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Abstract 
 
The generalized concept of "Human in the Loop" (HITL) enhances system performance by integrating human expertise into the 
decision-making process of agents. In a narrower sense, HITL specifically refers to human involvement in reinforcement learning (RL) 
through three key mechanisms: demonstration, intervention, and evaluation, each optimizing different stages of the training process. 
This approach effectively incorporates prior human knowledge, mitigates risks and sample bias in RL, and improves exploration 
efficiency and neural network convergence. However, existing HITL methods heavily rely on human experts for real-time annotations 
and guidance, leading to high implementation costs and operational complexity. 
In the domain of autonomous driving, traditional hierarchical decision-making frameworks depend on high-definition (HD) maps for 
planning and navigation. Notably, the construction of HD maps inherently embeds expert knowledge, semantic rules, and constraint 
information. Inspired by this observation, this study introduces an innovative approach: "HD Map in the Loop" (HMITL), leveraging 
HD map features as a substitute for human expertise and establishing a corresponding application framework for autonomous driving. 
Specifically, this research systematically investigates three core aspects of HMITL in training end-to-end decision-control models: (1) 
imitation learning based on expert demonstrations from HD maps; (2) Method for constructing action interference and reward function 
guided by HD map spatial heterogeneity; and (3) Critic priority architecture relying on expert evaluations from HD map perception 
and features. These three dimensions are logically interrelated and collectively form the foundational framework of HMITL. By 
pioneering this methodological innovation, this study provides a novel solution to reducing reliance on real-time human intervention 
in autonomous driving while ensuring the reliability and safety of system decision-making. 
 
 

1. Introduction 

 
Conventional autonomous driving algorithms typically adopt a 
multi-level hierarchical structure consisting of planning and 
control modules. The planning module predicts the agent’s 
trajectory, while the control module executes low-level actions 
such as steering, throttle, and braking (Le Mero et al., 2022). 
Although modular approaches have been widely used in early 
stages, they face inherent structural challenges. For instance, 
these methods require experts to define operational rules and 
environmental characteristics through hard-coded logic 
(Ravichandar et al., 2020). However, constructing a rule set that 
accounts for all possible scenarios is both complex and 
impractical (Zeng et al., 2019). Additionally, the explicit 
interfaces between modules often cause cumulative error 
propagation from upstream perception modules to downstream 
decision-making and control modules, limiting modular 
approaches to constrained environments. 
 
In contrast, end-to-end autonomous driving methods treat 
perception, decision-making, and control as a unified learning 
task, inspired by the “behavioral reflex” mechanism in human 
driving. Instead of relying on predefined rules or explicit module 
interfaces, these methods directly generate waypoints or control 
commands from onboard sensor signals. The key advantage of 
this approach lies in its ability to eliminate performance 
bottlenecks caused by manually defined rules while 
simultaneously uncovering hidden information patterns. 
 
Within the realm of end-to-end autonomous driving, Imitation 
Learning (IL) and Deep Reinforcement Learning (DRL) are two 
primary learning paradigms. IL focuses on replicating human 
driving behavior by mimicking expert demonstrations in given 
states, making it intuitive and user-friendly. However, it suffers 
from distributional shift issues, leading to cumulative errors over 

time (Codevilla et al., 2019), and its performance is inherently 
constrained by the capabilities of the expert policy it imitates (Wu 
et al., 2023). In contrast, DRL is a data-driven self-optimization 
algorithm that autonomously discovers control strategies through 
exploration and trial-and-error (Sutton and Barto, 2014). It has 
demonstrated remarkable potential in sequential decision-making 
tasks, as exemplified by its success in Go (Silver et al., 2016, 
2017, 2018). 
 
