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Abstract: 

 

In the context of agricultural modernization, precise 3D organ segmentation has become indispensable for automated extraction of 

phenotypic traits. In particular, the precise delineation of stem and leaf structures from 3D point clouds is critical for monitoring plant 

growth and supporting high-throughput breeding programs. However, the intricate structure of crops and the blurred boundaries 

between stems and leaves present significant challenges, leading to the poor segmentation performance. To tackle these problems, we 

propose a Semantic Embedding-Guided Graph Self-Attention Network for stem-leaf separation in 3D point clouds, to tackle weak 

feature representation and low inter-class separability in complex plant structures. During the encoding stage, a multi-scale feature 

extraction module captures fine-grained local geometries, while a feature fusion module integrating graph convolution and self-

attention facilitates deep fusion of local and global semantic information. In the decoding stage, hierarchical upsampling combined 

with multi-level feature fusion reconstructs high-resolution representations to achieve fine-grained segmentation. Furthermore, we 

introduce a joint loss function that integrates inter-class discriminative loss with cross-entropy, aiming to optimize intra-class uniformity 

and reinforce class boundary delineation. Validation experiments on the Plant-3D dataset demonstrate that our methodology attains 

superior performance, with mean precision, recall, and IoU achieving 96.47%, 96.39%, and 93.50%, respectively. The proposed 

approach demonstrates high robustness and generalizability across diverse plant species and growth stages, providing an effective 

solution for high-throughput plant phenotyping. 

 

 

1. Introduction 

Plant phenotyping aims to measure and analyze structural traits, 

growth conditions, and physiological–biochemical properties of 

plants to uncover the interaction mechanisms among genotype, 

environment, and phenotype, thereby providing a scientific basis 

for crop growth regulation, quality improvement, and yield 

prediction (Watt et al., 2020; Tester and Langridge, 2010). In 

recent years, driven by advances in agricultural digitalization and 

precision farming, high-throughput and automated phenotyping 

has become a key research focus at the convergence of agriculture, 

biology, and computer vision (Singh et al., 2018). Accurate and 

efficient acquisition of the three-dimensional morphology and 

spatial distribution of plant organs (e.g., stems and leaves) is 

crucial for advancing precise crop monitoring, breeding 

optimization, and intelligent agronomic management. 

 

Conventional manual measurements suffer from high 

destructiveness, low efficiency, and restricted accuracy (Furbank 

and Tester, 2011). Two-dimensional imaging approaches are 

vulnerable to lighting variations, occlusions, and background 

noise, hindering accurate reconstruction of plants’ intricate 

spatial architecture. In contrast, three-dimensional imaging 

techniques—including LiDAR, structured light, and time-of-

flight (ToF) cameras—offer richer depth information and spatial 

detail, garnering considerable attention in plant phenotyping 

(Rajapaksha et al., 2024). Nevertheless, the diverse morphologies 

of plant organs and severe stem–leaf occlusions present 

formidable obstacles to accurate stem–leaf segmentation, thereby 

constraining the broader adoption of precision agriculture 

(Weyler et al., 2024). Consequently, enhancing the accuracy, 

robustness, and generalizability of stem–leaf segmentation in 

complex scenarios has become a critical challenge.  

 

In recent years, deep learning-based point cloud segmentation 
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methods have been widely employed for plant organ 

segmentation owing to their strong feature learning capabilities 

and high computational efficiency. Existing methods are typically 

classified into three categories: voxel-based, projection-based, 

and point-based approaches. Voxel-based approaches encode 

point clouds into structured 3D voxel grids and utilize 3D 

convolutional neural networks to extract features(Du et al., 2023); 

