each submap was georeferenced using UTM 

coordinates from GPS/INS data. 

The MulRan dataset (raw point cloud dataset) was adopted to 

assess performance under real-world challenges. It comprises 

Ouster-64 LiDAR data collected across four distinct 

environments: Daejeon Convention Center (DCC), KAIST, 

Riverside, and Sejong City. To rigorously evaluate long-term 

place recognition capabilities, the recently proposed MulRan-

Longterm subset (Jung et al. 2023) was constructed by 

integrating Ouster-128 LiDAR data captured four years after the 

original dataset. This subset also introduces sensor variance, as 

the original database (Ouster-64) and query scans (Ouster-128) 

differ in resolution. Notably, the MulRan dataset retains raw, 

unprocessed point clouds—no ground removal or downsampling 

was applied—to preserve real-world fidelity for robust 

evaluation. 

To generate training tuples, point cloud pairs with a distance of 

less than 10m were defined as positive pairs, while more than 

50m were defined as negative pairs. We further applied default 

random rotations to each query submap to evaluate the 

performance of methods under point cloud rotation, including 

rotations around the Z-axis within ±30 degrees and rotations 

around the X-axis and Y-axis within ±5 degrees. 

Evaluation metrics: Performance was evaluated using 

the Recall@K metric, —specifically Recall@1 (top match) and 

Recall@1% (top 1% of candidates)—was applied. A query was 

considered successfully localized if at least one of the top-K 

retrieved database scans fell within 25m of the ground-truth 

position. Computational efficiency was assessed via average 

running time and model size (in millions of parameters, M). 

 

4.2 Enhancement offered by LPR-Mate 

We selected four LPR methods as backbone—LWR-Net (Zhang 

et al. 2023), MinkLoc3D (Komorowski 2021), SVT-Net (Fan et 

al. 2022), and MinkLoc-v2 (Komorowski 2022)—to evaluate 

LPR-Mate’s optimization efficacy across diverse LPR 

architectures. Our selection prioritized divergent local feature 

perception mechanisms: LWR-Net employs a region-sampling 

and neighborhood-grouping strategy, while MinkLoc3D, SVT-

Net, and MinkLoc-v2 rely on sparse-voxelization-based regional 

extraction. This methodological dichotomy between regional 

sampling and voxelization paradigms ensures validation of LPR-

Mate’s adaptability. 

 We first evaluated the effectiveness of LPR-Mate's trigger 

mechanism on existing methods under three environmental 

challenges: rotational variance, noise interference, and point 

cloud sparsity. Controlled perturbations were applied to query 

scenes using three protocols: (1) pose variation via random 

rotations (±30° about the Z-axis, ±5° about X/Y-axes); (2) 

sparsity simulation by downsampling original point clouds at 

predefined ratios; and (3) noise simulation through injection of 

outlier points, constrained by a 5 cm Euclidean distance threshold 

from structural elements to ensure realistic noise patterns. 

 As demonstrated in Table 1, the trigger mechanism achieves 

high activation recall rates (94.64% under rotation, 94.71% under 

noise, 95.52% under sparsity) across diverse LPR backbone, 

regardless of input feature types (local regions or sparse voxels). 

A negative correlation exists between the trigger’s activation 

ratio and the backbone’s Recall@1. This indicates that when a 

method excels in the retrieval stage (with a high Recall@1 rate), 

the trigger phase exhibits a low activation ratio, thereby avoiding 

the subsequent re-ranking computation and conserving 

computational resources. Conversely, when a method performs 

poorly in the retrieval stage, the trigger stage is promptly 

activated to optimize the current localization performance 

through the re-ranking stage. 