Despite their advantages, end-to-end methods—particularly 
those based on IL and DRL—suffer from inherent limitations due 
to their black-box nature. They often lack model interpretability, 
struggle to guarantee performance lower bounds, and raise safety 
concerns. To overcome these limitations, recent research has 
explored hybrid frameworks that integrate modular and end-to-
end methods, leveraging their respective strengths. Modular 
approaches provide interpretability and traceability, 
compensating for the shortcomings of end-to-end models, while 
end-to-end learning enhances task complexity handling. This 
Modular End-to-End Learning paradigm represents a promising 
direction for autonomous driving (Chen et al., 2024), enabling 
feature modules to assist policy training within end-to-end 
networks. 
 
With the rapid advancement of autonomous driving technologies, 
an increasing number of road networks have been mapped using 
high-definition (HD) maps. However, the future of autonomous 
driving faces a strategic divide between map-centric (HD map-
dependent) and perception-centric (sensor-heavy) approaches. 
Under the perception-centric paradigm, existing HD map 
resources risk becoming significantly underutilized. Currently, 
HD maps primarily serve as components in traditional 
hierarchical frameworks for path planning and guidance. Yet, 
their inherent geometric precision, regulatory constraints, and 
semantic richness remain underexplored, and the HD map 
generated in modular end-to-end is only a feature expression that 
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has no connection to reality as shown in figure 1. This suggests 
that HD maps hold potential beyond their conventional role, 
particularly as structured modules within end-to-end models. 
However, this application should differ from existing approaches 
that simply use HD maps as direct input sources or generated 
features, instead exploring how HD maps can actively contribute 
within perception-centric frameworks. 
 

 
Figure 1. Application of HD Maps in Autonomous Driving 

Models 
Therefore, this paper proposes a modular end-to-end autonomous 
driving framework that integrates HD maps into the loop. The 
core idea is to introduce the geometric, semantic, and rule-based 
features of HD maps into the training process of the end-to-end 
autonomous driving model, similar to how human expert 
experience is incorporated into agent training in traditional 
human-in-the-loop (HITL) approaches. Three specific HITL 
methods are proposed for this framework: (1) an improved 
Dataset Aggregation (DAgger) algorithms algorithm based on 
map navigation to mimic human demonstrations; (2) action 
interference and reward function construction based on HD map 
spatial heterogeneity, corresponding to human intervention; and 
(3) a RL critic-prioritized structure corresponding to human 
evaluation. These methods form the HD map-in-the-loop 
(HMITL) framework, which does not directly use HD map 
perceptual information as the basis for agent decision-making. 
Instead, it leverages HD maps as an aid to accelerate the agent's 
training iterations, improving training quality and reducing risks 
during the training process. The final policy model, however, is 
capable of operating independently of HD maps, representing a 
purely perception-centric autonomous driving model. 
 

2. Related Works 

2.1 Reinforcement Learning in Autonomous Driving and 
the Role of HD Maps 

As a major branch of machine learning, Reinforcement Learning 
(RL) has demonstrated significant potential in solving complex 
decision-making and control tasks (Gajcin and Dusparic, 2024; 
Sutton and Barto, 2014). In the field of autonomous driving, 
Deep Reinforcement Learning (DRL) plays a crucial role in 
learning driving policies. Early model-free algorithms, such as 
Deep Q-Network (DQN) and Deep Deterministic Policy 
Gradient (DDPG) (Mnih et al., 2015), have been successfully 
applied to autonomous driving strategies (Wolf et al., 2017). 
Subsequently, more advanced actor-critic architectures—such as 
Soft Actor-Critic (SAC) (Haarnoja et al., n.d.) and Twin Delayed 
Deep Deterministic Policy Gradient (TD3) (Fujimoto, n.d.)—
have significantly improved performance in complex driving 
environments, particularly in urban driving and high-speed 
drifting scenarios (Sallab et al., 2017). 
 