whereas projection-based methods segment projected 2D images 

using 2D convolutional neural networks (2D CNNs). Although 

both approaches benefit from well-established network 

architectures, they often suffer from significant loss of spatial and 

geometric information during transformation, thereby limiting 

their ability to accurately represent complex plant structures (Bai 

et al., 2023). In contrast, point-based methods extract features 

directly from raw point clouds, thus avoiding the spatial 

information loss associated with voxelization or projection and 

providing enhanced adaptability and representational capacity for 

complex plant architectures (Qi et al., 2017). DGCNN (Wang et 

al., 2019) enhances point-wise feature interactions through the 

construction of dynamic adjacency graphs, thereby enabling 

effective capture of local geometric relationships in complex 

regions, such as stem-leaf junctions; KPConv employs 

deformable convolutional kernels to enhance feature extraction 

from point clouds exhibiting non-uniform densities (Thomas et 

al., 2019); PointTransformer integrates self-attention to 

dynamically model semantic relationships among distant points, 

thereby facilitating improved global representation in occluded or 

structurally complex regions (Zhao et al., 2021); RandLA-Net 

(Hu et al., 2020) adopts efficient random sampling and feature 

aggregation strategies to preserve high segmentation accuracy 

while reducing computational costs, making it suitable for large-

scale point cloud processing. In addition, methods such as Graph 

Convolutional Networks (GCNs), Recurrent Neural Networks 

(RNNs), and Conditional Random Fields (CRFs) have also been 

widely adopted for fine-grained semantic segmentation of point 
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clouds, as they model neighborhood structures and spatial 

dependencies to further enhance representational capability and 

segmentation performance. 

 

Although existing methods have achieved notable progress in 

plant stem-leaf separation tasks (Yang et al., 2024b) and 

demonstrated satisfactory segmentation quality, they still face 

numerous challenges in real-world applications. The intrinsic 

characteristics of point cloud data—such as sparsity, noise, and 

structural complexity—pose significant challenges for existing 

methods in accurately capturing both local and global features 

and distinguishing between structurally similar plant organs 

(Yang et al., 2024a). Moreover, current models exhibit limited 

generalization across different crop varieties, growth stages, and 

morphological types. This limitation becomes particularly 

evident when handling multi-layered stem-leaf structures or 

heavily occluded scenes, where segmentation accuracy degrades 

significantly. How to further improve segmentation accuracy 

while enhancing model robustness and generalizability in 

complex scenarios remains a key challenge in plant structural 

point cloud segmentation. Therefore, there is a pressing need to 

develop point cloud segmentation models that are more robust, 

efficient, and generalizable, capable of handling intricate plant 

architectures and supporting high-throughput phenotypic 

analysis. 

 

To address these challenges, we propose a semantic embedding–

guided graph self-attention network for the separation of stems 

and leaves in 3D plant point clouds. Our primary research 

contributions include: 

(1) A graph attention-based feature enhancement module is 

proposed to improve the expressiveness and discriminative 

capacity of point cloud features. This module utilizes a dynamic 

graph convolutional network to capture local geometric 

structures, while the self-attention derives attention weights to 

enhance the modeling of long-range contextual relationships. 

(2) A multi-task collaborative optimization strategy is devised, 

integrating cross-entropy loss with an inter-class discriminative 

loss to optimize the distribution of high-dimensional features. 

Classification objectives focus on performance improvement, 

whereas discriminative objectives promote intra-category 

clustering and inter-category separation. 

(3) Comprehensive experimental validation is performed using 

the Plant-3D dataset, demonstrating our approach outperforms 

current leading methods in segmentation precision and 

robustness (Conn et al., 2017). 

 

2. Methodology 

To address the critical challenges associated with stem–leaf 

segmentation in 3D plant point clouds, we present a semantic 

embedding-guided encoder–decoder framework, as depicted in 

Figure 1. The proposed network comprises four principal 

modules: (1) an encoder that performs multi-scale geometric 

feature extraction by progressively enlarging the receptive field 

to capture detailed local structural information; (2) a graph-based 

feature enhancement module that combines graph convolution 

with self-attention mechanisms to effectively integrate local 

geometric relationships and global contextual cues; (3) a decoder 

that employs hierarchical upsampling and skip connections to 

incrementally reconstruct high-resolution features while 

preserving critical semantic cues from the encoding phase; (4) a 

multi-task optimization module that jointly applies inter-class 

discriminative and cross-entropy losses to refine the feature space, 

promoting intra-class compactness and inter-class separability, 

thereby enhancing point-wise classification accuracy and 

enabling precise stem–leaf segmentation. 

