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Abstract 

Estimating tree-level structural parameters from airborne laser scanning (ALS) point cloud is essential for sustainable and efficient 
forest management. This task is currently carried out through labour-intensive and time-consuming manual efforts, particularly in 
complex forest with overlapping canopies. This paper presents a novel approach for individual tree extraction utilizing an improved 
YOLO-based model, along with advanced algorithms for structural parameter calculation. The enhanced model, named CCD-YOLO, 
introduces several key improvements for individual tree segmentation (ITS) by leveraging a newly created ITS dataset. It replaces the 
C2F module with a CReToNeXt module to enhance feature extraction. A convolutional block attention module (CBAM) is added to 
highlight crown features and reduce background noise, while a Dynamic Head enables adaptive multi-layer fusion, boosting 
segmentation accuracy. Additionally, a denoising process is applied, ensuring more accurate and reliable measurements for vertical 
parameters. Lastly, an improved convex hull algorithm is employed to better accommodate the irregular shapes of tree crowns. The 
experimental results were evaluated in a dense forest through both internal and external consistency assessments, demonstrating 
significant performance enhancements. For the individual tree segmentation, the proposed approach achieved a precision of 82.4%, a 
recall of 72.8%, and an F1 score of 77.9%. In terms of parameter estimation, the accuracy for tree height, crown width, and crown 
area was 0.82, 0.60, and 0.99, respectively, with corresponding RMSE values of 1.25, 1.01, and 1.16. These results highlight the 
effectiveness of the proposed method in improving both segmentation and parameter estimation accuracy. 

1. Introduction

Forests are a vital component of terrestrial ecosystems, 
accounting for approximately 77% of the global carbon stock. 
As the largest carbon sink, forests are essential for maintaining 
the global carbon cycle and alleviating climate change (Cao et 
al., 2021). Therefore, accurate monitoring and effective 
management of forest resources are essential.  

Tree structural parameters are the core focus of forest resource 
surveys, as they provide insights into the spatial arrangement 
and growth health of trees. These parameters typically include 
tree height, diameter at breast height (DBH), and crown 
parameters such as crown width, crown area, and crown volume. 
Traditionally, forest resource surveys rely on field 
investigations, where individual tree parameters are measured 
within sample plots. While these methods provide detailed tree-
level information, they are time-consuming, labour-intensive, 
and limited in scope, especially in inaccessible areas. 

LiDAR (Light Detection and Ranging) systems, especially 
airborne laser scanning (ALS), are capable of efficiently and 
accurately retrieving three-dimensional forest structural 
information over large areas. ALS has been widely used to 
estimate forest carbon stocks and biomass in large forest scenes, 
significantly enhancing the efficiency of forest resource 
assessments (Luo et al., 2021). However, challenges remain in 
accurately acquiring individual tree morphological parameters 
due to the low point density and occlusion caused by 
overlapping tree crowns, especially in complex forest 
environments. 

The extraction of individual tree structural parameters involves 
two primary steps: individual tree segmentation and structural 
parameter extraction. Accurate tree segmentation is crucial for 
parameter estimation, as segmentation accuracy directly impacts 
the precision of the extracted parameters. 

2.1 Individual Tree Segmentation 

Traditional tree segmentation methods based on ALS can 
generally be categorized into two main approaches: 2D image 
segmentation and 3D point cloud segmentation. 

The 2D image segmentation approach employs canopy height 
model (CHM) raster images to represent the upper canopy 
contour, where local maxima are extracted as treetops to 
facilitate the segmentation of individual trees (Kaartinen et al., 
2012). Typical approaches consist of Watershed Algorithms 
(Dalponte et al., 2014), Region Growing Algorithms (Zhen et 
al., 2014), and other 2D image segmentation techniques (Zhou 
et al., 2020). However, the accuracy of these approaches is 
limited by the local maximum detection, which can lead to both 
false positives and false negatives.  