Despite these advancements, DRL still faces two major 
challenges: low learning efficiency and limited scene adaptability. 
Additionally, DRL models often struggle with scene 

comprehension in complex environments, which hampers their 
learning performance and generalization ability. As a result, DRL 
methods frequently underperform compared to human drivers 
when handling diverse driving tasks (Huang et al., 2021; Lv et 
al., 2018). To address these challenges, researchers have sought 
to integrate human-like features into DRL models, leveraging 
common-sense knowledge and neuro-symbolic learning to 
enhance machine intelligence (Mao et al., 2019). 
 
Beyond the lack of human prior knowledge, reward function 
design remains a critical challenge in DRL-based autonomous 
driving. The reward function not only dictates the quality of the 
learned policy but also affects training efficiency (Neary et al., 
2021; Xu et al., 2023). In high-dimensional, complex 
environments, agents require extensive interaction with the 
environment, consuming significant time and computational 
resources. Moreover, sparse reward signals further degrade 
learning efficiency. To mitigate this issue, reward shaping 
(Harutyunyan et al., n.d.) and inverse reinforcement learning 
(IRL) (Ibarz et al., n.d.) have been explored. Additionally, 
combining imitation learning (IL) with DRL has emerged as a 
viable strategy for improving convergence speed by using expert 
knowledge to constrain the exploration space (Codevilla et al., 
2019; Han and Yilmaz, 2022; Zhang et al., 2021). However, these 
methods typically impose higher requirements on model 
transferability, sensor fusion, and computational resources 
(Chitta et al., 2023). 
 
In summary, DRL-based autonomous driving models face 
fundamental challenges related to the absence of human prior 
knowledge and inferior performance compared to IL-based 
approaches that leverage such knowledge (Chen et al., 2024). 
This results in low exploration efficiency, increased risk of 
unsafe behaviors during training, and difficulties in designing 
effective reward functions. Additionally, the high-dimensional 
state space of driving scenarios exacerbates convergence 
difficulties, placing greater demands on model representation 
capabilities. 
 
The introduction of HD maps offers a novel approach to 
addressing these challenges. From a RL perspective, HD maps 
enhance perception robustness by filtering out irrelevant noise 
and emphasizing critical driving information, which can help 
mitigate state mismatch issues, improving overall stability in 
dynamic environments (Cultrera et al., 2024). As intelligent 
sensors containing rich geometric and semantic information, HD 
maps provide detailed road network data, speed limits, traffic 
signs, and other critical elements (Liu et al., 2020). Beyond 
traditional map usage, HD maps can generate bird’s-eye-view 
(BEV) imagery (Chen et al., 2019; Cui et al., 2019; Maramotti et 
al., 2022; Zeng et al., 2019) or semantic segmentation images 
(Nehme and Deo, 2023; Wu et al., 2023). However, these 
information of HD maps are often directly used as inputs for the 
policy network, resulting in the final trained model HD map-
dependent. It is crucial to find a method that can both utilize 
information of HD maps and eliminate reliance on it during 
practical application. 
 
2.2 Challenges and Solutions in Imitation Learning for 
Autonomous Driving 

Imitation Learning (IL) offers a promising approach for rapidly 
acquiring an initial policy by leveraging expert demonstrations 
(Li et al., 2022), although its performance is often constrained by 
the quality of the expert data. As a result, most state-of-the-art 
end-to-end decision-making models pretrain using imitation 
learning and then introduce RL to enhance overall training 
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efficiency and strategy abilities in complex scenarios (Hester et 
al., 2018; Nair et al., 2018; Saunders et al., 2017; Vecerik et al., 
2018; Zhang and Ma, 2018; Zhu et al., 2018). However, imitation 
learning algorithms, particularly Behavior Cloning (BC) (Ibarz et 
al., n.d.), face several inherent challenges: state mismatch (Hua 
et al., 2021), data distribution shift (Reddy et al., 2019) and error 
accumulation (Zare et al., 2024). 
 