 

2.1 Multi-scale coding and feature extraction 

In 3D point cloud analysis, the non-uniform point distribution, 

varied local geometries, and intricate global structures pose 

considerable challenges for effective multi-scale feature 

extraction. To overcome these difficulties, we propose a multi-

scale feature extraction approach that combines downsampling 

with self-attention mechanisms, aiming to maximally preserve 

local spatial structures while capturing rich geometric 

information.  

 

During the feature extraction stage, a farthest point sampling 

strategy is employed to construct point cloud subsets, thereby 

reducing data redundancy and mitigating sampling bias. 

Subsequently, for each sampled point 𝑝𝑖, a local neighborhood 

𝒩(𝑝𝑖)  is then established using K-nearest neighbor (K-NN) 

search, and both spatial coordinates and point-wise features are 

extracted to encode detailed local geometric information. 

Specifically, the feature representation of each sampled center 

point 𝑝𝑖 is defined as:  

 

 𝑿𝒊 = Concat[𝑝𝑖 , 𝑝𝑖
𝑘 , ||𝑝𝑖 − 𝑝𝑖

𝑘||, (𝑝𝑖 − 𝑝𝑖
𝑘)] (1) 

 

Where 𝑝𝑖 and 𝑝𝑖
𝑘 denote the 3D coordinates of the center point 

and its 𝑘  neighboring, and || ∙ ||  denotes the Euclidean 

distance. A multi-layer perceptron (MLP) followed by the 

Softmax function is used to compute attention weights 𝛼𝑖𝑗 , 

facilitating dynamic aggregation of neighborhood features: 

 

 

𝑿̂𝑖 = ∑ 𝛼𝑖𝑗

𝑗∈𝑁(𝑖)

∙ 𝑿𝑖𝑗 

𝛼𝑖𝑗 = Softmax (MLP(𝑿𝑖𝑗)) 

(2) 

 

where 𝑿𝑖𝑗  represents the feature difference between point 𝑝𝑖 

and its neighbor 𝑝𝑖
𝑘. This operation enhances the representation 

of critical local structures while mitigating the influence of weak 

or noisy points. 

 

To alleviate the degradation and feature attenuation caused by 

increasing network depth, residual connections are introduced 

into each encoding layer, as defined as follows. 

 

 𝑿𝑡 = 𝑓(𝑿𝑡) + 𝑔(𝑿𝑡−1) (3) 

 

Where 𝑓(∙) denotes the nonlinear transformation at the current 

encoder layer, and 𝑔(∙) is a 1×1 convolution used to preserve 

feature dimensionality and enhance feature stability. 

 
Figure 1. Illustrates the overall workflow of the proposed approach. 
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To simultaneously capture fine-grained local details and global 

semantic context, we incorporate multi-scale feature fusion 

following downsampling, using cross-layer residual connections. 

Specifically, after obtaining the output of the t-th layer, features 

sampled from the preceding layer are concatenated with the 

encoded features of the current layer, as expressed below: 

 

 𝑿𝑡 = [DS(𝑿𝑡−1), Encode(𝑿𝑡)] (4) 

 

Where DS(∙)  denotes the downsampling operation, while 

Encode(𝑿𝑡)  represents the feature mapping function at the 

current layer. This design enables deep networks to retain low-

level local geometric information while fully leveraging high-

level semantic features, thereby enhancing the overall precision 

and robustness of feature representation. 

 

2.2 Graph Attention Based Feature Aggregation and 

Optimization 

Owing to the irregular nature and complex spatial structure of 

point cloud data, conventional global feature representations—

such as the encoded feature X—are often inadequate for capturing 

fine-grained category boundary information. This limitation 

undermines both the overall shape representation and the accurate 

delineation of complex category boundaries. To address this, and 

inspired by prior work (Tian and Li, 2022), A graph attention-

based feature aggregation module is incorporated prior to the 

decoding stage, aiming to comprehensively capture correlations 

between local geometric details and global contextual 

information. The detailed processing pipeline of this module is 

illustrated in Figure 2. 