Methods 

With random rotation 

Recall@1 

（%） 
Trigger 

Ratio (%) 

Trigger 

Recall (%) 

LWR-Net 39.85 68.74 92.46 
MinkLoc3D 74.26 45.46 95.41 

SVT-Net 72.12 49.92 96.08 

MinkLoc-v2 84.57 36.73 94.60 

Methods 

With 80% downsampling ratio 

Recall@1 

（%） 
Trigger 

Ratio (%) 

Trigger 

Recall (%) 

LWR-Net 33.89 73.81 91.89 

MinkLoc3D 55.24 61.83 95.50 

SVT-Net 44.23 68.10 97.35 
MinkLoc-v2 70.95 48.68 94.10 

Methods 

With 256 outlier points 

Recall@1 

（%） 
Trigger 

Ratio (%) 
Trigger 

Recall (%) 

LWR-Net 33.89 73.81 91.89 

MinkLoc3D 60.91 58.30 96.29 
SVT-Net 66.77 52.72 97.70 

MinkLoc-v2 79.58 45.63 96.20 

Table 1. Evaluation of trigger mechanism on Oxford RobotCar 

Dataset 

Figure 3 demonstrates LPR-Mate's systematic performance gains 

when integrated with existing methods. Across rotational 

perturbations, extreme sparsity, and outlier corruption scenarios, 

the framework achieves 32.34% average (48.40% peak) 

Recall@1 improvements - independent of base encoders' 

structural paradigms (regional geometric neighborhoods in 

LWR-Net or sparse voxel hierarchies in MinkLoc3D). While 

effectively enhancing weak retrievers (+17.46% Recall@1 for 

LWR-Net under 90° rotations), performance remains candidate-

dependent: Ground-truth exclusion in initial retrievals 

necessitates either candidate pool expansion (top-50 vs. top-25) 

or robust backbone selection for extreme conditions. 

 
Figure 3. Retrieval enhancement of existing methods by the 

LPR-Mate under varying conditions of point cloud rotation, 

outlier, and sparsity levels. 
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4.3 Experiments on standardized datasets 

In this experiment, we employed our previously proposed 

method, LR-Net (Zhang et al. 2024), as the backbone to quantify 

performance enhancements enabled by LPR-Mate optimization 

(denoted as LR-Mate in comparative analyses). LR-Mate was 

benchmarked against 16 state-of-the-art methods: 

PointNetVLAD (PNVLAD) (Uy and Lee 2018), PCAN (Zhang 

and Xiao 2019), LPD-Net (Liu et al. 2019), SOE-Net (Xia et al. 

2021), EPC-Net (Hui et al. 2022), MinkLoc3D (MinkL3D) 

(Komorowski 2021), MinkLoc++ (MinkL++) (Komorowski, 

Wysoczańska, and Trzcinski 2021), MinkLoc-v2 (MinkLv2) 

(Komorowski 2022), SVT-Net (Fan et al. 2022), PPT-Net (Hui 

et al. 2021), LWR-Net (Zhang et al. 2023) , ERI-Net (Weng, 

Zhang, and Li 2022), RPR-Net (Fan, Song, Zhang, et al. 2023), 

VNI-Net (Tian et al. 2023), and RIA-Net (Hao, Zhang, and Su 

2024). All methods were uniformly trained to generate 256-

dimensional global descriptors. Evaluations utilized authors’ 

publicly released code and pre-trained models where available. 

For PPT-Net, model re-training was conducted owing to 

unavailability of pre-trained weights. For ERI-Net, RPR-Net, 

VNI-Net, and RIA-Net, results were reproduced from prior 

studies under identical evaluation protocols, as original 

implementations were partially incomplete or inaccessible. 

The evaluation results on the Oxford RobotCar dataset (Table 2) 

demonstrate that most existing methods—excluding those 

explicitly designed for rotation invariance (e.g., ERI-Net, RPR-

Net)—suffer accuracy degradation under query point cloud 

rotations (within ±30°). For instance, PNVLAD and PCAN 

exhibit >60% drops in Recall@1% under rotation. In contrast, 

LR-Mate achieves state-of-the-art performance in both rotated 

(Recall@1: 98.45%) and non-rotated (Recall@1: 98.52%) 

scenarios, confirming its rotation invariance and superiority. 