To address these issues, Dataset Aggregation (DAgger) 
algorithms have been proposed to mitigate covariate shift and 
error accumulation in imitation learning (Reddy et al., 2019; Zare 
et al., 2024). The DAgger algorithm works by allowing the agent 
to interact with the environment using its current policy, 
collecting data, and having it annotated by experts. This 
annotated data is then used for the next round of policy training 
(Ross et al., 2011).  
 
However, DAgger algorithms combine data augmentation and 
forced interventions, which creates a potential conflict in their 
approach. While forced intervention helps reduce error 
accumulation, it also leads to data imbalance, exacerbating the 
covariate shift problem. This results in the collected states 
following the mixed-policy distribution rather than the agent’s 
current policy leading to unfamiliar states that may cause 
covariate shift during training (Mandlekar et al., 2020). 
 
In summary, interactive-exploration IL algorithms like DAgger 
shares a similar framework with RL, where human intervention 
can help resolve intrinsic challenges such as distribution shift and 
error accumulation that negatively impact sampling efficiency. 
However, unlike RL, which can use importance sampling to 
alleviate distribution shift (Sutton and Barto, 2014), IL is still 
susceptible to state distribution bias caused by the mixed-policy 
approach. A promising solution is to incorporate HD maps into 
the training framework to filter harmful samples and increase the 
proportion of effective samples during the interaction exploration 
phase. By leveraging HD maps to identify and control driving 
scene interactions, we can improve the sampling efficiency and 
mitigate the impact of mixed-policy bias in imitation learning. A 
good pretrained model for IL will also enhance the interactivity 
of end-to-end RL during the fine-tuning. 
 
2.3 Challenges and Solutions in Human in the Loop  

In human-agent interaction, humans typically guide the agent's 
learning by providing knowledge related to the RL problem, such 
as Q-values, optimal actions, or real rewards. This guidance can 
accelerate the learning process, avoid catastrophic outcomes, and 
optimize exploration efficiency. However, most existing research 
develops interaction protocols for specific agents, without 
creating a universal framework (Abel et al., 2017). 
 
For human-in-the-loop (HITL) framework, expert intelligence 
can participate in through several methods, including human 
evaluation, human demonstrations, and human intervention. In 
these frameworks, methods like BC (Ibarz et al., n.d.) and IRL 
(Ziebart et al., n.d.) are integrated into representative algorithms 
such as DQL (Hester et al., 2018; Saunders et al., 2017) and 
DDPG (Vecerik et al., 2018). Experiments indicate that these 
methods outperform traditional DRL approaches in robotics 
(Krening et al., 2017). 
 
Current HITL framework rely on real-time annotation guidance 
provided by human experts through supervised learning. 
However, these methods still face several challenges: Long-term 
Supervision and Guidance Fatigue (Littman, 2015; Droździel et 
al., 2020; Saunders et al., 2017), Dependence on Expert 

Demonstrations (Hu et al., n.d.) and Non-stationarity of Human 
Teaching Strategies (Knox et al., 2012). A promising solution to 
these challenges is to integrate HD Maps planning into the DRL 
training framework instead of human expert experience or 
directly leveraging them as control gates to determine when the 
intervention is needed, which can reduce the uncertainty and 
labor consumption of human participants.  
 

3. Method 

This paper proposes a HD-map-in-the-loop (HMITL) framework 
for autonomous driving, which fully leverages the information 
resources available in HD maps such as geometric attributes and 
semantic properties to replace the traditional reliance on human 
expert, comprising the following components as shown in Figure 
2, three implementation plans corresponding to human 
demonstration, human intervention and human evaluation 
through HD maps will be provided later: 
 

 
Figure 2. Illustration of HD Map in the loop Framwork 

 
3.1 ShotgunDAgger: An HD Map-Assisted Imitation 
Learning Optimization Algorithm 

To address the issues of covariate shift and error accumulation in 
imitation learning, this paper introduces the ShotgunDAgger 
algorithm, an improvement upon the traditional DAgger 
algorithm which adjusts the expert's strategy at critical moments 
to ensure that the collected data aligns more closely with the 
agent's current strategy. Additionally, a behavior constraint 
mechanism based on HD maps is introduced to reduce the impact 
of error accumulation, resulting in a more robust HITL approach 
based on expert demonstrations. 
 