By comparison, 3D point cloud based approaches, including 
Mean-shift Clustering (Ferraz et al., 2012), Graph-based 
Segmentation (Dong et al., 2020), and Spectral Clustering (Pang 
et al., 2021), are able to exploit the spatial structure of point 
clouds. These methods generally achieve higher accuracy but 
rely heavily on prior knowledge of forest characteristics, and 
they require manual parameter adjustment according to factors 
such as forest type and developmental stage. This lack of 
generalizability, coupled with the complex tuning process, 
limits their applicability and transferability across different 
forest environments. 

2. Related Work
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Recent advances in deep learning (DL) have demonstrated that 
both direct and indirect approaches applied to 3D point clouds 
can achieve efficient individual tree segmentation in complex 
forest environments, offering broad application prospects. The 
direct approach begins with the segmentation or classification of 
3D point clouds into distinct components through networks like 
PointNet++ (Krisanski et al., 2021) and 3D U-Net (Henrich et 
al., 2024), followed by clustering to further refine the 
segmentation. Due to their high dimensionality and irregular 
structure, 3D point clouds impose greater computational 
complexity, which makes training and inference more difficult. 
Such direct approaches are generally applied within terrestrial 
or mobile LiDAR systems. For the latter, advanced networks 
such as Swin Transformer (Liu et al., 2021b), Faster R-CNN 
(Liu et al., 2021a), YOLO (Wang et al., 2022), and U-Net 
(Freudenberg et al., 2022) employed for segmenting 2D images 
generated from 3D point clouds. By exploiting the 
representational capacity of advanced network architectures, 
these methods automatically capture and extract complex spatial 
features, ultimately achieving precise delineation of the upper 
canopy. Especially, the YOLO model demonstrates a clear 
advantage in faster execution, which contributes to the efficient 
accomplishment of detection and segmentation tasks. 
 
To improve detection speed and accuracy, the YOLO models 
(Ali and Zhang, 2024) and its variants (Chen et al., 2023) have 
been enhanced through the integration of multi-scale detection, 
attention mechanisms, loss function refinements, and data 
augmentation techniques (Nan et al., 2024; Zhao et al., 2024). 
With these enhancements, the model is capable of capturing fine 
details, suppressing background interference, and adapting to 
diverse canopy characteristics, thereby serving as an effective 
tool for crown detection. 
 
2.2 Structure Parameter Extraction 

The structural parameters of individual trees form the 
foundation of forest spatial structure analysis, providing critical 
data for forest resource surveys and ecological research. Key 
parameters typically measured in field surveys include diameter 
at breast height (DBH), tree height, height to the lowest live 
branch, and crown width. More complex parameters such as 
biomass and tree volume require tree felling for accurate 
measurement (Krůček et al., 2020). 
 
In recent years, there has been a growing focus on automating 
forest parameter extraction, particularly through the use of ALS 
data. The extraction of individual tree parameters can be 
classified into two categories (Zhao, 2022). Direct extraction 
methods involve obtaining parameters such as tree height, 
crown projection area, surface area, and volume directly from 
the segmentation results. For parameters that cannot be directly 
obtained from segmentation, growth equations or empirical 
models are used to estimate parameters like DBH, volume, and 
biomass. 
 
However, these two approaches are not entirely independent. 
The effectiveness of both approaches is influenced by factors 
such as data density and acquisition conditions. The accuracy of 
parameter estimation is thus dependent on the quality of the 
segmentation and the characteristics of the ALS data. 
 

3. Methodology 

This study aims to perform individual tree segmentation using 
an improved YOLO model, and subsequently extract the 
structural parameters of individual trees. The overall pipeline, as 

illustrated in Figure 1, comprises three main components: data 
preparation (Section 3.1), structural parameter extraction 
(Section 3.2), and accuracy evaluation (Section 3.3). 
 

 
Figure 1. Flowchart of the proposed approach. 

 
3.1 Data Preparation 

3.1.1 Pre-processing: The construction of the individual tree 
segmentation dataset relies on a systematic pre-processing of 
the original ALS point cloud, which mainly includes point 
cloud denoising, ground filtering, height normalization, and the 
generation of multi-feature point cloud maps. 
 
