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Abstract

Estimating tree-level structural parameters from airborne laser scanning (ALS) point cloud is essential for sustainable and efficient
forest management. This task is currently carried out through labour-intensive and time-consuming manual efforts, particularly in
complex forest with overlapping canopies. This paper presents a novel approach for individual tree extraction utilizing an improved
YOLO-based model, along with advanced algorithms for structural parameter calculation. The enhanced model, named CCD-YOLO,
introduces several key improvements for individual tree segmentation (ITS) by leveraging a newly created ITS dataset. It replaces the
C2F module with a CReToNeXt module to enhance feature extraction. A convolutional block attention module (CBAM) is added to
highlight crown features and reduce background noise, while a Dynamic Head enables adaptive multi-layer fusion, boosting
segmentation accuracy. Additionally, a denoising process is applied, ensuring more accurate and reliable measurements for vertical
parameters. Lastly, an improved convex hull algorithm is employed to better accommodate the irregular shapes of tree crowns. The
experimental results were evaluated in a dense forest through both internal and external consistency assessments, demonstrating
significant performance enhancements. For the individual tree segmentation, the proposed approach achieved a precision of 82.4%, a
recall of 72.8%, and an F1 score of 77.9%. In terms of parameter estimation, the accuracy for tree height, crown width, and crown
area was 0.82, 0.60, and 0.99, respectively, with corresponding RMSE values of 1.25, 1.01, and 1.16. These results highlight the

effectiveness of the proposed method in improving both segmentation and parameter estimation accuracy.

1. Introduction

Forests are a vital component of terrestrial ecosystems,
accounting for approximately 77% of the global carbon stock.
As the largest carbon sink, forests are essential for maintaining
the global carbon cycle and alleviating climate change (Cao et
al., 2021). Therefore, accurate monitoring and effective
management of forest resources are essential.

Tree structural parameters are the core focus of forest resource
surveys, as they provide insights into the spatial arrangement
and growth health of trees. These parameters typically include
tree height, diameter at breast height (DBH), and crown

parameters such as crown width, crown area, and crown volume.

Traditionally, forest resource surveys rely on field
investigations, where individual tree parameters are measured
within sample plots. While these methods provide detailed tree-
level information, they are time-consuming, labour-intensive,
and limited in scope, especially in inaccessible areas.

LiDAR (Light Detection and Ranging) systems, especially
airborne laser scanning (ALS), are capable of efficiently and
accurately retrieving three-dimensional forest structural
information over large areas. ALS has been widely used to
estimate forest carbon stocks and biomass in large forest scenes,
significantly enhancing the efficiency of forest resource
assessments (Luo et al., 2021). However, challenges remain in
accurately acquiring individual tree morphological parameters
due to the low point density and occlusion caused by
overlapping tree crowns, especially in complex forest
environments.

2. Related Work

The extraction of individual tree structural parameters involves
two primary steps: individual tree segmentation and structural
parameter extraction. Accurate tree segmentation is crucial for
parameter estimation, as segmentation accuracy directly impacts
the precision of the extracted parameters.

2.1 Individual Tree Segmentation

Traditional tree segmentation methods based on ALS can
generally be categorized into two main approaches: 2D image
segmentation and 3D point cloud segmentation.

The 2D image segmentation approach employs canopy height
model (CHM) raster images to represent the upper canopy
contour, where local maxima are extracted as treetops to
facilitate the segmentation of individual trees (Kaartinen et al.,
2012). Typical approaches consist of Watershed Algorithms
(Dalponte et al., 2014), Region Growing Algorithms (Zhen et
al., 2014), and other 2D image segmentation techniques (Zhou
et al.,, 2020). However, the accuracy of these approaches is
limited by the local maximum detection, which can lead to both
false positives and false negatives.