ShotgunDAgger provides two approaches: the first is to adjust 
the expert's strategy during sampling bias and continue sampling, 
ensuring that subsequent data follows the agent's current policy 
distribution; the second is to reset the simulation environment at 
key moments, allowing the agent to start sampling from a new 
state. These approaches do not forcefully intervene in the agent's 
decision-making but optimize at the data collection level, 
ensuring unbiased data distribution. 
 
To enhance the algorithm's practical applicability in autonomous 
driving scenarios, this paper integrates the semantic properties of 
HD maps and designs an expert strategy adjustment mechanism 
based on lane-changing behavior. When the agent vehicle 
deviates from the planned path, the expert strategy is adjusted to 
align with the agent's strategy through two approaches above: in 
this process, the HD map's auxiliary decision-making mechanism, 
called the HD Map Gate, plays a key role. When the agent 
performs a lane change, this mechanism compares the current 
lane ID with the lane ID of the next waypoint in the planned path 
to determine if a deviation has occurred. When a deviation is 
detected, a new global path planning is performed based on the 
vehicle's current location and destination, or the interaction 
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environment is reset to begin sampling again. This operation not 
only ensures that the re-collected samples after deviation still 
follow the agent’s current policy distribution, but also minimizes 
ineffective samples caused by data deviation. 
 
The two implementation approaches of ShotgunDAgger are 
shown in Figure 3. The distinguishing feature of both methods is 
that the expert strategy is used only as the true label, without 
forcefully interfering with the agent’s actions. This ensures that 
the collected data samples always conform to the agent's current 
policy distribution, avoiding the potential bias problems inherent 
in traditional methods. As a result, ShotgunDAgger has high 
applicability, particularly in the unbiased data methods 
commonly used in RL, ensuring the efficiency and accuracy of 
the data. The choice between the two methods should be based 
on the specific task and environment. ShotgunDAgger1 is better 
suited for scenarios with complex path planning, while 
ShotgunDAgger2 is more appropriate for tasks that can reset the 
environment and quickly adapt to changes. 
 

 
Figure 3. Illustration of HD Map Assisted Imitation Learning 

Algorithm ShotgunDAgger 

 
3.2 Action Interference and Reward Function Construction 
Using HD Map Spatial Heterogeneity 

3.2.1 Action Interference: This paper introduces HD map-
based path planning information to influence the vehicle's 
trajectory which aim is to gradually reduce the reliance on HD 
maps during the RL process, allowing the agent to train more 
effectively in autonomous decision-making. Elements from the 
HD map, such as guide lines and deceleration zones, are 
integrated into the agent's decision-making model. Each action is 
assigned a probability weight, with the agent selecting the actual 
action to be executed based on these probabilities as shown in 
Figure 4: 
 

 
Figure 4. Illustration of Process of HD Map Intervention in 

action stage 
 
A key step in the algorithm is that within the simulation platform, 
the vehicle’s path planning information is controlled by HD map 

elements, such as guide lines and deceleration zones, which 
govern the vehicle's trajectory. During the initial stage, the agent 
relies more heavily on the HD map’s guidance for actions, such 
as driving within the guide lines or automatically decelerating 
when entering a deceleration zone. These actions guided by HD 
maps or made by the RL actor policy are assigned different 
probability values. In the early stages of training, the probability 
of HD map-guided actions is higher, while the RL actor policy 
actions are given lower probability. As training progresses, the 
weight of the HD map-guided actions gradually decreases, and 
the influence of the RL actor policy actions increases, enabling 
the agent to learn standardized driving as much as possible in the 
early training stages, and increases exploration in the later stages 
to enhance models’ robustness. 
 