 

2.2.1 Graph Structure: This module transforms the visual 

features output by the encoder into a graph representation 𝐺 =
(𝑽, 𝑬) , where the node set 𝑽 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑁′}  represents 

sampled points, with each point 𝑝𝑖  corresponding to a graph 

node. To accurately capture point-wise spatial topology, we first 

compute the Euclidean distance matrix 𝑫𝒊𝒔𝒕 ∈ ℝ𝑁′×𝑁′ , and 

apply the KNN algorithm to determine the local neighborhood 

𝒩(𝑝𝑖) of each node 𝑝𝑖. The edge set 𝑬 is then constructed as: 

 

 𝑬 = {(𝑝𝑖 , 𝑝𝑗)|𝑝𝑗ϵ𝒩(𝑝𝑖)} (5) 

 

To effectively encode local geometric structures and feature 

discrepancies in the point cloud, each edge feature 𝒆𝑖𝑗 = (𝑝𝑖 , 𝑝𝑗) 

is defined by concatenating the spatial coordinate difference and 

feature difference between adjacent nodes: 

 

 𝒆𝑖𝑗 = concat(𝑝𝑗 − 𝑝𝑖 , 𝒙𝑗 − 𝒙𝑖) (6) 

 

where, 𝑝𝑖 and 𝑝𝑗 denote 3D spatial coordinates, while 𝒙𝑖 and 

𝒙𝑗   represent the corresponding downsampled point features. 

This design significantly enhances the descriptive power of edge 

features in representing local geometry and provides informative 

cues for subsequent attention-based aggregation. 

 

2.2.2 Self-Attention: After constructing the graph structure, a 

self-attention mechanism is introduced to iteratively update node 

features through adaptive aggregation of contextual information 

from local neighborhoods. Specifically, this mechanism learns 

attention weights between each node and its neighbors, enabling 

dynamic acquisition of informative context to facilitate effective 

local-global feature interaction. The node feature update is 

formally defined as: 

 

 𝒙𝑖
(𝑘+1)

= max
(𝑖,𝑗)∈𝜀

ℎ𝜃(concat[𝒙𝑖
(𝑘)

, 𝒙𝑖𝑗
(𝑘)

]) (7) 

 

Where, 𝒙𝑖
(𝑘)

 represents the feature associated with node 𝑖 upon 

completion of the k-th iteration, 𝒙𝑖𝑗
(𝑘)

 is the corresponding edge 

feature, ℎ𝜃  is a mapping function comprising a linear 

transformation, instance normalization, and a LeakyReLU non-

linear activation, while max(·)  indicates a max-pooling 

aggregation operation within the local neighborhood. By stacking 

multiple layers of this architecture, the model progressively 

refines point representations to capture fine-grained local 

structures while simultaneously incorporating global spatial 

context. 

 

2.2.3 Cross-scale feature fusion: To improve the expressiveness 

of node features, this work introduces a cross-scale feature fusion 

mechanism. Specifically, we concatenate multiple intermediate 

features (e.g., 𝒙𝑖
(1)

, 𝒙𝑖
(2)

) obtained from iterative graph attention 

aggregation with the initial features (e.g., 𝒙𝑖
(0)

 ). The 

concatenated features are then projected to a specified dimension 

through a learnable linear mapping (e.g., an MLP or linear layer), 

producing the final graph attention-enhanced feature: 

 

 𝒙𝑖
GNN = ℎ𝜃(concat[𝒙𝑖

(0)
, 𝒙𝑖

(1)
, 𝒙𝑖

(2)
]) (8) 

 

This operation not only effectively integrates fine-grained local 

structures and overarching semantic information across different 

 
Figure 2. Graph Attention-based Feature Aggregation Module 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-239-2025 | © Author(s) 2025. CC BY 4.0 License.

