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Abstract

The generalized concept of "Human in the Loop" (HITL) enhances system performance by integrating human expertise into the
decision-making process of agents. In a narrower sense, HITL specifically refers to human involvement in reinforcement learning (RL)
through three key mechanisms: demonstration, intervention, and evaluation, each optimizing different stages of the training process.
This approach effectively incorporates prior human knowledge, mitigates risks and sample bias in RL, and improves exploration
efficiency and neural network convergence. However, existing HITL methods heavily rely on human experts for real-time annotations
and guidance, leading to high implementation costs and operational complexity.

In the domain of autonomous driving, traditional hierarchical decision-making frameworks depend on high-definition (HD) maps for
planning and navigation. Notably, the construction of HD maps inherently embeds expert knowledge, semantic rules, and constraint
information. Inspired by this observation, this study introduces an innovative approach: "HD Map in the Loop" (HMITL), leveraging
HD map features as a substitute for human expertise and establishing a corresponding application framework for autonomous driving.
Specifically, this research systematically investigates three core aspects of HMITL in training end-to-end decision-control models: (1)
imitation learning based on expert demonstrations from HD maps; (2) Method for constructing action interference and reward function
guided by HD map spatial heterogeneity; and (3) Critic priority architecture relying on expert evaluations from HD map perception
and features. These three dimensions are logically interrelated and collectively form the foundational framework of HMITL. By
pioneering this methodological innovation, this study provides a novel solution to reducing reliance on real-time human intervention

in autonomous driving while ensuring the reliability and safety of system decision-making.

1. Introduction

Conventional autonomous driving algorithms typically adopt a
multi-level hierarchical structure consisting of planning and
control modules. The planning module predicts the agent’s
trajectory, while the control module executes low-level actions
such as steering, throttle, and braking (Le Mero et al., 2022).
Although modular approaches have been widely used in early
stages, they face inherent structural challenges. For instance,
these methods require experts to define operational rules and
environmental characteristics through hard-coded logic
(Ravichandar et al., 2020). However, constructing a rule set that
accounts for all possible scenarios is both complex and
impractical (Zeng et al., 2019). Additionally, the explicit
interfaces between modules often cause cumulative error
propagation from upstream perception modules to downstream
decision-making and control modules, limiting modular
approaches to constrained environments.

In contrast, end-to-end autonomous driving methods treat
perception, decision-making, and control as a unified learning
task, inspired by the “behavioral reflex” mechanism in human
driving. Instead of relying on predefined rules or explicit module
interfaces, these methods directly generate waypoints or control
commands from onboard sensor signals. The key advantage of
this approach lies in its ability to eliminate performance
bottlenecks caused by manually defined rules while
simultaneously uncovering hidden information patterns.

Within the realm of end-to-end autonomous driving, Imitation
Learning (IL) and Deep Reinforcement Learning (DRL) are two
primary learning paradigms. IL focuses on replicating human
driving behavior by mimicking expert demonstrations in given
states, making it intuitive and user-friendly. However, it suffers
from distributional shift issues, leading to cumulative errors over

time (Codevilla et al., 2019), and its performance is inherently
constrained by the capabilities of the expert policy it imitates (Wu
et al., 2023). In contrast, DRL is a data-driven self-optimization
algorithm that autonomously discovers control strategies through
exploration and trial-and-error (Sutton and Barto, 2014). It has
demonstrated remarkable potential in sequential decision-making
tasks, as exemplified by its success in Go (Silver et al., 2016,
2017, 2018).

Despite their advantages, end-to-end methods—particularly
those based on IL and DRL—suffer from inherent limitations due
to their black-box nature. They often lack model interpretability,
struggle to guarantee performance lower bounds, and raise safety
concerns. To overcome these limitations, recent research has
explored hybrid frameworks that integrate modular and end-to-
end methods, leveraging their respective strengths. Modular
approaches  provide interpretability and traceability,
compensating for the shortcomings of end-to-end models, while
end-to-end learning enhances task complexity handling. This
Modular End-to-End Learning paradigm represents a promising
direction for autonomous driving (Chen et al., 2024), enabling
feature modules to assist policy training within end-to-end
networks.