By comparison, 3D point cloud based approaches, including
Mean-shift Clustering (Ferraz et al., 2012), Graph-based
Segmentation (Dong et al., 2020), and Spectral Clustering (Pang
et al., 2021), are able to exploit the spatial structure of point
clouds. These methods generally achieve higher accuracy but
rely heavily on prior knowledge of forest characteristics, and
they require manual parameter adjustment according to factors
such as forest type and developmental stage. This lack of
generalizability, coupled with the complex tuning process,
limits their applicability and transferability across different
forest environments.
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Recent advances in deep learning (DL) have demonstrated that
both direct and indirect approaches applied to 3D point clouds
can achieve efficient individual tree segmentation in complex
forest environments, offering broad application prospects. The
direct approach begins with the segmentation or classification of
3D point clouds into distinct components through networks like
PointNet++ (Krisanski et al., 2021) and 3D U-Net (Henrich et
al., 2024), followed by clustering to further refine the
segmentation. Due to their high dimensionality and irregular
structure, 3D point clouds impose greater computational
complexity, which makes training and inference more difficult.
Such direct approaches are generally applied within terrestrial
or mobile LiDAR systems. For the latter, advanced networks
such as Swin Transformer (Liu et al., 2021b), Faster R-CNN
(Liu et al.,, 2021a), YOLO (Wang et al., 2022), and U-Net
(Freudenberg et al., 2022) employed for segmenting 2D images
generated from 3D point clouds. By exploiting the
representational capacity of advanced network architectures,
these methods automatically capture and extract complex spatial
features, ultimately achieving precise delineation of the upper
canopy. Especially, the YOLO model demonstrates a clear
advantage in faster execution, which contributes to the efficient
accomplishment of detection and segmentation tasks.

To improve detection speed and accuracy, the YOLO models
(Ali and Zhang, 2024) and its variants (Chen et al., 2023) have
been enhanced through the integration of multi-scale detection,
attention mechanisms, loss function refinements, and data
augmentation techniques (Nan et al., 2024; Zhao et al., 2024).
With these enhancements, the model is capable of capturing fine
details, suppressing background interference, and adapting to
diverse canopy characteristics, thereby serving as an effective
tool for crown detection.

2.2 Structure Parameter Extraction

The structural parameters of individual trees form the
foundation of forest spatial structure analysis, providing critical
data for forest resource surveys and ecological research. Key
parameters typically measured in field surveys include diameter
at breast height (DBH), tree height, height to the lowest live
branch, and crown width. More complex parameters such as
biomass and tree volume require tree felling for accurate
measurement (Kracek et al., 2020).

In recent years, there has been a growing focus on automating
forest parameter extraction, particularly through the use of ALS
data. The extraction of individual tree parameters can be
classified into two categories (Zhao, 2022). Direct extraction
methods involve obtaining parameters such as tree height,
crown projection area, surface area, and volume directly from
the segmentation results. For parameters that cannot be directly
obtained from segmentation, growth equations or empirical
models are used to estimate parameters like DBH, volume, and
biomass.

However, these two approaches are not entirely independent.
The effectiveness of both approaches is influenced by factors
such as data density and acquisition conditions. The accuracy of
parameter estimation is thus dependent on the quality of the
segmentation and the characteristics of the ALS data.

3. Methodology

This study aims to perform individual tree segmentation using
an improved YOLO model, and subsequently extract the
structural parameters of individual trees. The overall pipeline, as

illustrated in Figure 1, comprises three main components: data
preparation (Section 3.1), structural parameter extraction
(Section 3.2), and accuracy evaluation (Section 3.3).
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Figure 1. Flowchart of the proposed approach.

3.1 Data Preparation

3.1.1 Pre-processing: The construction of the individual tree
segmentation dataset relies on a systematic pre-processing of
the original ALS point cloud, which mainly includes point
cloud denoising, ground filtering, height normalization, and the
generation of multi-feature point cloud maps.

Statistical Outlier Removal (SOR) filtering (Li et al., 2016) and
Cloth Simulation Filtering (CSF) (Zhang et al., 2016) are used
to eliminate noise outliers and ground points, respectively. To
generate the ITS map dataset, the CSF result is first normalized,
and then a multi-feature coloring method is employed to extract
the multidimensional features of the point clouds. In the
construction of multi-feature point cloud maps, the processed
point clouds are first vertically stratified by height, and the point
density and intensity values are calculated for each height
interval. Based on these values, density and intensity colorized
point clouds are generated and visualized through color
mapping. The RGB mean values of the two colorized point
clouds are then fused to produce multi-feature data that
represent comprehensive multidimensional information. Finally,
the colorized point clouds are projected onto the ground to
generate a complete multi-feature point cloud map that fully
reflects three-dimensional structural characteristics (Liu et al.,
2025).