This method is similar to the DAgger algorithm, both based on a 
hybrid policy of state-action pairs as training samples. The key 
difference lies in the DAgger algorithm's approach of directly 
addressing the state distribution difference between the agent's 
strategy and the expert’s strategy, requiring iterative correction 
through repeated sampling during model training. In contrast, 
while this study’s method uses a similar hybrid policy to execute 
actions, the state distribution bias can be controlled through 
Importance Sampling (IS) in RL, making it an off-policy 
approach with less impact from the hybrid policy compared to IL 
algorithms. 
 
Furthermore, unlike decaying action interference, the influence 
of the semantic functional zones in the HD map on the agent’s 
actions does not diminish over the course of training. As shown 
in Figure 5, these functional areas, such as deceleration zones, 
immediately enforce the relevant actions (e.g., emergency 
braking) when the agent enters them and provide negative 
feedback through a comfort reward function to prevent the agent 
from driving at high speeds in deceleration zones. These 
functional areas exert continuous influence over time and are 
geometrically constrained.  
 

 
Figure 5. Illustration of Process of HD Map Intervention in 

semantic functional zones 
3.2.2 Reward Shaping: In the reward feedback phase, the 
reward function is shaped by the rule-based constraints from the 
HD map. Using features such as lane speed limits, directions, and 
obstacle locations from the HD map, the reward function is 
updated in real-time, with different reward functions designed for 
various HD map elements to reflect the quality of the agent’s 
behavior. This design makes the reward mechanism more 
targeted and responsive, ensuring that the feedback during the RL 
process aligns more closely with actual traffic rules and human 
cognition. 
 
This study aims to address the sparsity of reward functions in RL 
cooperated with action intervention methods. Traditional reward 
functions often combine factors such as goal return, obstacle 
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avoidance distance, cognitive uncertainty, scene similarity, speed, 
and comfort into a weighted similarity calculation. The HD map 
provides a quantitative description of the agent's current state 
based on global information, which has the potential to replace 
human evaluation work, avoiding costs and stability issues 
associated with human involvement. The reward function design 
based on HD map spatial evaluation in this study is similar to 
traditional methods but is constructed from the perspectives of 
safety, efficiency, and stability with each aspect incorporating 
local and global information from the HD map as shown in figure 
6: 

 
Figure 6. Schematic Diagram of Reward Function Composition 

based on HD Map 
 
For safety-related rewards, traditional reward functions use 
discrete reward factors like collision occurrences or the dense 
rewards like distance to obstacles, and some neural network-
based reward functions also penalize cognitive uncertainty to 
improve the agent's prediction accuracy. When designing reward 
functions from the HD map perspective, spatial heterogeneity 
must be considered, combining dynamic local space information 
with global path planning risks to provide a comprehensive 
evaluation of the current state. As shown in Figure 7, the agent 
(represented by the red vehicle) faces a blue vehicle as an 
obstacle in the upcoming lane. From the HD map’s perspective, 
the risk distances to all obstacles are different: vehicles in 
adjacent lanes may be closer in parallel, whereas the same 
distance between vehicles in the same lane results in a 
significantly higher risk because most vehicles move in straight 
lines in the lane. When constructing obstacle distance penalties, 
higher weights should be assigned to obstacles within the same 
lane segment. The movement of dynamic obstacles in 
autonomous driving scenarios follows certain driving constraints 
and patterns, which can be distinguished based on the HD map’s 
spatial heterogeneity. 
 