With the rapid advancement of autonomous driving technologies,
an increasing number of road networks have been mapped using
high-definition (HD) maps. However, the future of autonomous
driving faces a strategic divide between map-centric (HD map-
dependent) and perception-centric (sensor-heavy) approaches.
Under the perception-centric paradigm, existing HD map
resources risk becoming significantly underutilized. Currently,
HD maps primarily serve as components in traditional
hierarchical frameworks for path planning and guidance. Yet,
their inherent geometric precision, regulatory constraints, and
semantic richness remain underexplored, and the HD map
generated in modular end-to-end is only a feature expression that
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has no connection to reality as shown in figure 1. This suggests
that HD maps hold potential beyond their conventional role,
particularly as structured modules within end-to-end models.
However, this application should differ from existing approaches
that simply use HD maps as direct input sources or generated
features, instead exploring how HD maps can actively contribute
within perception-centric frameworks.
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Figure 1. Application of HD Maps in Autonomous Driving
Models

Therefore, this paper proposes a modular end-to-end autonomous
driving framework that integrates HD maps into the loop. The
core idea is to introduce the geometric, semantic, and rule-based
features of HD maps into the training process of the end-to-end
autonomous driving model, similar to how human expert
experience is incorporated into agent training in traditional
human-in-the-loop (HITL) approaches. Three specific HITL
methods are proposed for this framework: (1) an improved
Dataset Aggregation (DAgger) algorithms algorithm based on
map navigation to mimic human demonstrations; (2) action
interference and reward function construction based on HD map
spatial heterogeneity, corresponding to human intervention; and
(3) a RL critic-prioritized structure corresponding to human
evaluation. These methods form the HD map-in-the-loop
(HMITL) framework, which does not directly use HD map
perceptual information as the basis for agent decision-making.
Instead, it leverages HD maps as an aid to accelerate the agent's
training iterations, improving training quality and reducing risks
during the training process. The final policy model, however, is
capable of operating independently of HD maps, representing a
purely perception-centric autonomous driving model.

2. Related Works

2.1 Reinforcement Learning in Autonomous Driving and
the Role of HD Maps

As a major branch of machine learning, Reinforcement Learning
(RL) has demonstrated significant potential in solving complex
decision-making and control tasks (Gajcin and Dusparic, 2024;
Sutton and Barto, 2014). In the field of autonomous driving,
Deep Reinforcement Learning (DRL) plays a crucial role in
learning driving policies. Early model-free algorithms, such as
Deep Q-Network (DQN) and Deep Deterministic Policy
Gradient (DDPG) (Mnih et al., 2015), have been successfully
applied to autonomous driving strategies (Wolf et al., 2017).
Subsequently, more advanced actor-critic architectures—such as
Soft Actor-Critic (SAC) (Haarnoja et al., n.d.) and Twin Delayed
Deep Deterministic Policy Gradient (TD3) (Fujimoto, n.d.)—
have significantly improved performance in complex driving
environments, particularly in urban driving and high-speed
drifting scenarios (Sallab et al., 2017).

Despite these advancements, DRL still faces two major

challenges: low learning efficiency and limited scene adaptability.

Additionally, DRL models often struggle with scene

comprehension in complex environments, which hampers their
learning performance and generalization ability. As a result, DRL
methods frequently underperform compared to human drivers
when handling diverse driving tasks (Huang et al., 2021; Lv et
al., 2018). To address these challenges, researchers have sought
to integrate human-like features into DRL models, leveraging
common-sense knowledge and neuro-symbolic learning to
enhance machine intelligence (Mao et al., 2019).