3.1.2 Dataset Generation: To meet the input requirements of
the YOLO deep learning network, the generated multi-feature
point cloud maps were divided into fixed-size patches of 512
X 512 pixels, with a 64-pixel overlap between adjacent
patches to ensure spatial continuity and preserve edge features
during subsequent processing. Image annotation was performed
using the LabelMe tool, which produced JSON files containing
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tree locations, anchor box dimensions, and class labels.
Meanwhile, to mitigate the risk of over-fitting, data
augmentation strategies such as flipping, rotation, and the
addition of Gaussian noise were applied.

Figure 2. Multi-feature map and ITS Dataset with labelled mark.

3.2 Structural Parameter Extraction

3.2.1 Individual Tree Segmentation: To overcome challenges

posed by crown overlap and heterogeneous backgrounds in
dense forests, an improved YOLO model is proposed for ITS
using ALS point clouds. The model can effectively extract the
location and boundary information of trees in dense forests,
thereby improving detection and segmentation accuracy while
minimizing both false positives and false negatives. Built upon
the YOLOvVS architecture, the proposed model, as shown in
Figure 3, incorporates advanced modules incorporates advanced
modules such as CReToNeXt (Cross Residual Transformer
Network Extended), CBAM (Convolutional Block Attention
Module), and a Dynamic Head.

The CReToNeXt module (Xu et al., 2022) replaces the original
C2F module to enhance feature extraction and multi-scale
fusion. The CBAM (Woo et al., 2018) is integrated into the
backbone network to emphasize critical regions and reduce
background noise. Additionally, a Dynamic Head (Dai et al.,
2021) optimizes feature layer weighting and fusion, improving
accuracy in detecting target positions and boundary changes.
Further details of the improved model architecture can be found
in (Liu et al., 2025).

r g |
i CReToNeXt | | } ! Dynamichead I
| I
Input | } I } I |
512*512%3 ! N & |
| Ll b7l 1
! X | - o

I
CBS-k6 52 p2c64 | 256%256*64 | = } : ! ! T, = — !
: } : [ Re-weight CHW } : e = R !
CBSk3s2¢l28 | 128*128%128 | : N B ) " | : relu plemold relu j:: |
fffffffffff | : ! d I
: | Concat } : W } I [Leonv1=1 ] [Leonv 33 | B ] = i
| ‘ ,—ﬁ |
| | - | BN+ Sigmoit || ave pool index avg pool |
| — | i i : ' o
| | |

64%64*256

Re-weight | cepew
__________ L ——

64*64* 768

64*64%512

32*32%512

32%32%1024

32*32%512

16*16%1024

Dynamichead

CBS-k3 s2 ¢256

Concat

32%32%256

32%32%768

32+32%512

Dynamichead

I CBS-k3s2c512 16%16*512
164161024
16%16%512

Figure 3. Framework of the proposed model.

3.2.2 Structural Parameter Extraction: Tree structural
parameters are categorized into horizontal and vertical metrics,
which respectively describe the morphological characteristics in
the vertical (height-related) and horizontal (crown spatial
distribution) dimensions. Vertical parameters, such as tree
height, reflect growth status and biomass allocation, while
horizontal parameters, on the other hand, including crown width
and area, describe the spatial distribution and extent of the tree
canopy, helping assess site conditions, light distribution, and
tree competition. Accurately measuring these parameters is
essential for forest management and ecological studies.

Tree Location and Height Extraction: The tree location and
height in ALS cloud data are typically determined by the tree
top (Yang et al., 2016). Traditionally, the maximum Z-

coordinate (tree top) within a point cluster determines tree
height, but this approach is sensitive to noise. To remove
outliers, this method first applies spatial clustering (Fu et al.,
2022) to isolate tree point clouds from the proposed CCD-
YOLO, and then the tree top is identified as the highest point
(maximum Z-value). This two-step process—clustering
followed by maximum value extraction—ensures precise
localization of tree positions (XY coordinates) and reliable
height estimation (Z-coordinate).

