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Abstract:

In the context of agricultural modernization, precise 3D organ segmentation has become indispensable for automated extraction of
phenotypic traits. In particular, the precise delineation of stem and leaf structures from 3D point clouds is critical for monitoring plant
growth and supporting high-throughput breeding programs. However, the intricate structure of crops and the blurred boundaries
between stems and leaves present significant challenges, leading to the poor segmentation performance. To tackle these problems, we
propose a Semantic Embedding-Guided Graph Self-Attention Network for stem-leaf separation in 3D point clouds, to tackle weak
feature representation and low inter-class separability in complex plant structures. During the encoding stage, a multi-scale feature
extraction module captures fine-grained local geometries, while a feature fusion module integrating graph convolution and self-
attention facilitates deep fusion of local and global semantic information. In the decoding stage, hierarchical upsampling combined
with multi-level feature fusion reconstructs high-resolution representations to achieve fine-grained segmentation. Furthermore, we
introduce a joint loss function that integrates inter-class discriminative loss with cross-entropy, aiming to optimize intra-class uniformity
and reinforce class boundary delineation. Validation experiments on the Plant-3D dataset demonstrate that our methodology attains
superior performance, with mean precision, recall, and IoU achieving 96.47%, 96.39%, and 93.50%, respectively. The proposed
approach demonstrates high robustness and generalizability across diverse plant species and growth stages, providing an effective

solution for high-throughput plant phenotyping.

1. Introduction

Plant phenotyping aims to measure and analyze structural traits,
growth conditions, and physiological-biochemical properties of
plants to uncover the interaction mechanisms among genotype,
environment, and phenotype, thereby providing a scientific basis
for crop growth regulation, quality improvement, and yield
prediction (Watt et al., 2020; Tester and Langridge, 2010). In
recent years, driven by advances in agricultural digitalization and
precision farming, high-throughput and automated phenotyping
has become a key research focus at the convergence of agriculture,
biology, and computer vision (Singh et al., 2018). Accurate and
efficient acquisition of the three-dimensional morphology and
spatial distribution of plant organs (e.g., stems and leaves) is
crucial for advancing precise crop monitoring, breeding
optimization, and intelligent agronomic management.

Conventional manual measurements suffer from high
destructiveness, low efficiency, and restricted accuracy (Furbank
and Tester, 2011). Two-dimensional imaging approaches are
vulnerable to lighting variations, occlusions, and background
noise, hindering accurate reconstruction of plants’ intricate
spatial architecture. In contrast, three-dimensional imaging
techniques—including LiDAR, structured light, and time-of-
flight (ToF) cameras—offer richer depth information and spatial
detail, garnering considerable attention in plant phenotyping
(Rajapaksha et al., 2024). Nevertheless, the diverse morphologies
of plant organs and severe stem-leaf occlusions present
formidable obstacles to accurate stem—leaf segmentation, thereby
constraining the broader adoption of precision agriculture
(Weyler et al., 2024). Consequently, enhancing the accuracy,
robustness, and generalizability of stem—leaf segmentation in
complex scenarios has become a critical challenge.

In recent years, deep learning-based point cloud segmentation
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methods have been widely employed for plant organ
segmentation owing to their strong feature learning capabilities
and high computational efficiency. Existing methods are typically
classified into three categories: voxel-based, projection-based,
and point-based approaches. Voxel-based approaches encode
point clouds into structured 3D voxel grids and utilize 3D
convolutional neural networks to extract features(Du et al., 2023);
whereas projection-based methods segment projected 2D images
using 2D convolutional neural networks (2D CNNs). Although
both approaches benefit from well-established network
architectures, they often suffer from significant loss of spatial and
geometric information during transformation, thereby limiting
their ability to accurately represent complex plant structures (Bai
et al., 2023). In contrast, point-based methods extract features
directly from raw point clouds, thus avoiding the spatial
information loss associated with voxelization or projection and
providing enhanced adaptability and representational capacity for
complex plant architectures (Qi et al., 2017). DGCNN (Wang et
al.. 2019) enhances point-wise feature interactions through the
construction of dynamic adjacency graphs, thereby enabling
effective capture of local geometric relationships in complex
regions, such as stem-leaf junctions; KPConv employs
deformable convolutional kernels to enhance feature extraction
from point clouds exhibiting non-uniform densities (Thomas et
al., 2019); PointTransformer integrates self-attention to
dynamically model semantic relationships among distant points,
thereby facilitating improved global representation in occluded or
structurally complex regions (Zhao et al.. 2021); RandLA-Net
(Hu et al., 2020) adopts efficient random sampling and feature
aggregation strategies to preserve high segmentation accuracy
while reducing computational costs, making it suitable for large-
scale point cloud processing. In addition, methods such as Graph
Convolutional Networks (GCNs), Recurrent Neural Networks
(RNNs), and Conditional Random Fields (CRFs) have also been
widely adopted for fine-grained semantic segmentation of point
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Figure 1. Illustrates the overall workflow of the proposed approach.