Methods 

Recall @1 (%) Recall@1% (%) 

With 

rotation 

Without 

rotation 

With 

rotation 

Without 

rotation 

PNVLAD 15.01 62.76 31.31 81.01 

PCAN 14.81 69.05 32.81 83.81 

EPC-Net 59.78 86.84 80.93 95.19 

MinkL3D 74.26 93.48 90.14 97.85 

MinkL++ 80.79 93.90 92.75 98.15 

MinkL-v2 82.68 96.25 95.15 98.87 

PPT-Net 61.55 92.21 82.82 97.50 

SVT-Net 63.52 93.70 84.11 97.80 

SOE-Net 86.72 89.37 95.60 96.40 

LWR-Net 40.41 93.76 62.67 98.32 

ERI-Net 85.30 92.84 95.31 97.89 

RPR-Net 81.10 81.00 92.20 92.20 

VNI-Net 85.50 85.50 94.00 94.00 

RIA-Net 89.74 91.23 96.22 96.84 

LR-Net 88.75 89.00 96.17 96.19 

LR-Mate 98.45 98.52 99.46 99.52 

Table 2. Test on the Oxford RobotCar dataset with random 

rotation within 30° 

As shown in Table 3, we compare model size and average 

runtime between LR-Mate and all baseline methods on the 

Oxford RobotCar dataset. While LR-Mate incurs elevated 

computational overhead (19ms average runtime compared to LR-

Net’s 10ms baseline) attributable to its two-stage architecture 

(retrieval: 10ms; reranking: 6ms), its trigger mechanism (3ms 

latency, 96.77% error recall rate in this experiment) ensures 

operational efficiency. Critically, only 33.02% of queries activate 

the reranking phase, meaning 66.98% of queries resolve within 

13ms (retrieval + trigger latency). This adaptive framework 

achieves an effective equilibrium between localization 

robustness and operational efficiency. 

Methods 
Average 

running time 

Model size 

(million) 

PNVLAD 15ms 19.78 

PCAN 55ms 20.42 

EPC-Net 26ms 4.70 

MinkLoc3D 12ms 1.06 

MinkLoc++ 12ms 1.06 

MinkLoc-v2 19ms 2.66 

PPT-Net 22ms 13.39 

SVT-Net 11ms 0.94 

SOE-Net 22ms 19.40 

LWR-Net 10ms 0.44 

RPR-Net 238ms 1.10 

VNI-Net 574ms 2.20 

RIA-Net / 18.39 

LR-Net 10ms 0.46 

LR-Mate 19ms 0.97 

Table 3. Model size and average running time on Oxford 

RobotCar dataset 

We further evaluated LR-Mate’s robustness against point cloud 

sparsity and outlier perturbations. As demonstrated in Figure 4, 

LR-Mate outperforms existing methods in maintaining 

recognition accuracy under varying density and noise conditions. 

Most current approaches, constrained by reliance on 256-channel 

global descriptors, exhibit sensitivity to noise interference and 

sparsity variations due to inherent dimensionality constraints. In 

contrast, LR-Mate optimizes localization results through the 

retrieval candidates, enhanced by trigger and re-ranking 

mechanisms, which decouples robustness from descriptor 

compactness, enabling reliable performance in degraded 

environments.  

 
Figure 4. Robustness to the point cloud noise and sparsity on 

the Oxford RobotCar dataset: (a) Average recall @1 changes 

with point cloud sparsity; (b) Average recall @1% changes with 

point cloud sparsity; (c) Average recall @1 changes with point 

cloud noise; (d) Average recall @1% changes with point cloud 

noise. 

To verify the generalization capability of each method, we 

evaluated models trained on the Oxford RobotCar dataset directly 

on the NUS In-house datasets. As shown in Table 4, LPR-Mate 

achieves state-of-the-art performance across all three scenes, 

outperforming recent methods like RIA-Net and VNI-Net. While 

the LR-Net (LR-Mate’s backbone) exhibits weaker 

generalization (e.g., 83.74% Recall@1 in U.S. vs. RIA-Net’s 

88.21%), the trigger and reranking components bridge this gap, 

enhancing Recall@1 by 5.10% (U.S.), 4.61% (R.A.), and 5.62% 
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(B.D.). This underscores the paradigm’s ability to refine initial 

candidates and mitigate overfitting to training data. 