 
Figure 7. Illustration of Reward function shaping based on HD 

Map 
Compared to using visual feature similarity as a target goal 
reward in navigation tasks, constructing goal reward using HD 

maps incorporates more spatial characteristics, avoiding reward 
sparsity issues caused by undetected effective features. Spatial 
similarity generally includes geometric, semantic, topological, 
and orientation similarities, and when the agent enters a new 
waypoint range, the shortest path is planned using global 
planning algorithms based on the HD map incorporating these 
four similarity factors. As shown in Figure 7, if the current 
distance between the red agent vehicle and the target goal is 
considered only geometrically using Euclidean or Manhattan 
distance, taking the right route would be more effective. However, 
based on driving behavior norms in autonomous driving 
scenarios, the path planned from the left is more in line with 
traffic regulations, particularly since the current road segment is 
marked with a double yellow line that prohibits U-turns. The 
shortest path planned by the global planning algorithms 
algorithm includes semantic and orientation information, where 
the former refers to different functional areas on the HD map, and 
the latter refers to a one-dimensional directional evaluation—
lane segment IDs. Opposing lane segments, despite being close 
in space or even adjacent, represent entirely different meanings 
for driving decisions due to their opposite directions. The global 
planning algorithm itself depends on the topological 
representation of the road segments because ensuring the planned 
shortest path conforms to the topological connectivity of the HD 
map. By using these navigation algorithms to set the reward 
function, it can become more guiding. To some extent, the 
essence of this method belongs to the segmented reward function, 
but its segmentation is based on spatial heterogeneity. This 
encourages vehicles to make decisions based on the guidance of 
rewards provided by experts in different states and provides 
effective dense gradients combined with action interference 
methods beyond forced control sampling. 
 
3.3 HD Map Perception-Based Priority Critic Network 
Algorithm 

This paper proposes a differential actor-critic architecture, as 
shown in the flowchart in Figure 8. The architecture follows an 
actor-critic RL framework and uses an experience buffer for off-
policy training. The main difference from previous RL models, 
which relied on HD map perceptual information, is that the HD 
map features are only input into the critic network, not the actor 
network. This means that the critic network utilizes the global 
view provided by the HD map for more macroscopic value 
evaluation, while the actor relies on the agent's local perception 
from visual inputs combined with the macro evaluation from the 
critic to iterate toward optimal actions. 
 

 
Figure 8. Framework of critic-prioritized Algorithm 

 
In the information input phase, the actor is only provided with the 
forward camera's view, while the critic receives a broader range 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-43-2025 | © Author(s) 2025. CC BY 4.0 License.

 
47



 

of information, including semantic segmentation and Bird's Eye 
View (BEV) images from the HD map. There are three main 
benefits to this approach. First, compared to pure vision-based 
decision-making models or modular end-to-end models that start 
learning from random initial networks, this method incorporates 
many manual features in the input phase, such as obstacle 
distance derived from the HD map, planned paths, or semantic 
segmentation images. This greatly helps the critic network filter 
out redundant information, accelerating the understanding of the 
global environment. Second, in addition to enhancing the 
model’s understanding capability, the HD map helps reduce the 
generation of dangerous states and extreme samples during 
training. For example, issues like blind-spot cornering can be 
mitigated by the critic’s ability to give more reasonable 
evaluations of the current state based on the HD map, through Q-
Value provided by the critic, agents can combine dangerous signs 
with subtle changes in forward camera images, alleviating causal 
confusion in RL. Third, after training, the policy network (actor) 
can generate action instructions solely based on the camera’s 
visual input and auxiliary localization information, without the 
need for the critic or HD map assistance. However, the global 
information from the HD map is implicitly retained in the actor's 
strategy in the form of sense of direction. This is because the 
critic provides the global path, so the actor receives higher 
rewards during training when it follows the global path.  
 
For both the actor and critic networks, in addition to 
differentiated perceptual inputs, there are also many shared 
auxiliary localization features, such as vehicle speed, 
acceleration, direction, and position, which can be obtained 
through GPS devices rather than strictly relying on the HD map. 
These inputs could also follow the " critic-prioritized " approach 
by feeding high-level features from the HD map directly to the 
critic network, improving its state estimation capacity. Figure 9 
illustrates a specific approach based on hierarchical 
reinforcement learning. In existing algorithms either humans or 
neural networks providing semantic instructions in different 
scenarios, with RL only handling low-level operations to achieve 
rewards. In this paper, we propose replacing the human or neural 
network role with the HD map, as the HD map provides real-time 
global attributes of the agent's vehicle. Using the HD map's 
global information and the agent's current state, a navigation path 
can be planned, and high-level commands can be extracted from 
the perspective of human semantics (e.g., "go forward" or "turn 
left"). Since macro-level instructions do not require specific 
obstacle avoidance actions, the HD map can fully replace humans 
and, using global path planning algorithms like A*, can provide 
results even faster than a human. 
 