clouds, as they model neighborhood structures and spatial
dependencies to further enhance representational capability and
segmentation performance.

Although existing methods have achieved notable progress in
plant stem-leaf separation tasks (Yang et al., 2024b) and
demonstrated satisfactory segmentation quality, they still face
numerous challenges in real-world applications. The intrinsic
characteristics of point cloud data—such as sparsity, noise, and
structural complexity—pose significant challenges for existing
methods in accurately capturing both local and global features
and distinguishing between structurally similar plant organs
(Yang et al., 2024a). Moreover, current models exhibit limited
generalization across different crop varieties, growth stages, and
morphological types. This limitation becomes particularly
evident when handling multi-layered stem-leaf structures or
heavily occluded scenes, where segmentation accuracy degrades
significantly. How to further improve segmentation accuracy
while enhancing model robustness and generalizability in
complex scenarios remains a key challenge in plant structural
point cloud segmentation. Therefore, there is a pressing need to
develop point cloud segmentation models that are more robust,
efficient, and generalizable, capable of handling intricate plant
architectures and supporting high-throughput phenotypic
analysis.

To address these challenges, we propose a semantic embedding—
guided graph self-attention network for the separation of stems
and leaves in 3D plant point clouds. Our primary research
contributions include:

(1) A graph attention-based feature enhancement module is
proposed to improve the expressiveness and discriminative
capacity of point cloud features. This module utilizes a dynamic
graph convolutional network to capture local geometric
structures, while the self-attention derives attention weights to
enhance the modeling of long-range contextual relationships.

(2) A multi-task collaborative optimization strategy is devised,
integrating cross-entropy loss with an inter-class discriminative
loss to optimize the distribution of high-dimensional features.
Classification objectives focus on performance improvement,
whereas discriminative objectives promote intra-category
clustering and inter-category separation.

(3) Comprehensive experimental validation is performed using
the Plant-3D dataset, demonstrating our approach outperforms
current leading methods in segmentation precision and
robustness (Conn et al., 2017).

2. Methodology

To address the critical challenges associated with stem-leaf
segmentation in 3D plant point clouds, we present a semantic
embedding-guided encoder—decoder framework, as depicted in
Figure 1. The proposed network comprises four principal
modules: (1) an encoder that performs multi-scale geometric
feature extraction by progressively enlarging the receptive field
to capture detailed local structural information; (2) a graph-based
feature enhancement module that combines graph convolution
with self-attention mechanisms to effectively integrate local

geometric relationships and global contextual cues; (3) a decoder
that employs hierarchical upsampling and skip connections to
incrementally reconstruct high-resolution features while
preserving critical semantic cues from the encoding phase; (4) a
multi-task optimization module that jointly applies inter-class
discriminative and cross-entropy losses to refine the feature space,
promoting intra-class compactness and inter-class separability,
thereby enhancing point-wise classification accuracy and
enabling precise stem—leaf segmentation.

2.1 Multi-scale coding and feature extraction

In 3D point cloud analysis, the non-uniform point distribution,
varied local geometries, and intricate global structures pose
considerable challenges for effective multi-scale feature
extraction. To overcome these difficulties, we propose a multi-
scale feature extraction approach that combines downsampling
with self-attention mechanisms, aiming to maximally preserve
local spatial structures while capturing rich geometric
information.