 
241



feature levels but also substantially improves the capacity of node 

features to distinguish complex geometric structures. Overall, the 

proposed graph attention-based feature aggregation module more 

efficiently captures local geometric details and global contextual 

relationships in 3D point cloud data, thereby exhibiting improved 

adaptability and robustness in tasks such as plant stem–leaf 

segmentation. 

 

2.3 Multi-scale decoding and feature reconstruction  

In the decoding phase, to efficiently recovers fine-grained 

geometric details as well as global spatial semantics lost during 

downsampling, we propose a hierarchical feature reconstruction 

and fusion decoding module that incrementally restores the point 

cloud’s spatial resolution while ensuring consistency across 

multiple scales. Specifically, the module initially employs a K-

nearest neighbor interpolation strategy to project low-resolution 

features onto their corresponding high-resolution coordinates, 

thereby mitigating feature deviation during interpolation and 

preserving spatial continuity and consistency. Let the decoding 

layer input features be 𝑿GNN . The upsampling process is 

formulated as:  

 

 𝑿up(𝑝𝑖) = 𝑿GNN(𝑝𝑗∗)， 𝑗∗ = argmin
𝑗

𝑑(𝑝𝑖 , 𝑝𝑗) (9) 

 

Where 𝑝𝑖  and 𝑝𝑗  denote high- and low-resolution points, 

respectively, and 𝑑(∙) indicates the Euclidean distance measure. 

In view of potential attenuation of local geometric features during 

interpolation, we further introduce a multi-scale feature fusion 

strategy combined with an attention mechanism to weight cross-

scale information. Specifically, at the decoding stage, we fuse the 

current layer’s features 𝑿de
𝑡   with the previous layer’s features 

𝑿de
𝑡−1 . An attention-based pooling strategy is adopted to 

dynamically allocate fusion weights across multi-scale features, 

enabling effective cross-scale interaction and feature 

optimization. Furthermore, to strengthen the spatial detail 

awareness and semantic expressiveness of the features, the 

decoding module employs a skip-connection architecture to 

directly transfer high-resolution features from the matching 

encoder layer to the corresponding decoder layer. A multi-layer 

perceptron (MLP) subsequently learns the fusion weights, fully 

exploiting the complementarity and structural consistency of 

features across different stages. With these designs in place, the 

proposed decoding module effectively restores the spatial 

resolution and fine-grained structure of the point cloud, 

enhancing detail integrity and semantic consistency during 

feature reconstruction. Consequently, it offers more stable and 

accurate feature support for subsequent point-level classification. 

 

2.4 Loss Function 

The formulation of a loss function directly impacts the efficiency 

of network optimization and the overall performance. To address 

this, we propose an optimization strategy that integrates cross-

entropy loss with a Semantic-aware discriminative loss, thereby 

jointly enhancing classification accuracy and the discriminative 

capacity of the feature space. 

 

2.4.1 Cross-entropy: The cross-entropy loss measures the 

difference between the network’s predicted outputs and the true 

labels. It is formulated as: 

 

 ℒce = − ∑ 𝑡𝑛log(𝑝̂𝑛) + (1 − 𝑡𝑛)log(1 − 𝑝̂𝑛)

𝐶

𝑛=1

 (10) 

 

where, 𝐶 denotes the total number of categories, 𝑡𝑛 represents 

the ground-truth label, and 𝑝̂𝑛 is the predicted probability from 

the model. Minimizing this difference via backpropagation 

enhances the classification performance. 

 

2.4.2 Semantic-aware discriminative loss: Even though 

semantic and instance segmentation tasks in 3D point clouds 

often treat category recognition and instance separation as 

separate objectives, they are intrinsically related: instance-level 

features can guide category identification, whereas intra-category 

features may vary significantly across different instances. 

Accordingly, we draw on inter-class separability to propose an 

inter-class feature discrimination loss ℒDL , which unifies 

semantic and instance segmentation within a single embedding 

space to improve discriminative power. As illustrated in Figure 3, 

the proposed loss enforces feature compactness within each class 

and repulsion between different classes, thereby improving the 

separability of semantic categories. 