Beyond the lack of human prior knowledge, reward function
design remains a critical challenge in DRL-based autonomous
driving. The reward function not only dictates the quality of the
learned policy but also affects training efficiency (Neary et al.,
2021; Xu et al, 2023). In high-dimensional, complex
environments, agents require extensive interaction with the
environment, consuming significant time and computational
resources. Moreover, sparse reward signals further degrade
learning efficiency. To mitigate this issue, reward shaping
(Harutyunyan et al., n.d.) and inverse reinforcement learning
(IRL) (Ibarz et al., n.d.) have been explored. Additionally,
combining imitation learning (IL) with DRL has emerged as a
viable strategy for improving convergence speed by using expert
knowledge to constrain the exploration space (Codevilla et al.,
2019; Han and Yilmaz, 2022; Zhang et al., 2021). However, these
methods typically impose higher requirements on model
transferability, sensor fusion, and computational resources
(Chitta et al., 2023).

In summary, DRL-based autonomous driving models face
fundamental challenges related to the absence of human prior
knowledge and inferior performance compared to IL-based
approaches that leverage such knowledge (Chen et al., 2024).
This results in low exploration efficiency, increased risk of
unsafe behaviors during training, and difficulties in designing
effective reward functions. Additionally, the high-dimensional
state space of driving scenarios exacerbates convergence
difficulties, placing greater demands on model representation
capabilities.

The introduction of HD maps offers a novel approach to
addressing these challenges. From a RL perspective, HD maps
enhance perception robustness by filtering out irrelevant noise
and emphasizing critical driving information, which can help
mitigate state mismatch issues, improving overall stability in
dynamic environments (Cultrera et al., 2024). As intelligent
sensors containing rich geometric and semantic information, HD
maps provide detailed road network data, speed limits, traffic
signs, and other critical elements (Liu et al., 2020). Beyond
traditional map usage, HD maps can generate bird’s-eye-view
(BEV) imagery (Chen et al., 2019; Cui et al., 2019; Maramotti et
al., 2022; Zeng et al., 2019) or semantic segmentation images
(Nehme and Deo, 2023; Wu et al., 2023). However, these
information of HD maps are often directly used as inputs for the
policy network, resulting in the final trained model HD map-
dependent. It is crucial to find a method that can both utilize
information of HD maps and eliminate reliance on it during
practical application.

2.2 Challenges and Solutions in Imitation Learning for
Autonomous Driving

Imitation Learning (IL) offers a promising approach for rapidly
acquiring an initial policy by leveraging expert demonstrations
(Li et al., 2022), although its performance is often constrained by
the quality of the expert data. As a result, most state-of-the-art
end-to-end decision-making models pretrain using imitation
learning and then introduce RL to enhance overall training
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efficiency and strategy abilities in complex scenarios (Hester et
al., 2018; Nair et al., 2018; Saunders et al., 2017; Vecerik et al.,
2018; Zhang and Ma, 2018; Zhu et al., 2018). However, imitation
learning algorithms, particularly Behavior Cloning (BC) (Ibarz et
al., n.d.), face several inherent challenges: state mismatch (Hua
et al., 2021), data distribution shift (Reddy et al., 2019) and error
accumulation (Zare et al., 2024).

To address these issues, Dataset Aggregation (DAgger)
algorithms have been proposed to mitigate covariate shift and
error accumulation in imitation learning (Reddy et al., 2019; Zare
et al., 2024). The DAgger algorithm works by allowing the agent
to interact with the environment using its current policy,
collecting data, and having it annotated by experts. This
annotated data is then used for the next round of policy training
(Ross et al., 2011).

However, DAgger algorithms combine data augmentation and
forced interventions, which creates a potential conflict in their
approach. While forced intervention helps reduce error
accumulation, it also leads to data imbalance, exacerbating the
covariate shift problem. This results in the collected states
following the mixed-policy distribution rather than the agent’s
current policy leading to unfamiliar states that may cause
covariate shift during training (Mandlekar et al., 2020).