During the feature extraction stage, a farthest point sampling
strategy is employed to construct point cloud subsets, thereby
reducing data redundancy and mitigating sampling bias.
Subsequently, for each sampled point p;, a local neighborhood
N'(p;) is then established using K-nearest neighbor (K-NN)
search, and both spatial coordinates and point-wise features are
extracted to encode detailed local geometric information.
Specifically, the feature representation of each sampled center
point p; is defined as:

X; = Concat[p;, pf, |Ip: — ¥l (i — PI)] (&)

Where p; and p{‘ denote the 3D coordinates of the center point
and its k neighboring, and ||-|| denotes the Euclidean
distance. A multi-layer perceptron (MLP) followed by the
Softmax function is used to compute attention weights «;;,
facilitating dynamic aggregation of neighborhood features:

X = z @ij - Xij
JEN) @
a;j = Softmax (MLP(XU))

where X;; represents the feature difference between point p;

and its neighbor p¥. This operation enhances the representation
of critical local structures while mitigating the influence of weak
or noisy points.

To alleviate the degradation and feature attenuation caused by
increasing network depth, residual connections are introduced
into each encoding layer, as defined as follows.

X =f(X) +9(Xeq) 3)

Where f(-) denotes the nonlinear transformation at the current
encoder layer, and g(-) is a 1x1 convolution used to preserve
feature dimensionality and enhance feature stability.
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Figure 2. Graph Attention-based Feature Aggregation Module

To simultaneously capture fine-grained local details and global
semantic context, we incorporate multi-scale feature fusion
following downsampling, using cross-layer residual connections.
Specifically, after obtaining the output of the 7-th layer, features
sampled from the preceding layer are concatenated with the
encoded features of the current layer, as expressed below:
X = [DS(X,-,), Encode(X,)] “
Where DS(-) denotes the downsampling operation, while
Encode(X,) represents the feature mapping function at the
current layer. This design enables deep networks to retain low-
level local geometric information while fully leveraging high-
level semantic features, thereby enhancing the overall precision
and robustness of feature representation.

2.2 Graph Attention Based Feature Aggregation and
Optimization

Owing to the irregular nature and complex spatial structure of
point cloud data, conventional global feature representations—
such as the encoded feature X—are often inadequate for capturing
fine-grained category boundary information. This limitation
undermines both the overall shape representation and the accurate
delineation of complex category boundaries. To address this, and
inspired by prior work (Tian and Li, 2022), A graph attention-
based feature aggregation module is incorporated prior to the
decoding stage, aiming to comprehensively capture correlations
between local geometric details and global contextual
information. The detailed processing pipeline of this module is
illustrated in Figure 2.

2.2.1 Graph Structure: This module transforms the visual
features output by the encoder into a graph representation G =
(V,E), where the node set V = {p,p,,---,py’} represents
sampled points, with each point p; corresponding to a graph
node. To accurately capture point-wise spatial topology, we first
compute the Euclidean distance matrix Dist € RV'*N' | and
apply the KNN algorithm to determine the local neighborhood
N (p;) of eachnode p;. The edge set E is then constructed as:
E = {(pupj)IpjeN (p:)} (%)
To effectively encode local geometric structures and feature
discrepancies in the point cloud, each edge feature e;; = (pl-, p ]-)
is defined by concatenating the spatial coordinate difference and

feature difference between adjacent nodes:

e;; = concat(p; — p;, Xj — X;) (6)
where, p; and p; denote 3D spatial coordinates, while x; and
x; represent the corresponding downsampled point features.
This design significantly enhances the descriptive power of edge
features in representing local geometry and provides informative
cues for subsequent attention-based aggregation.

2.2.2 Self-Attention: After constructing the graph structure, a
self-attention mechanism is introduced to iteratively update node
features through adaptive aggregation of contextual information
from local neighborhoods. Specifically, this mechanism learns
attention weights between each node and its neighbors, enabling
dynamic acquisition of informative context to facilitate effective
local-global feature interaction. The node feature update is
formally defined as:

(k+1) _ k) (k)
x; = (rg}?é(e hg(concat[x; VX D 7
Where, xgk) represents the feature associated with node i upon

completion of the k-th iteration, xg()

feature, hg is a mapping function comprising a linear
transformation, instance normalization, and a LeakyReLU non-
linear activation, while max(-) indicates a max-pooling
aggregation operation within the local neighborhood. By stacking
multiple layers of this architecture, the model progressively
refines point representations to capture fine-grained local
structures while simultaneously incorporating global spatial
context.