Crown Width and Area Extraction: Crown width (maximum
horizontal span) and crown area (ground projection area) are
computed using an iterative progressive convex hull algorithm.
The commonly used convex hull methods struggle with
irregular crown shapes and internal gaps, especially in dense
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forests. To overcome this limitation, an iterative progressive
algorithm (Dong et al., 2018) is adopted, as illustrated in Figure
4. This approach projects the point cloud onto the Z-axis and
applies a local convex hull algorithm to construct a more
accurate boundary. For edges exceeding a set threshold, a
circular region is constructed using the edge as the diameter,

and boundary points are identified based on the largest angle
formed with the endpoints. This iterative procedure is repeated
until all edges are smaller than the threshold or no points remain
within the circular region. The proposed method can refine the
crown boundary, minimize gaps, and enhance the accuracy of
crown width and area calculations.

(a) Projected point clouds (b) Local convex hull algorithm (c) Select points inside the circle

(d) New boundary points (e) New boundary after one iteration

(f) Final boundary

Figure 4. Process of the Iterative Convex Hull Algorithm.

3.3 Accuracy Evaluation

The performance of the proposed methodology was rigorously
assessed through two parallel evaluations: (1) individual tree
segmentation accuracy and (2) structural parameter estimation
accuracy. Both evaluations employed statistical metrics and
visual assessment to ensure objective results.

3.3.1 Individual Tree Segmentation: Segmentation accuracy
was quantified using Precision, Recall, F1-Score, and Average
Precision (AP). These metrics were calculated based on the
overlap between predicted and ground-truth tree boundaries:
The equations for these metrics are:

Precision = x100% (€8]
P+ FP
Recall = _r x100% 2)
TP + FN
Fle 2 x Precision x Recall 3)
Precision + Recall
AP = [ P(R)dR )

Where TP (True Positive) denotes the number of correctly
detected (or segmented) trees, while FP (False Positive) and FN
(False Negative) represent the number of incorrectly detected
and missed trees, respectively. P(R) indicates the precision at
different recall levels.

3.3.2 Structural Parameter Extraction: The accuracy of
forest vertical and horizontal parameter extraction was
evaluated using the coefficient of determination (R?) and Root
Mean Square Error (RMSE). The equations are defined as:

Rzzl_i(x[_y[)z /i(xi_xnr)z (5)

RMSE = |3 (5, 3,)" ©)

Where xiand yi are the i-th ground-truth and predicted values,
Xm is the mean of ground-truth values, # is the sample size.

4. Results and Discussion
4.1 Results of Individual Tree Segmentation

To evaluate the performance of the CCD-YOLO model, the ITS
dataset was randomly divided into training/validation and test
sets at a 7:3 ratio. The training utilized the Adam optimizer with
PyTorch 1.12 on an NVIDIA GeForce RTX 3080 GPU,
achieving optimal performance after 300 epochs. Additionally,
the hyperparameters in CCD-YOLO, including momentum,
learning rate, and weight decay, are set to 0.937, 0.01, and
0.0005, respectively. As shown in Figure 5, the segmentation
results were obtained using the proposed method. To enable
intuitive distinction of individual trees, each tree was assigned a
unique random color.

Figure 5. Oblique view of segmentation result.

Figure 5 illustrates that adjacent trees are distinguished by
different colors and clear boundaries, confirming the
effectiveness of the algorithm in individual tree segmentation,
with 174 out of 239 trees fully extracted. While preserving the

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-247-2025 | © Author(s) 2025. CC BY 4.0 License. 250



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

natural morphology and spatial structure of trees, the method
significantly reduces over-segmentation (fragmented crowns)
and under-segmentation (missed trees), thereby ensuring the
reliable extraction of complete tree point clouds. A locally
enlarged segmentation result is shown in Figure 6.

(a) Ground truth ITS data

(b) Improved YOLO Model
Figure 7. ITS results between YOLO and CCD-YOLO.