 

This embedding loss comprises three components—an intra-class 

pull term, an inter-class push term, and a feature-space 

regularization term—formally expressed as: 

 

 ℒDL = 𝛼 ∙ ℒpull + 𝛽 ∙ ℒpush + 𝛾 ∙ ℒreg (11) 

 

where the intra-class pull term ℒpull clusters features belonging 

to the same instance:  

 

 ℒpull =
1

𝐾
∑

1

𝑁𝑘

𝐾

𝑘=1

∑[||𝜇𝑘 − 𝑒𝑗|| − 𝛿𝑣]+
2

𝑁𝑘

𝑗=1

 (12) 

 

The inter-class push term ℒpush  boosts inter-category 

separability： 

 

ℒpush =
1

𝐾(𝐾 − 1)
∑ ∑ [2𝛿𝑑 − ||𝜇𝑘 − 𝜇𝑚||2]+

2

𝐾

𝑚=1,𝑚≠𝑘

𝐾

𝑘=1

 

 (13) 

 

The feature regularization term ℒreg  stabilizes the overall 

feature distribution: 

 

 ℒreg =
1

𝐾
∑ ||𝜇𝑘||2

𝐾

𝑘=1

 (14) 

 

Where，[𝑥]+ = max(0, 𝑥). The parameters 𝛿𝑣 and 𝛿𝑑 denote 

the thresholds for intra-class compactness and inter-class 

separation, respectively, 𝜇𝑘  denotes the centroid of the k-th 

instance’s features, and 𝑒𝑗   corresponds to the embedding 

associated with that instance. We set 𝛼 = 𝛽 =1 and 𝛾 = 0.001. 

 
Figure 3. Illustration of the discriminative loss with intra-

cluster pull and inter-cluster push forces. 
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By jointly leveraging these terms, the model significantly boosts 

feature discriminability across categories, improving 

performance on point cloud segmentation tasks. 

Finally, we define the overall loss function as: 

 

 ℒ = ℒCE + 𝜆ℒDL (15) 

 

Where 𝜆 represents a weighting factor that controls the balance 

between the cross-entropy loss and the inter-class feature 

discrimination loss. 

 

3. Experimentation 

High-quality, meticulously annotated, and structurally preserved 

point cloud datasets form the foundation for advancing deep 

learning–driven 3D plant segmentation. Ideally, these datasets 

should exhibit comprehensive plant structures, high sampling 

resolution, broad species diversity, and multiple growth stages. In 

the present work, we employed the Plant-3D dataset released by 

Conn et al. (2017), which comprises 558 individual plant samples 

of tobacco, tomato, and sorghum, captured using a non-contact 

3D laser scanner. The dataset spans approximately 20 growth 

stages and encompasses a wide range of environmental 

conditions, including natural lighting, shadows, high temperature, 

strong light, and drought. While ensuring structural integrity, it 

also reflects rich morphological and environmental diversity, thus 

providing a reliable basis for developing and evaluating plant 

point cloud segmentation methods. 

 

3.1 Evaluation indicators 

To comprehensively evaluate model performance, four widely 

used metrics are employed: precision, recall, F1-score, and IoU 

(Yang et al., 2025). Precision measures the fraction of points 

correctly predicted among all points assigned to a particular class. 

Recall measures the fraction of ground-truth points that are 

correctly identified for a given class. The F1-score, defined as the 

harmonic mean of precision and recall, provides a balanced 

assessment of overall model performance. IoU measures the 

spatial overlap between predicted regions and the corresponding 

ground-truth areas. In addition, to assess model performance 

across all semantic categories, the mean intersection over union 

(mIoU) is calculated to provide a comprehensive evaluation of 

semantic segmentation accuracy. 

 

3.2 Quantitative analysis 

 The results of the model’s semantic segmentation for three plant 

species, tobacco, tomato, and sorghum, are presented in Table 1. 