Statistical Outlier Removal (SOR) filtering (Li et al., 2016) and 
Cloth Simulation Filtering (CSF) (Zhang et al., 2016) are used 
to eliminate noise outliers and ground points, respectively. To 
generate the ITS map dataset, the CSF result is first normalized, 
and then a multi-feature coloring method is employed to extract 
the multidimensional features of the point clouds. In the 
construction of multi-feature point cloud maps, the processed 
point clouds are first vertically stratified by height, and the point 
density and intensity values are calculated for each height 
interval. Based on these values, density and intensity colorized 
point clouds are generated and visualized through color 
mapping. The RGB mean values of the two colorized point 
clouds are then fused to produce multi-feature data that 
represent comprehensive multidimensional information. Finally, 
the colorized point clouds are projected onto the ground to 
generate a complete multi-feature point cloud map that fully 
reflects three-dimensional structural characteristics (Liu et al., 
2025). 
 
3.1.2 Dataset Generation: To meet the input requirements of 
the YOLO deep learning network, the generated multi-feature 
point cloud maps were divided into fixed-size patches of 512 
×  512 pixels, with a 64-pixel overlap between adjacent 
patches to ensure spatial continuity and preserve edge features 
during subsequent processing. Image annotation was performed 
using the LabelMe tool, which produced JSON files containing 
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tree locations, anchor box dimensions, and class labels. 
Meanwhile, to mitigate the risk of over-fitting, data 
augmentation strategies such as flipping, rotation, and the 
addition of Gaussian noise were applied.  
 

 
Figure 2. Multi-feature map and ITS Dataset with labelled mark. 

 
3.2 Structural Parameter Extraction 

3.2.1 Individual Tree Segmentation: To overcome challenges 

posed by crown overlap and heterogeneous backgrounds in 
dense forests, an improved YOLO model is proposed for ITS 
using ALS point clouds. The model can effectively extract the 
location and boundary information of trees in dense forests, 
thereby improving detection and segmentation accuracy while 
minimizing both false positives and false negatives. Built upon 
the YOLOv8 architecture, the proposed model, as shown in 
Figure 3, incorporates advanced modules incorporates advanced 
modules such as CReToNeXt (Cross Residual Transformer 
Network Extended), CBAM (Convolutional Block Attention 
Module), and a Dynamic Head. 
 
The CReToNeXt module (Xu et al., 2022) replaces the original 
C2F module to enhance feature extraction and multi-scale 
fusion. The CBAM (Woo et al., 2018) is integrated into the 
backbone network to emphasize critical regions and reduce 
background noise. Additionally, a Dynamic Head (Dai et al., 
2021) optimizes feature layer weighting and fusion, improving 
accuracy in detecting target positions and boundary changes. 
Further details of the improved model architecture can be found 
in (Liu et al., 2025). 

 

 

Figure 3. Framework of the proposed model. 

 
3.2.2 Structural Parameter Extraction: Tree structural 
parameters are categorized into horizontal and vertical metrics, 
which respectively describe the morphological characteristics in 
the vertical (height-related) and horizontal (crown spatial 
distribution) dimensions. Vertical parameters, such as tree 
height, reflect growth status and biomass allocation, while 
horizontal parameters, on the other hand, including crown width 
and area, describe the spatial distribution and extent of the tree 
canopy, helping assess site conditions, light distribution, and 
tree competition. Accurately measuring these parameters is 
essential for forest management and ecological studies. 
 
Tree Location and Height Extraction: The tree location and 
height in ALS cloud data are typically determined by the tree 
top (Yang et al., 2016). Traditionally, the maximum Z-

coordinate (tree top) within a point cluster determines tree 
height, but this approach is sensitive to noise. To remove 
outliers, this method first applies spatial clustering (Fu et al., 
2022) to isolate tree point clouds from the proposed CCD-
YOLO, and then the tree top is identified as the highest point 
(maximum Z-value). This two-step process—clustering 
followed by maximum value extraction—ensures precise 
localization of tree positions (XY coordinates) and reliable 
height estimation (Z-coordinate). 
 