Models Tree Boundary Segmentation
Precision | Recall | F1 AP

YOLOv8 77.9 71.8 | 747 | 79.9
YOLOv8+CReToNeXt 80.9 754 | 78.1 | 824
YOLOv8+CBAM 79.9 683 | 73.6 | 78.9
YOLOv8+Dynamic Head 79.0 703 | 744 | 79.7
YOLOv8+CReToNeXt

+CBAM 80.7 729 | 76.6 | 81.2
YOLOv8+CReToNeXt

+Dynamic Head 80.9 742 | 774 | 823
YOLOv8+CBAM

+Dynamic Head 77.8 71.0 | 742 | 793
YOLOv8+CReToNeXt

+CBAM

+Dynamic Head 82.4 72.8 779 | 83.0
(Proposed CCD-YOLO)
YOLOvl1 81.0 715 | 77.6 | 823

Table 1. Quantitative assessment of the proposed CCD-YOLO.

As shown in Table 1, the CReToNeXt, CBAM, and Dynamic
Head modules play a significant role in enhancing crown
detection accuracy and boundary segmentation performance.
Each module contributed incremental improvements, but their
combined integration into the YOLO framework yielded
synergistic gains. Compared to the baseline YOLO model, the
proposed CCD-YOLO achieved a 3.5% increase in precision,

In addition, a comparison map between the original YOLO
model and its improvement are shown in Figure 7.

As shown in Figure 7, the proposed model demonstrates a
strong accuracy in locating individual trees and performs well in
boundary segmentation by precisely capturing crown edges,
achieving high consistency with the ground truth in most areas.
This underscores the model's sensitivity to boundary details and
its precision in segmentation. Even in cases of crown overlap
and occlusion, the proposed model effectively restores tree
crown shapes, showcasing its adaptability to complex scenarios.
In contrast, the original YOLOvVS model locates most trees
accurately but still experiences some misclassifications and
missed detections. While crown segmentation generally aligns
with expected contours, some areas show noticeable over-
segmentation, resulting in excessive fragmentation.

(¢) YOLOVS

4.4% higher recall, and a 4.1% improvement in F1 score,
significantly reducing both omission and commission errors.
This underscores the model’s enhanced robustness and
adaptability to complex forest environments. Compared to
YOLOV11, the latest advancement the latest advancement in the
YOLO series, the proposed model showed gains in precision
(1.4%), F1 score (1.3%), and AP@0.5 (0.7%), demonstrating a
clear advantage in segmentation accuracy.

4.2 Results of Structural Parameter Extraction

The proposed method was validated using 45 randomly selected
trees, with structural parameters (tree height, crown width, and
crown area) derived from the segmentation results compared
against manually acquired reference data. Performance was
quantified using the coefficient of determination (R?) and Root
Mean Square Error (RMSE). The comparative analysis between
extracted parameters and reference values is as follows.
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Figure 8. Comparison of the tree height structural parameter.
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Figure 10. Comparison of the crown area structural parameter.

It can be seen from Figure 8 to Figure 10 that the results
demonstrate strong consistency between extracted parameters
and manual reference measurements: tree height (R? = 0.82,
RMSE = 1.25), crown width (R?> = 0.60, RMSE = 1.01), and
crown area (R?=0.99, RMSE = 1.16). These findings highlight
the effectiveness and reliability of the proposed method in
extracting forest structural parameters from ALS point clouds.
However, some crown edges were not effectively identified or
extracted, thereby affecting the accuracy of the estimates, as
shown in Figure 11.

Figure 11. Difficult instances to segment.

5. Conclusion and Future Work

The paper presents an improved YOLO-based model for
individual tree segmentation and structure parameter extraction
from ALS data. The proposed CCD-YOLO model, enhanced
with the modules of CReToNeXt, CBAM, and Dynamic Head,
demonstrates superior accuracy and robustness in detecting tree
positions and segmenting crown boundaries. In addition, an
iterative progressive algorithm is employed to precisely extract
vertical and horizontal structural parameters, ensuring reliable
and accurate measurements.

However, CCD-YOLO still exhibits certain limitations in
individual tree segmentation, which are primarily reflected in
the misclassification of shrubs (non-trees) and the over-
segmentation of dense canopies. To address these issues, future
work will focus on integrating multi-source data and refining
post-processing  techniques, thereby further improving
segmentation accuracy and parameter estimation in complex
forest environments.
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