 
Figure 9. critic-prioritized structure based on HD Map High-

level Instructions 
 
For command input, instead of using high-level commands as 
input to the actor in many multi hierarchical reinforcement 
learning systems, this paper proposes directly inputting these 
commands as modular features into the critic network. This 
enhances the critic’s ability to process path planning information. 
The core of this method is to maximize the utilization of all 
available resources to train the critic, allowing the critic to guide 

the actor network with greater precision. The actor, with the 
assistance of the vehicle's localization information and visual 
perception, can then achieve macro-level commands by 
performing low-level operations like obstacle avoidance and 
reaching a local destination. 
 

4. Conclusion 

Current research typically integrates HD maps as an information 
source into the end-to-end training process of autonomous 
driving models, but few studies have explored how to leverage 
the knowledge properties of HD maps to replace the traditional 
role of human experts in training agent models as HMITL. This 
paper expands on the application of HD maps in autonomous 
driving control and strategy from the perspective of HD maps. It 
proposes optimizing the agent's training process and sampling 
efficiency through the prior knowledge of HD maps and 
artificially constructed features within RL or partial IL based 
exploratory interactive policy iteration algorithms, achieving 
better training results with the same policy network architecture 
under the demands of perception-centric model. The rapid 
development of HD maps provides a feasible alternative for agent 
training, avoiding the burden and cost of expert work in HITL. 
The main innovations of this paper can be summarized as follows: 

a. HD Map in the Loop Framework: For different 
training stages in RL, this paper incorporates various 
characteristics of HD maps to build a map-based 
autonomous driving HMITL framework. This 
framework breaks the traditional limitation of using 
HD maps solely as an information input source in end-
to-end training, broadening its role in autonomous 
driving training. 

b. Imitation Learning Based on HD Map Expert 
Demonstrations: Combining the assistance of HD 
map-based judgments, this paper introduces Shotgun 
DAgger. This method allows the agent to fully utilize 
the prior knowledge provided by HD maps with limited 
training data, improving the efficiency of IL efficiently. 
The result can be used as a pretrained model for RL. 

c. Action Intervention and Reward Function Design 
Based on HD Map Spatial Heterogeneity: This paper 
uses guidance lines and special area information from 
HD maps to intervene and restrict the agent’s actions 
during training. This intervention effectively avoids 
risks and extreme states that may be encountered in 
training, reducing the distribution of extreme state 
samples in the collected data and improving the safety 
and stability of the agent's training process. By utilizing 
the spatial information of HD maps, this paper also 
provides a dense reward shaping function paired with 
action intervention. Quantifying the geometric features 
from HD maps helps mitigate the reward sparsity 
problem caused by qualitative descriptions in 
traditional reward shaping of RL. 

d. HD Map-Based Prioritized Critic Network 
Algorithm: This paper feeds HD map perceptual 
information, global planning paths, and high-level 
semantic instructions—obtained via HD maps into the 
critic network only. The critic, equipped with global 
perception and HD map features, then guides the actor. 
While HD maps are used as an information source 
limited to the critic instead of actor, the final agent 
policy model can still make decisions independently of 
HD maps. 

 
In conclusion, the innovative methods presented in this paper, by 
integrating HD maps at various stages of the RL process, not only 
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effectively improve training efficiency but also alleviate the 
expert-dependence problem inherent in existing HITL 
approaches. This provides new ideas and solutions for efficient 
training of end-to-end autonomous driving agents. 
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