Overall, tomato achieved the highest segmentation performance, 

   
(a)Tobacco (b)Tomato (c)Sorghum 

Figure 4. Performance comparison of different methods across four evaluation metrics in stem-leaf separation. 

     

     

     
(a) Ground Truth (b) Initial (c) Embed (d) GCN (e) E+G 

Figure 5. Qualitative comparison of stem-leaf separation results for three plant species (red represents leaves, blue represents 

stems). Embed denotes the semantic-aware discriminative loss module, GCN denotes the GCN self-attention module, and E+G 

denotes the collaboration of both modules. 
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particularly for the leaf class, where all evaluation metrics 

exceeded 98%, while the IoU for stems remained comparatively 

lower. This superior performance is primarily attributable to the 

larger sample size and broader coverage of growth stages, which 

facilitated the learning of more comprehensive and generalizable 

feature representations. In contrast, sorghum exhibited relatively 

lower segmentation accuracy, especially in stem regions where 

complex structures and tightly connected leaf sheaths posed 

significant challenges. Notably, across all plant species, the 

model consistently underperformed in segmenting stems relative 

to leaves, as reflected by similar trends across all evaluation 

metrics. This phenomenon is likely caused by class imbalance in 

the dataset, where the overwhelming number of leaf points 

compared to stem points biases the model towards learning leaf-

specific features during training. To improve stem structure 

recognition, future work could explore optimized data sampling 

strategies or incorporate class-level augmentation techniques to 

mitigate performance gaps arising from class imbalance. 
 

To further validate the effectiveness of the proposed method for 

stem–leaf segmentation in plant point clouds, we compared it 

with mainstream methods such as PointNet, PointNet++, ASIS 

and PlantNet, and systematically evaluates it on three crop 

datasets, namely tobacco, tomato and sorghum. Figure 4 

demonstrates the quantitative performance of each method under 

four metrics: Precision, Recall, F1-score and IoU. The results 

indicate that the proposed method surpasses the comparison 

approaches across all evaluation metrics, with particularly 

notable improvements observed on the structurally complex 

sorghum dataset. Meanwhile, the proposed method also 

demonstrates good modeling ability for fine-grained structures 

and boundary regions in tobacco and tomato data, especially in 

Precision and IoU metrics, which fully verifies its robustness and 

generalization ability under diverse plant structures. 

 

3.3 Qualitative analysis 

To systematically assess the model’s segmentation capability 

across different crop types and developmental stages, a 

systematic qualitative visualization was performed on tobacco, 

tomato, and sorghum. As shown in Figure 5, the semantic 

segmentation outcomes for these three crops are illustrated under 

complex structural patterns and diverse environmental conditions. 

Each row of the figure represents a plant sample, with columns 

showing the ground truth, the initial output (Initial), the result 

after introducing the discriminative loss module (Embed), the 

output with the graph attention module (GCN), and the final 

output combining both modules (E+G). The visualizations 

indicate that the baseline network exhibits clear limitations when 

processing structurally complex plant regions. For example, in 

tobacco, bifurcation regions between stems and leaves are poorly 

delineated; tomato samples reveal blurred boundaries and 

uncertain class transitions within leaf structures; and sorghum 

often shows misclassification in the tightly connected stem–

sheath areas. With the progressive introduction of the Embed and 

GCN modules, the model demonstrates substantially improved 

spatial awareness and semantic discrimination in 3D point clouds. 

Organ boundaries become sharper, and the separation between 

stems and leaves is considerably enhanced, with the final 

predictions closely matching the ground truth annotations. The 

findings demonstrate that the proposed framework is both robust 

and effective in segmenting complex plant architectures from 3D 

point clouds, laying a strong foundation for subsequent analyses 

of detailed phenotypic traits. 

 

 
(a) Ground Truth (b) Baseline (c) Ours (d) Improved Area 

Figure 6. Comparison of segmentation results and improvement effects on the Plant-3D dataset. The red areas in the subfigure (d) 

highlight the regions where our proposed method outperforms the baseline. 