Crown Width and Area Extraction: Crown width (maximum 
horizontal span) and crown area (ground projection area) are 
computed using an iterative progressive convex hull algorithm. 
The commonly used convex hull methods struggle with 
irregular crown shapes and internal gaps, especially in dense 
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forests. To overcome this limitation, an iterative progressive 
algorithm (Dong et al., 2018) is adopted, as illustrated in Figure 
4. This approach projects the point cloud onto the Z-axis and 
applies a local convex hull algorithm to construct a more 
accurate boundary. For edges exceeding a set threshold, a 
circular region is constructed using the edge as the diameter, 

and boundary points are identified based on the largest angle 
formed with the endpoints. This iterative procedure is repeated 
until all edges are smaller than the threshold or no points remain 
within the circular region. The proposed method can refine the 
crown boundary, minimize gaps, and enhance the accuracy of 
crown width and area calculations. 

 

 
Figure 4. Process of the Iterative Convex Hull Algorithm. 

 

 
3.3 Accuracy Evaluation 

The performance of the proposed methodology was rigorously 
assessed through two parallel evaluations: (1) individual tree 
segmentation accuracy and (2) structural parameter estimation 
accuracy. Both evaluations employed statistical metrics and 
visual assessment to ensure objective results. 
 
3.3.1 Individual Tree Segmentation: Segmentation accuracy 
was quantified using Precision, Recall, F1-Score, and Average 
Precision (AP). These metrics were calculated based on the 
overlap between predicted and ground-truth tree boundaries: 
The equations for these metrics are: 
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Where TP (True Positive) denotes the number of correctly 
detected (or segmented) trees, while FP (False Positive) and FN 
(False Negative) represent the number of incorrectly detected 
and missed trees, respectively. P(R) indicates the precision at 
different recall levels. 
 
3.3.2 Structural Parameter Extraction: The accuracy of 
forest vertical and horizontal parameter extraction was 
evaluated using the coefficient of determination (R²) and Root 
Mean Square Error (RMSE). The equations are defined as: 

 2 2 2

1 1

1 ( ) / ( )
n n

i i i m
i i

R x y x x
 

      (5) 

 2

1

( ) /
n

i i
i

RMSE x y n


   (6) 

Where xi and yi are the i-th ground-truth and predicted values, 
xm is the mean of ground-truth values, n is the sample size. 
 

4. Results and Discussion 

4.1 Results of Individual Tree Segmentation 

To evaluate the performance of the CCD-YOLO model, the ITS 
dataset was randomly divided into training/validation and test 
sets at a 7:3 ratio. The training utilized the Adam optimizer with 
PyTorch 1.12 on an NVIDIA GeForce RTX 3080 GPU, 
achieving optimal performance after 300 epochs. Additionally, 
the hyperparameters in CCD-YOLO, including momentum, 
learning rate, and weight decay, are set to 0.937, 0.01, and 
0.0005, respectively. As shown in Figure 5, the segmentation 
results were obtained using the proposed method. To enable 
intuitive distinction of individual trees, each tree was assigned a 
unique random color. 
 

 
Figure 5. Oblique view of segmentation result. 

 

Figure 5 illustrates that adjacent trees are distinguished by 
different colors and clear boundaries, confirming the 
effectiveness of the algorithm in individual tree segmentation, 
with 174 out of 239 trees fully extracted. While preserving the 
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natural morphology and spatial structure of trees, the method 
significantly reduces over-segmentation (fragmented crowns) 
and under-segmentation (missed trees), thereby ensuring the 
reliable extraction of complete tree point clouds. A locally 
enlarged segmentation result is shown in Figure 6. 
 

 
Figure 6. Visualization of detailed tree segmentation results. 

 

In addition, a comparison map between the original YOLO 
model and its improvement are shown in Figure 7. 
 
As shown in Figure 7, the proposed model demonstrates a 
strong accuracy in locating individual trees and performs well in 
boundary segmentation by precisely capturing crown edges, 
achieving high consistency with the ground truth in most areas. 
This underscores the model's sensitivity to boundary details and 
its precision in segmentation. Even in cases of crown overlap 
and occlusion, the proposed model effectively restores tree 
crown shapes, showcasing its adaptability to complex scenarios. 
In contrast, the original YOLOv8 model locates most trees 
accurately but still experiences some misclassifications and 
missed detections. While crown segmentation generally aligns 
with expected contours, some areas show noticeable over-
segmentation, resulting in excessive fragmentation. 