In summary, interactive-exploration IL algorithms like DAgger
shares a similar framework with RL, where human intervention
can help resolve intrinsic challenges such as distribution shift and
error accumulation that negatively impact sampling efficiency.
However, unlike RL, which can use importance sampling to
alleviate distribution shift (Sutton and Barto, 2014), IL is still
susceptible to state distribution bias caused by the mixed-policy
approach. A promising solution is to incorporate HD maps into
the training framework to filter harmful samples and increase the
proportion of effective samples during the interaction exploration
phase. By leveraging HD maps to identify and control driving
scene interactions, we can improve the sampling efficiency and
mitigate the impact of mixed-policy bias in imitation learning. A
good pretrained model for IL will also enhance the interactivity
of end-to-end RL during the fine-tuning.

2.3 Challenges and Solutions in Human in the Loop

In human-agent interaction, humans typically guide the agent's
learning by providing knowledge related to the RL problem, such
as Q-values, optimal actions, or real rewards. This guidance can
accelerate the learning process, avoid catastrophic outcomes, and
optimize exploration efficiency. However, most existing research
develops interaction protocols for specific agents, without
creating a universal framework (Abel et al., 2017).

For human-in-the-loop (HITL) framework, expert intelligence
can participate in through several methods, including human
evaluation, human demonstrations, and human intervention. In
these frameworks, methods like BC (Ibarz et al., n.d.) and IRL
(Ziebart et al., n.d.) are integrated into representative algorithms
such as DQL (Hester et al., 2018; Saunders et al., 2017) and
DDPG (Vecerik et al., 2018). Experiments indicate that these
methods outperform traditional DRL approaches in robotics
(Krening et al., 2017).

Current HITL framework rely on real-time annotation guidance
provided by human experts through supervised learning.
However, these methods still face several challenges: Long-term
Supervision and Guidance Fatigue (Littman, 2015; Drozdziel et
al., 2020; Saunders et al., 2017), Dependence on Expert

Demonstrations (Hu et al., n.d.) and Non-stationarity of Human
Teaching Strategies (Knox et al., 2012). A promising solution to
these challenges is to integrate HD Maps planning into the DRL
training framework instead of human expert experience or
directly leveraging them as control gates to determine when the
intervention is needed, which can reduce the uncertainty and
labor consumption of human participants.

3. Method

This paper proposes a HD-map-in-the-loop (HMITL) framework
for autonomous driving, which fully leverages the information
resources available in HD maps such as geometric attributes and
semantic properties to replace the traditional reliance on human
expert, comprising the following components as shown in Figure
2, three implementation plans corresponding to human
demonstration, human intervention and human evaluation
through HD maps will be provided later:
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Figure 2. Illustration of HD Map in the loop Framwork

|

3.1 ShotgunDAgger: An HD Map-Assisted Imitation
Learning Optimization Algorithm

To address the issues of covariate shift and error accumulation in
imitation learning, this paper introduces the ShotgunDAgger
algorithm, an improvement upon the traditional DAgger
algorithm which adjusts the expert's strategy at critical moments
to ensure that the collected data aligns more closely with the
agent's current strategy. Additionally, a behavior constraint
mechanism based on HD maps is introduced to reduce the impact
of error accumulation, resulting in a more robust HITL approach
based on expert demonstrations.

ShotgunDAgger provides two approaches: the first is to adjust
the expert's strategy during sampling bias and continue sampling,
ensuring that subsequent data follows the agent's current policy
distribution; the second is to reset the simulation environment at
key moments, allowing the agent to start sampling from a new
state. These approaches do not forcefully intervene in the agent's
decision-making but optimize at the data collection level,
ensuring unbiased data distribution.

To enhance the algorithm's practical applicability in autonomous
driving scenarios, this paper integrates the semantic properties of
HD maps and designs an expert strategy adjustment mechanism
based on lane-changing behavior. When the agent vehicle
deviates from the planned path, the expert strategy is adjusted to
align with the agent's strategy through two approaches above: in
this process, the HD map's auxiliary decision-making mechanism,
called the HD Map Gate, plays a key role. When the agent
performs a lane change, this mechanism compares the current
lane ID with the lane ID of the next waypoint in the planned path
to determine if a deviation has occurred. When a deviation is
detected, a new global path planning is performed based on the
vehicle's current location and destination, or the interaction
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environment is reset to begin sampling again. This operation not
only ensures that the re-collected samples after deviation still
follow the agent’s current policy distribution, but also minimizes
ineffective samples caused by data deviation.