is the corresponding edge

2.2.3 Cross-scale feature fusion: To improve the expressiveness
of node features, this work introduces a cross-scale feature fusion

mechanism. Specifically, we concatenate multiple intermediate
(€]

features (e.g., x; 7, xgz)) obtained from iterative graph attention

aggregation with the initial features (e.g., xEO) ). The
concatenated features are then projected to a specified dimension
through a learnable linear mapping (e.g., an MLP or linear layer),
producing the final graph attention-enhanced feature:

XSNN =

hg (concat[xl@), xgl), xEZ)]) ®)
This operation not only effectively integrates fine-grained local

structures and overarching semantic information across different
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Figure 3. Illustration of the discriminative loss with intra-
cluster pull and inter-cluster push forces.

feature levels but also substantially improves the capacity of node
features to distinguish complex geometric structures. Overall, the
proposed graph attention-based feature aggregation module more
efficiently captures local geometric details and global contextual
relationships in 3D point cloud data, thereby exhibiting improved
adaptability and robustness in tasks such as plant stem-leaf
segmentation.

2.3 Multi-scale decoding and feature reconstruction

In the decoding phase, to efficiently recovers fine-grained
geometric details as well as global spatial semantics lost during
downsampling, we propose a hierarchical feature reconstruction
and fusion decoding module that incrementally restores the point
cloud’s spatial resolution while ensuring consistency across
multiple scales. Specifically, the module initially employs a K-
nearest neighbor interpolation strategy to project low-resolution
features onto their corresponding high-resolution coordinates,
thereby mitigating feature deviation during interpolation and
preserving spatial continuity and consistency. Let the decoding
layer input features be XGNN . The upsampling process is
formulated as:

Xup(@) = XNN(p;e), j* = argmin d(pup;)  (9)

Where p; and p; denote high- and low-resolution points,
respectively, and d(-) indicates the Euclidean distance measure.
In view of potential attenuation of local geometric features during
interpolation, we further introduce a multi-scale feature fusion
strategy combined with an attention mechanism to weight cross-
scale information. Specifically, at the decoding stage, we fuse the
current layer’s features X5, with the previous layer’s features
X451 . An attention-based pooling strategy is adopted to
dynamically allocate fusion weights across multi-scale features,
enabling effective cross-scale interaction and feature
optimization. Furthermore, to strengthen the spatial detail
awareness and semantic expressiveness of the features, the
decoding module employs a skip-connection architecture to
directly transfer high-resolution features from the matching
encoder layer to the corresponding decoder layer. A multi-layer
perceptron (MLP) subsequently learns the fusion weights, fully
exploiting the complementarity and structural consistency of
features across different stages. With these designs in place, the
proposed decoding module effectively restores the spatial
resolution and fine-grained structure of the point cloud,
enhancing detail integrity and semantic consistency during
feature reconstruction. Consequently, it offers more stable and
accurate feature support for subsequent point-level classification.

2.4 Loss Function

The formulation of a loss function directly impacts the efficiency

of network optimization and the overall performance. To address
this, we propose an optimization strategy that integrates cross-
entropy loss with a Semantic-aware discriminative loss, thereby
jointly enhancing classification accuracy and the discriminative
capacity of the feature space.

2.4.1 Cross-entropy: The cross-entropy loss measures the
difference between the network’s predicted outputs and the true
labels. It is formulated as:

C
Lee=- Z talog(pn) + (1 — tlog(1 — ) (10)

where, C denotes the total number of categories, t, represents
the ground-truth label, and p,, is the predicted probability from
the model. Minimizing this difference via backpropagation
enhances the classification performance.

2.4.2 Semantic-aware discriminative loss: Even though
semantic and instance segmentation tasks in 3D point clouds
often treat category recognition and instance separation as
separate objectives, they are intrinsically related: instance-level
features can guide category identification, whereas intra-category
features may vary significantly across different instances.
Accordingly, we draw on inter-class separability to propose an
inter-class feature discrimination loss Lpp, , which unifies
semantic and instance segmentation within a single embedding
space to improve discriminative power. As illustrated in Figure 3,
the proposed loss enforces feature compactness within each class
and repulsion between different classes, thereby improving the
separability of semantic categories.