Metrics  Tobacco Tomato Sorghum Mean 

Precision 

(%) 
Stem 97.13 98.50 85.96 93.86 
Leaf 99.55 99.34 98.33 99.07 

Recall 

(%) 

Stem 97.94 97.72 85.33 93.66 
Leaf 99.36 99.57 98.41 99.11 

F1-score 

(%) 
Stem 97.54 98.11 85.64 93.76 
Leaf 99.46 99.46 98.37 99.10 

IoU (%) 
Stem 95.19 96.29 74.89 88.79 
Leaf 98.92 98.92 96.78 98.21 

Table 1. Quantitative results of the network for plant 

semantic segmentation 
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To further assess the effectiveness of the proposed method, we 

performed a comparative evaluation against the baseline model 

on tobacco, tomato, and sorghum, as illustrated in Figure 6. 

Subfigure (a) displays the ground truth annotations; (b) and (c) 

depict the segmentation outputs of the baseline and proposed 

models, respectively; (d) highlights the regions where our model 

outperforms the baseline. The results indicate that the baseline 

model suffers from evident mis-segmentation at blade edges and 

in structurally complex regions. In contrast, the proposed 

approach exhibits stronger capability in capturing geometric 

structures under challenging scenarios, such as overlapping or 

bending blades and stem–leaf junctions, thereby correcting 

segmentation errors of the baseline model and markedly 

improving local segmentation accuracy. 

 

4. Ablation Study 

To evaluate the individual contributions of each component to 

overall performance, we performed ablation experiments on the 

Plant-3D dataset (Table 2), focusing on the discriminative module 

(Embed) and the graph-based self-attention module (GCN). The 

results indicate that the integration of these two modules yields 

performance gains of 2.26%, 1.1%, 1.7%, and 2.76% in precision, 

recall, F1-score, and IoU, respectively. Specifically, the Embed 

module improves class separability and intra-class compactness 

within the feature space; its removal causes a marked decline in 

recall and F1-score. For crops with complex structural 

morphology, including tomato and sorghum, the average recall 

declined to 97.30% and F1-score fell to 89.60%, highlighting 

inadequate feature aggregation and increased confusion between 

stems and leaves. Meanwhile, the GCN module proves essential 

for both local structural modeling and global semantic perception. 

Removing this module leads to a 1.06% drop in tobacco’s IoU, a 

3.72% reduction in sorghum’s F1-score, and an almost 10% 

decrease in stem IoU, suggesting that the model’s ability to 

aggregate neighborhood features and maintain segmentation 

consistency is severely weakened. In summary, both modules are 

indispensable for strengthening the model’s capability to capture 

intricate plant architectures in 3D point clouds and ensuring high-

quality stem–leaf separation. 

 

5. Summary and outlook 

With the accelerated advancement of modern agriculture and 

smart farming, efficient and precise segmentation of plant organs 

has become a fundamental prerequisite for high-throughput 

phenotyping and comprehensive crop monitoring. This study 

introduces a semantic Embedding-Guided Graph Self-Attention 

Network for stem–leaf separation in 3D plant point clouds. By 

integrating graph convolution with self-attention, the framework 

effectively models intricate geometric structures while capturing 

long-range contextual dependencies within point clouds. During 

feature space optimization, cross-entropy and inter-class 

discriminative loss functions are jointly optimized to make 

features within a class more similar and features between classes 

more distinct, thereby enhancing classification performance and 

strengthening the separability of the feature space. Experimental 

validation on the Plant-3D dataset demonstrates that the proposed 

approach achieves substantial performance gains in stem–leaf 

separation, yielding improvements of 3.97%, 4.35%, and 7.64% 

in precision, recall, and IoU, respectively. The proposed 

framework offers an effective solution for fine-grained plant 

structure recognition and intelligent phenotypic analysis. Future 

studies will focus on extending the proposed approach to a wider 

range of plant species and systematically assessing its 

generalization ability and practical effectiveness on large-scale 

datasets with complex structures. 
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