The two implementation approaches of ShotgunDAgger are
shown in Figure 3. The distinguishing feature of both methods is
that the expert strategy is used only as the true label, without
forcefully interfering with the agent’s actions. This ensures that
the collected data samples always conform to the agent's current
policy distribution, avoiding the potential bias problems inherent
in traditional methods. As a result, ShotgunDAgger has high
applicability, particularly in the unbiased data methods
commonly used in RL, ensuring the efficiency and accuracy of
the data. The choice between the two methods should be based
on the specific task and environment. ShotgunDAggerl is better
suited for scenarios with complex path planning, while
ShotgunDAgger?2 is more appropriate for tasks that can reset the
environment and quickly adapt to changes.

/ Threading 1 Route Planner

ShotgunDagger] l
ShotgunDagger2

Reset Environment

Location
Destination

Neural Network training [ —
atase

Figure 3. Illustration of HD Map Assisted Imitation Learning
Algorithm ShotgunDAgger
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3.2 Action Interference and Reward Function Construction
Using HD Map Spatial Heterogeneity

3.2.1 Action Interference: This paper introduces HD map-
based path planning information to influence the vehicle's
trajectory which aim is to gradually reduce the reliance on HD
maps during the RL process, allowing the agent to train more
effectively in autonomous decision-making. Elements from the
HD map, such as guide lines and deceleration zones, are
integrated into the agent's decision-making model. Each action is
assigned a probability weight, with the agent selecting the actual
action to be executed based on these probabilities as shown in
Figure 4:
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Figure 4. Illustration of Process of HD Map Intervention in
action stage

A key step in the algorithm is that within the simulation platform,
the vehicle’s path planning information is controlled by HD map

elements, such as guide lines and deceleration zones, which
govern the vehicle's trajectory. During the initial stage, the agent
relies more heavily on the HD map’s guidance for actions, such
as driving within the guide lines or automatically decelerating
when entering a deceleration zone. These actions guided by HD
maps or made by the RL actor policy are assigned different
probability values. In the early stages of training, the probability
of HD map-guided actions is higher, while the RL actor policy
actions are given lower probability. As training progresses, the
weight of the HD map-guided actions gradually decreases, and
the influence of the RL actor policy actions increases, enabling
the agent to learn standardized driving as much as possible in the
early training stages, and increases exploration in the later stages
to enhance models’ robustness.

This method is similar to the DAgger algorithm, both based on a
hybrid policy of state-action pairs as training samples. The key
difference lies in the DAgger algorithm's approach of directly
addressing the state distribution difference between the agent's
strategy and the expert’s strategy, requiring iterative correction
through repeated sampling during model training. In contrast,
while this study’s method uses a similar hybrid policy to execute
actions, the state distribution bias can be controlled through
Importance Sampling (IS) in RL, making it an off-policy
approach with less impact from the hybrid policy compared to IL
algorithms.

Furthermore, unlike decaying action interference, the influence
of the semantic functional zones in the HD map on the agent’s
actions does not diminish over the course of training. As shown
in Figure 5, these functional areas, such as deceleration zones,
immediately enforce the relevant actions (e.g., emergency
braking) when the agent enters them and provide negative
feedback through a comfort reward function to prevent the agent
from driving at high speeds in deceleration zones. These
functional areas exert continuous influence over time and are
geometrically constrained.