This embedding loss comprises three components—an intra-class

pull term, an inter-class push term, and a feature-space
regularization term—formally expressed as:

Lpy, = a'Lpull+.8'Lpush+y'£reg (11)

where the intra-class pull term Lpy); clusters features belonging
to the same instance:

18 &
Lo =7 ) ~— ) [l —ell — 8,15 (12)
KZJN,
=1 k=

The inter-class push term Ly,qn boosts inter-category

separability:
K K
1 2
Lousn = =2, D, 1284 Il = bllal}
k=1m=1m=k

(13)

The feature regularization term Lo, stabilizes the overall
feature distribution:

K
1
Lreg =7 Y MMl (14)
k=1

Where, [x], = max(0,x). The parameters &, and §,; denote
the thresholds for intra-class compactness and inter-class
separation, respectively, pu;, denotes the centroid of the k-th
instance’s features, and e; corresponds to the embedding
associated with that instance. We set @ = f =1 and y = 0.001.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-239-2025 | © Author(s) 2025. CC BY 4.0 License. 242



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

100 100 100
- —— -— . — —

95 95
— 95 | S ——
— R —

e — o ——— ~
%0 I —— NGO %0
o 901 S
o — I 3
\\\ .
80 ~ L 04

- PomiNet
a PoimNe

751 = ASlS
—=— PlaniNet
+ O

0= T T
Recall Fl-score ToU Precision Recall

(a)Tobacco

(b)Tomato

Fl-score ToU Recall Fl-store U

(c)Sorghum

Figure 4. Performance comparison of different methods across four evaluation metrics in stem-leaf separation.

By jointly leveraging these terms, the model significantly boosts

feature  discriminability = across  categories, improving
performance on point cloud segmentation tasks.
Finally, we define the overall loss function as:

L= LCE + ALDL (15)

Where A represents a weighting factor that controls the balance
between the cross-entropy loss and the inter-class feature
discrimination loss.

3. Experimentation

High-quality, meticulously annotated, and structurally preserved
point cloud datasets form the foundation for advancing deep
learning—driven 3D plant segmentation. Ideally, these datasets
should exhibit comprehensive plant structures, high sampling
resolution, broad species diversity, and multiple growth stages. In
the present work, we employed the Plant-3D dataset released by
Conn et al. (2017), which comprises 558 individual plant samples
of tobacco, tomato, and sorghum, captured using a non-contact
3D laser scanner. The dataset spans approximately 20 growth
stages and encompasses a wide range of environmental
conditions, including natural lighting, shadows, high temperature,
strong light, and drought. While ensuring structural integrity, it

kR
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(a) Ground Truth (b) Initial

ARy i

(c) Embed

also reflects rich morphological and environmental diversity, thus
providing a reliable basis for developing and evaluating plant
point cloud segmentation methods.

3.1 Evaluation indicators

To comprehensively evaluate model performance, four widely
used metrics are employed: precision, recall, F1-score, and IoU
(Yang et al., 2025). Precision measures the fraction of points
correctly predicted among all points assigned to a particular class.
Recall measures the fraction of ground-truth points that are
correctly identified for a given class. The F1-score, defined as the
harmonic mean of precision and recall, provides a balanced
assessment of overall model performance. loU measures the
spatial overlap between predicted regions and the corresponding
ground-truth areas. In addition, to assess model performance
across all semantic categories, the mean intersection over union
(mloU) is calculated to provide a comprehensive evaluation of
semantic segmentation accuracy.

3.2 Quantitative analysis

The results of the model’s semantic segmentation for three plant
species, tobacco, tomato, and sorghum, are presented in Table 1.
Overall, tomato achieved the highest segmentation performance,

R
T
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(e) E+G
Figure 5. Qualitative comparison of stem-leaf separation results for three plant species (red represents leaves, blue represents
stems). Embed denotes the semantic-aware discriminative loss module, GCN denotes the GCN self-attention module, and E+G
denotes the collaboration of both modules.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-239-2025 | © Author(s) 2025. CC BY 4.0 License. 243



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

ha
e

(a) Ground Truth

(b) Baseline

e
o

o
¥
(c) Ours (d) Improved Area

Figure 6. Comparison of segmentation results and improvement effects on the Plant-3D dataset. The red areas in the subfigure (d)
highlight the regions where our proposed method outperforms the baseline.