Methods 

U.S. R.A. B.D. 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

PNVLAD 18.16 33.76 15.17 28.42 17.39 26.12 

PCAN 10.56 25.00 11.95 23.31 12.99 19.42 

EPC-Net 60.10 80.54 51.89 70.77 57.48 69.44 

MinkL3D 57.17 68.27 44.88 60.54 46.13 63.79 

MinkL++ 65.91 81.83 57.11 76.20 65.73 75.94 

MinkLv2 61.47 80.80 47.37 64.38 63.83 72.99 

PPT-Net 42.53 69.08 40.59 61.56 54.83 68.14 

SVT-Net 53.47 69.00 52.28 68.34 67.44 78.76 

SOE-Net 77.32 90.71 76.08 89.78 76.35 81.32 

LWR-Net 55.02 66.04 45.22 60.88 56.08 68.15 

RPR-Net 83.80 93.80 83.30 91.30 80.40 86.80 

VNI-Net 85.30 95.00 83.30 91.50 81.40 86.80 

RIA-Net 88.21 96.58 86.36 92.54 83.46 89.03 

LR-Net 83.74 95.79 82.16 91.53 79.80 86.22 

LR-Mate 88.84 96.92 86.77 94.85 85.42 92.27 

Table 4. Test on NUS In-house datasets using the model trained 

on the Oxford RobotCar dataset 

4.4 Experiments on raw point cloud dataset 

Due to hardware constraints imposed by the large-scale raw point 

clouds, many existing methods face challenges in directly 

utilizing such data for training and testing. Consequently, we 

adopt lightweight models—MinkLoc3D, MinkLoc-v2, SVT-Net, 

and LR-Net—for comparative analysis. As illustrated in Table 5 

(where R@1 denotes Recall@1 and R@1% denotes Recall@1%), 

existing methods exhibit varying degrees of accuracy 

degradation when applied to raw point clouds. This decline arises 

primarily from the abundance of low-texture redundant features, 

particularly from ground points, which weaken the 

discriminative capacity of global descriptors aggregated by 

conventional frameworks. In contrast, LR-Mate achieves 

superior performance in unprocessed raw point cloud scenarios 

by integrating global feature retrieval with local region 

comparisons to enhance scene matching precision. This 

improvement highlights LR-Mate’s efficacy in optimizing scene 

recognition methodologies under complex environmental 

conditions. 

Methods 

DCC KAIST RiverSide 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

MinkL3D 16.06 39.91 17.95 43.38 15.04 40.65 

SVT-Net 27.71 71.05 29.35 80.23 19.46 58.88 

MinkLv2 31.61 80.35 37.96 90.81 24.18 55.30 

LR-Net 86.39 97.79 81.85 95.20 61.95 84.05 

LR-Mate 95.61 99.95 93.13 96.80 75.90 85.83 

Table 4. Test on original MulRan dataset 

To further evaluate the performance of existing methods in long-

term LPR scenarios, we conducted experiments using the 

recently updated MulRan dataset, which incorporates 4-year 

longitudinal data featuring structural environmental changes and 

sensor configuration shifts (from OS1-64 to OS2-128 LiDAR 

sensors). As shown in Table 5, all benchmarked methods exhibit 

substantial performance degradation under these challenging 

conditions. For instance, MinkLoc-v2’s Recall@1% at KAIST 

drops from 90.81% to 34.99%, whereas the proposed method 

retains relatively robust accuracy. This resilience is attributed to 

the LPR-Mate’s ability to correct temporal misalignments via 

local feature comparison, even when initial candidates from LR-

Net are suboptimal. The results underscore the LPR-Mate’s 

adaptability to environmental and sensor variations, though 

performance gaps in long-term scenarios indicate room for 

improvement. 

Methods 

DCC KAIST RiverSide 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

R@1 

(%) 

R@1% 

(%) 

MinkL3D 0.67 18.01 4.72 31.43 2.28 25.94 

SVT-Net 4.55 40.53 4.23 51.42 2.99 31.39 

MinkLv2 12.12 44.59 7.71 34.99 2.63 27.12 

LR-Net 21.10 70.96 6.56 42.46 9.48 46.14 

LR-Mate 60.78 72.03 41.06 44.89 36.31 45.75 

Table 5. Test on long-term MulRan dataset 

4.5 Ablation study 

Given that LPR-Mate utilizes a non-learning trigger stage, the 

evaluation focuses on the contributions of distinct learning 

branches within its reranking network. To quantify their 

individual impacts, three ablated variants of the re-ranking 

subnetwork were generated: (1) LPRMate-WoLF (excluding the 

local feature enhancement branch), (2) LPRMate-WoGF 

(excluding the global feature enhancement branch), and (3) 

LPRMate-WoSC (excluding the SC-score fusion branch). As 

summarized in Table 6, removing any branch reduced overall 

performance, with the most pronounced degradation observed for 

LPRMate-WoLF, underscoring the critical role of local feature 

enhancement in reranking optimization.  