Figure 5. Illustration of Process of HD Map Intervention in
semantic functional zones

3.2.2 Reward Shaping: In the reward feedback phase, the
reward function is shaped by the rule-based constraints from the
HD map. Using features such as lane speed limits, directions, and
obstacle locations from the HD map, the reward function is
updated in real-time, with different reward functions designed for
various HD map elements to reflect the quality of the agent’s
behavior. This design makes the reward mechanism more
targeted and responsive, ensuring that the feedback during the RL
process aligns more closely with actual traffic rules and human
cognition.

This study aims to address the sparsity of reward functions in RL
cooperated with action intervention methods. Traditional reward
functions often combine factors such as goal return, obstacle
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avoidance distance, cognitive uncertainty, scene similarity, speed,
and comfort into a weighted similarity calculation. The HD map
provides a quantitative description of the agent's current state
based on global information, which has the potential to replace
human evaluation work, avoiding costs and stability issues
associated with human involvement. The reward function design
based on HD map spatial evaluation in this study is similar to
traditional methods but is constructed from the perspectives of
safety, efficiency, and stability with each aspect incorporating
local and global information from the HD map as shown in figure
6:
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Figure 6. Schematic Diagram of Reward Function Composition
based on HD Map

For safety-related rewards, traditional reward functions use
discrete reward factors like collision occurrences or the dense
rewards like distance to obstacles, and some neural network-
based reward functions also penalize cognitive uncertainty to
improve the agent's prediction accuracy. When designing reward
functions from the HD map perspective, spatial heterogeneity
must be considered, combining dynamic local space information
with global path planning risks to provide a comprehensive
evaluation of the current state. As shown in Figure 7, the agent
(represented by the red vehicle) faces a blue vehicle as an
obstacle in the upcoming lane. From the HD map’s perspective,
the risk distances to all obstacles are different: vehicles in
adjacent lanes may be closer in parallel, whereas the same
distance between vehicles in the same lane results in a
significantly higher risk because most vehicles move in straight
lines in the lane. When constructing obstacle distance penalties,
higher weights should be assigned to obstacles within the same
lane segment. The movement of dynamic obstacles in
autonomous driving scenarios follows certain driving constraints
and patterns, which can be distinguished based on the HD map’s
spatial heterogeneity.
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Figure 7. Illustration of Reward function shaping based on HD
Map

Compared to using visual feature similarity as a target goal
reward in navigation tasks, constructing goal reward using HD

maps incorporates more spatial characteristics, avoiding reward
sparsity issues caused by undetected effective features. Spatial
similarity generally includes geometric, semantic, topological,
and orientation similarities, and when the agent enters a new
waypoint range, the shortest path is planned using global
planning algorithms based on the HD map incorporating these
four similarity factors. As shown in Figure 7, if the current
distance between the red agent vehicle and the target goal is
considered only geometrically using Euclidean or Manhattan
distance, taking the right route would be more effective. However,
based on driving behavior norms in autonomous driving
scenarios, the path planned from the left is more in line with
traffic regulations, particularly since the current road segment is
marked with a double yellow line that prohibits U-turns. The
shortest path planned by the global planning algorithms
algorithm includes semantic and orientation information, where
the former refers to different functional areas on the HD map, and
the latter refers to a one-dimensional directional evaluation—
lane segment IDs. Opposing lane segments, despite being close
in space or even adjacent, represent entirely different meanings
for driving decisions due to their opposite directions. The global
planning algorithm itself depends on the topological
representation of the road segments because ensuring the planned
shortest path conforms to the topological connectivity of the HD
map. By using these navigation algorithms to set the reward
function, it can become more guiding. To some extent, the
essence of this method belongs to the segmented reward function,
but its segmentation is based on spatial heterogeneity. This
encourages vehicles to make decisions based on the guidance of
rewards provided by experts in different states and provides
effective dense gradients combined with action interference
methods beyond forced control sampling.