particularly for the leaf class, where all evaluation metrics
exceeded 98%, while the IoU for stems remained comparatively
lower. This superior performance is primarily attributable to the
larger sample size and broader coverage of growth stages, which
facilitated the learning of more comprehensive and generalizable
feature representations. In contrast, sorghum exhibited relatively
lower segmentation accuracy, especially in stem regions where
complex structures and tightly connected leaf sheaths posed
significant challenges. Notably, across all plant species, the
model consistently underperformed in segmenting stems relative
to leaves, as reflected by similar trends across all evaluation
metrics. This phenomenon is likely caused by class imbalance in
the dataset, where the overwhelming number of leaf points
compared to stem points biases the model towards learning leaf-
specific features during training. To improve stem structure
recognition, future work could explore optimized data sampling
strategies or incorporate class-level augmentation techniques to
mitigate performance gaps arising from class imbalance.

To further validate the effectiveness of the proposed method for
stem—leaf segmentation in plant point clouds, we compared it
with mainstream methods such as PointNet, PointNet++, ASIS
and PlantNet, and systematically evaluates it on three crop
datasets, namely tobacco, tomato and sorghum. Figure 4
demonstrates the quantitative performance of each method under

Metrics Tobacco Tomato Sorghum Mean
Precision Stem  97.13 98.50  85.96 93.86
(%) Leaf 9955 9934 9833 99.07
Recall Stem  97.94 97.72  85.33 93.66
(%) Leaf 9936 99.57 9841 99.11
Fl-score Stem 9754 98.11 85.64 93.76
(%) Leaf 9946 99.46  98.37 99.10

Stem  95.19 96.29  74.89 88.79
ToU (%)

Leaf 9892 98.92  96.78 98.21

Table 1. Quantitative results of the network for plant
semantic segmentation

four metrics: Precision, Recall, F1-score and IoU. The results
indicate that the proposed method surpasses the comparison
approaches across all evaluation metrics, with particularly
notable improvements observed on the structurally complex
sorghum dataset. Meanwhile, the proposed method also
demonstrates good modeling ability for fine-grained structures
and boundary regions in tobacco and tomato data, especially in
Precision and IoU metrics, which fully verifies its robustness and
generalization ability under diverse plant structures.

3.3 Qualitative analysis

To systematically assess the model’s segmentation capability
across different crop types and developmental stages, a
systematic qualitative visualization was performed on tobacco,
tomato, and sorghum. As shown in Figure 5, the semantic
segmentation outcomes for these three crops are illustrated under
complex structural patterns and diverse environmental conditions.
Each row of the figure represents a plant sample, with columns
showing the ground truth, the initial output (Initial), the result
after introducing the discriminative loss module (Embed), the
output with the graph attention module (GCN), and the final
output combining both modules (E+G). The visualizations
indicate that the baseline network exhibits clear limitations when
processing structurally complex plant regions. For example, in
tobacco, bifurcation regions between stems and leaves are poorly
delineated; tomato samples reveal blurred boundaries and
uncertain class transitions within leaf structures; and sorghum
often shows misclassification in the tightly connected stem—
sheath areas. With the progressive introduction of the Embed and
GCN modules, the model demonstrates substantially improved
spatial awareness and semantic discrimination in 3D point clouds.
Organ boundaries become sharper, and the separation between
stems and leaves is considerably enhanced, with the final
predictions closely matching the ground truth annotations. The
findings demonstrate that the proposed framework is both robust
and effective in segmenting complex plant architectures from 3D
point clouds, laying a strong foundation for subsequent analyses
of detailed phenotypic traits.
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Metrics Embed GCN Tobacco Tomato Sorghum
Stem Leaf Mean Stem Leaf Mean Stem Leaf Mean
X X 96.31 9932 97.82 9569 9946 97.58 76.73 97.71 8722
.. N X 95.84 9945 97.65 97.18 9936 9827 87.17 9621 91.69
Precision (%)
X v 9647 99.44 9796 98.73 98.61 98.67 7325 99.08 86.17
N v 97.13 99.55 9834 9850 9934 9892 8596 9833 92.15
X X 96.76 9922 9799 98.17 98.69 9843 82.06 96.85 89.46
Recall (%) N X 9739 99.11 9825 97.85 99.16 9851 70.78 98.98 84.88
X N 9737 99.25 9831 9523 99.54 9730 91.96 9626 94.11
N N 97.94 99.36 98.65 97.72 99.57 98.65 8533 9841 91.87
X X 96.54 9927 9791 9691 99.07 9799 7931 97.28 88.30
F1-score (%) N X 96.61 99.28 9795 9752 9926 9839 78.68 97.89 88.29
X v 9692 9935 98.14 9695 99.13 98.04 8154 97.65 89.60
N v 97.54 99.46 98.50 98.11 99.46 98.79 85.64 9837 92.01
X X 93.31 9855 9593 9401 9816 96.09 6571 9471 80.21
ToU (%) N X 9343 9856 96.00 95.15 9854 9685 64.86 9586 80.36
X v 94.02 987 9636 94.08 9827 96.18 6884 954 82.12
v v 95.19 9892 97.06 96.29 9892 97.61 74.89 96.78 85.84