Model Recall@1 (%) Recall@1% (%) 

LPR-Mate 98.45 99.46 

LPRMate-WoLF 90.90 96.31 

LPRMate-WoGF 96.66 99.31 

LPRMate-WoSC 93.73 98.11 

Table 6. Ablation study on the Oxford RobotCar dataset 

4.6 Discussion 

The experimental results demonstrate that LPR-Mate offers 

several advantages. First, LPR-Mate can adapt to diverse existing 

LPR methods—whether local-region-based or sparse-

voxelization-based—and effectively supports optimization. 

Second, the non-learning-based trigger phase accurately assesses 

initial retrieval correctness, enabling non-blind optimization by 

activating reranking only when necessary, thereby improving 

efficiency. Third, the reranking network effectively addresses 

challenging scenarios (e.g., point cloud rotation, noise, sparsity, 

or temporal variations), achieving state-of-the-art retrieval 

accuracy in complex environments. Furthermore, LPR-Mate 

operates as a plug-and-play module: it directly utilizes local 

features and global descriptors from existing LPR networks 

without requiring architectural or training adjustments, ensuring 

seamless integration with pre-trained models. Figure 5 illustrates 

LPR-mate’s performance under rotational perturbations, noise, 

sparsity, and raw point clouds. While global descriptor-based 

initial retrieval may produce structurally similar false candidates 

under adverse conditions, LPR-Mate enables accurate final 

matching through local feature comparison. 
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Figure 9. Retrieval and localization results of LPR-Mate under 

the influence of point cloud rotation, noise, sparsity, and raw 

point cloud. 

Despite these strengths, LPR-Mate has limitations. First, its 

reranking efficacy depends on the initial retrieval candidates; if 

correct scenes are absent from these candidates (e.g., in extreme 

environments), reranking cannot recover them. Expanding the 

candidate pool mitigates this issue. Second, storing local region 

features increases storage demands compared to conventional 

LPR methods. Future work could explore feature compression 

techniques to reduce memory overhead while preserving 

optimization performance. 

5. Conclusions 

In this study, we propose LPR-Mate, a universal post-

optimization method designed to enhance localization 

performance in challenging scenarios. LPR-Mate processes the 

top-k retrieval candidates’ information (k=25 in this work) 

generated by existing LPR methods through a two-stage pipeline: 

trigger phase and reranking phase. The trigger phase evaluates 

candidate spatial consistency across local regions without 

requiring training, thereby enabling selective activation of 

reranking. When initial retrievals are accurate, reranking remains 

inactive to preserve computational efficiency. In cases requiring 

refinement, the reranking phase integrates local features, global 

descriptors, and spatial consistency scores. A group-transformer 

architecture facilitates local-region feature interaction, while 

channel attention dynamically reweights global descriptor 

channels to optimize candidate rankings. Extensive experiments 

validate LPR-Mate’s state-of-the-art robustness against point 

cloud rotation, noise, sparsity, and long-term environmental 

variations. As a plug-and-play post-optimization module, LPR-

Mate seamlessly integrates with existing LPR pipelines—

including both local-region and sparse-voxelization-based 

approaches—without requiring retraining or structural 

modifications. 

Despite these advancements, certain limitations persist. First, 

LPR-Mate’s efficacy depends on the quality of initial retrieval 

candidates; scenarios lacking correct candidates within the input 

pool may compromise reranking efficacy. Second, the storage 

overhead for local features poses practical constraints. Future 

work could investigate lightweight alternatives, such as 

compressed local feature representations or enhanced spatial 

consistency metrics, to reduce memory demands. Additionally, 

integrating LPR-Mate into SLAM systems could further 

demonstrate its applicability in real-world robotic navigation 

tasks. 
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