   

(a) Ground truth ITS data (b) Improved YOLO Model (c) YOLOv8 

Figure 7. ITS results between YOLO and CCD-YOLO. 

 

Models 
Tree Boundary Segmentation 

Precision Recall F1 AP 
YOLOv8 77.9 71.8 74.7 79.9 
YOLOv8+CReToNeXt 80.9 75.4 78.1 82.4 
YOLOv8+CBAM 79.9 68.3 73.6 78.9 
YOLOv8+Dynamic Head 79.0 70.3 74.4 79.7 
YOLOv8+CReToNeXt 

YOLOv8+CBAM 
80.7 72.9 76.6 81.2 

YOLOv8+CReToNeXt 

YOLOv8+Dynamic Head 
80.9 74.2 77.4 82.3 

YOLOv8+CBAM 

YOLOv8+Dynamic Head 
77.8 71.0 74.2 79.3 

YOLOv8+CReToNeXt  
YOLOv8+CBAM 
YOLOv8+Dynamic Head 

(Proposed CCD-YOLO) 

82.4 72.8 77.9 83.0 

YOLOv11 81.0 71.5 77.6 82.3 

Table 1. Quantitative assessment of the proposed CCD-YOLO. 

 
As shown in Table 1, the CReToNeXt, CBAM, and Dynamic 
Head modules play a significant role in enhancing crown 
detection accuracy and boundary segmentation performance. 
Each module contributed incremental improvements, but their 
combined integration into the YOLO framework yielded 
synergistic gains. Compared to the baseline YOLO model, the 
proposed CCD-YOLO achieved a 3.5% increase in precision, 

4.4% higher recall, and a 4.1% improvement in F1 score, 
significantly reducing both omission and commission errors. 
This underscores the model’s enhanced robustness and 
adaptability to complex forest environments. Compared to 
YOLOv11, the latest advancement the latest advancement in the 
YOLO series, the proposed model showed gains in precision 
(1.4%), F1 score (1.3%), and AP@0.5 (0.7%), demonstrating a 
clear advantage in segmentation accuracy. 
 
4.2 Results of Structural Parameter Extraction 

The proposed method was validated using 45 randomly selected 
trees, with structural parameters (tree height, crown width, and 
crown area) derived from the segmentation results compared 
against manually acquired reference data. Performance was 
quantified using the coefficient of determination (R²) and Root 
Mean Square Error (RMSE). The comparative analysis between 
extracted parameters and reference values is as follows. 
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Figure 8. Comparison of the tree height structural parameter. 

 

 
Figure 9. Comparison of the crown width structural parameter. 

 

 
Figure 10. Comparison of the crown area structural parameter. 

 

It can be seen from Figure 8 to Figure 10 that the results 
demonstrate strong consistency between extracted parameters 
and manual reference measurements: tree height (R² = 0.82, 
RMSE = 1.25), crown width (R² = 0.60, RMSE = 1.01), and 
crown area (R² = 0.99, RMSE = 1.16). These findings highlight 
the effectiveness and reliability of the proposed method in 
extracting forest structural parameters from ALS point clouds. 
However, some crown edges were not effectively identified or 
extracted, thereby affecting the accuracy of the estimates, as 
shown in Figure 11. 

 
Figure 11. Difficult instances to segment. 

 
5. Conclusion and Future Work 

The paper presents an improved YOLO-based model for 
individual tree segmentation and structure parameter extraction 
from ALS data. The proposed CCD-YOLO model, enhanced 
with the modules of CReToNeXt, CBAM, and Dynamic Head, 
demonstrates superior accuracy and robustness in detecting tree 
positions and segmenting crown boundaries. In addition, an 
iterative progressive algorithm is employed to precisely extract 
vertical and horizontal structural parameters, ensuring reliable 
and accurate measurements. 
 
However, CCD-YOLO still exhibits certain limitations in 
individual tree segmentation, which are primarily reflected in 
the misclassification of shrubs (non-trees) and the over-
segmentation of dense canopies. To address these issues, future 
work will focus on integrating multi-source data and refining 
post-processing techniques, thereby further improving 
segmentation accuracy and parameter estimation in complex 
forest environments. 
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