Table 2. Ablation study of different modules on the Plant-3D dataset. The best performance for each metric is highlighted in

BOLD fonts.

To further assess the effectiveness of the proposed method, we
performed a comparative evaluation against the baseline model
on tobacco, tomato, and sorghum, as illustrated in Figure 6.
Subfigure (a) displays the ground truth annotations; (b) and (c)
depict the segmentation outputs of the baseline and proposed
models, respectively; (d) highlights the regions where our model
outperforms the baseline. The results indicate that the baseline
model suffers from evident mis-segmentation at blade edges and
in structurally complex regions. In contrast, the proposed
approach exhibits stronger capability in capturing geometric
structures under challenging scenarios, such as overlapping or
bending blades and stem-leaf junctions, thereby correcting
segmentation errors of the baseline model and markedly
improving local segmentation accuracy.

4. Ablation Study

To evaluate the individual contributions of each component to
overall performance, we performed ablation experiments on the
Plant-3D dataset (Table 2), focusing on the discriminative module
(Embed) and the graph-based self-attention module (GCN). The
results indicate that the integration of these two modules yields
performance gains 0f2.26%, 1.1%, 1.7%, and 2.76% in precision,
recall, F1-score, and IoU, respectively. Specifically, the Embed
module improves class separability and intra-class compactness
within the feature space; its removal causes a marked decline in
recall and Fl-score. For crops with complex structural
morphology, including tomato and sorghum, the average recall
declined to 97.30% and F1-score fell to 89.60%, highlighting
inadequate feature aggregation and increased confusion between
stems and leaves. Meanwhile, the GCN module proves essential

for both local structural modeling and global semantic perception.

Removing this module leads to a 1.06% drop in tobacco’s IoU, a
3.72% reduction in sorghum’s Fl-score, and an almost 10%
decrease in stem IoU, suggesting that the model’s ability to
aggregate neighborhood features and maintain segmentation
consistency is severely weakened. In summary, both modules are
indispensable for strengthening the model’s capability to capture
intricate plant architectures in 3D point clouds and ensuring high-
quality stem—leaf separation.

5. Summary and outlook

With the accelerated advancement of modern agriculture and
smart farming, efficient and precise segmentation of plant organs
has become a fundamental prerequisite for high-throughput
phenotyping and comprehensive crop monitoring. This study
introduces a semantic Embedding-Guided Graph Self-Attention
Network for stem—leaf separation in 3D plant point clouds. By
integrating graph convolution with self-attention, the framework
effectively models intricate geometric structures while capturing
long-range contextual dependencies within point clouds. During
feature space optimization, cross-entropy and inter-class
discriminative loss functions are jointly optimized to make
features within a class more similar and features between classes
more distinct, thereby enhancing classification performance and
strengthening the separability of the feature space. Experimental
validation on the Plant-3D dataset demonstrates that the proposed
approach achieves substantial performance gains in stem-leaf
separation, yielding improvements of 3.97%, 4.35%, and 7.64%
in precision, recall, and IoU, respectively. The proposed
framework offers an effective solution for fine-grained plant
structure recognition and intelligent phenotypic analysis. Future
studies will focus on extending the proposed approach to a wider
range of plant species and systematically assessing its
generalization ability and practical effectiveness on large-scale
datasets with complex structures.
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