3.3 HD Map Perception-Based Priority Critic Network
Algorithm

This paper proposes a differential actor-critic architecture, as
shown in the flowchart in Figure 8. The architecture follows an
actor-critic RL framework and uses an experience buffer for off-
policy training. The main difference from previous RL models,
which relied on HD map perceptual information, is that the HD
map features are only input into the critic network, not the actor
network. This means that the critic network utilizes the global
view provided by the HD map for more macroscopic value
evaluation, while the actor relies on the agent's local perception
from visual inputs combined with the macro evaluation from the
critic to iterate toward optimal actions.
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In the information input phase, the actor is only provided with the
forward camera's view, while the critic receives a broader range
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of information, including semantic segmentation and Bird's Eye
View (BEV) images from the HD map. There are three main
benefits to this approach. First, compared to pure vision-based
decision-making models or modular end-to-end models that start
learning from random initial networks, this method incorporates
many manual features in the input phase, such as obstacle
distance derived from the HD map, planned paths, or semantic
segmentation images. This greatly helps the critic network filter
out redundant information, accelerating the understanding of the
global environment. Second, in addition to enhancing the
model’s understanding capability, the HD map helps reduce the
generation of dangerous states and extreme samples during
training. For example, issues like blind-spot cornering can be
mitigated by the critic’s ability to give more reasonable
evaluations of the current state based on the HD map, through Q-
Value provided by the critic, agents can combine dangerous signs
with subtle changes in forward camera images, alleviating causal
confusion in RL. Third, after training, the policy network (actor)
can generate action instructions solely based on the camera’s
visual input and auxiliary localization information, without the
need for the critic or HD map assistance. However, the global
information from the HD map is implicitly retained in the actor's
strategy in the form of sense of direction. This is because the
critic provides the global path, so the actor receives higher
rewards during training when it follows the global path.

For both the actor and critic networks, in addition to
differentiated perceptual inputs, there are also many shared
auxiliary localization features, such as vehicle speed,
acceleration, direction, and position, which can be obtained
through GPS devices rather than strictly relying on the HD map.
These inputs could also follow the " critic-prioritized " approach
by feeding high-level features from the HD map directly to the
critic network, improving its state estimation capacity. Figure 9
illustrates a specific approach based on hierarchical
reinforcement learning. In existing algorithms either humans or
neural networks providing semantic instructions in different
scenarios, with RL only handling low-level operations to achieve
rewards. In this paper, we propose replacing the human or neural
network role with the HD map, as the HD map provides real-time
global attributes of the agent's vehicle. Using the HD map's
global information and the agent's current state, a navigation path
can be planned, and high-level commands can be extracted from
the perspective of human semantics (e.g., "go forward" or "turn
left"). Since macro-level instructions do not require specific
obstacle avoidance actions, the HD map can fully replace humans
and, using global path planning algorithms like A*, can provide
results even faster than a human.

Turn left

Global planning High-level semantic
path indication
Turn right

HD-map Accelerate

Map perception information input

Q-Value l
[ Actor network ]‘—[ Critic network }

Figure 9. critic-prioritized structure based on HD Map High-
level Instructions

For command input, instead of using high-level commands as
input to the actor in many multi hierarchical reinforcement
learning systems, this paper proposes directly inputting these
commands as modular features into the critic network. This
enhances the critic’s ability to process path planning information.
The core of this method is to maximize the utilization of all
available resources to train the critic, allowing the critic to guide

the actor network with greater precision. The actor, with the
assistance of the vehicle's localization information and visual
perception, can then achieve macro-level commands by
performing low-level operations like obstacle avoidance and
reaching a local destination.

4. Conclusion

Current research typically integrates HD maps as an information
source into the end-to-end training process of autonomous
driving models, but few studies have explored how to leverage
the knowledge properties of HD maps to replace the traditional
role of human experts in training agent models as HMITL. This
paper expands on the application of HD maps in autonomous
driving control and strategy from the perspective of HD maps. It
proposes optimizing the agent's training process and sampling
efficiency through the prior knowledge of HD maps and
artificially constructed features within RL or partial IL based
exploratory interactive policy iteration algorithms, achieving
better training results with the same policy network architecture
under the demands of perception-centric model. The rapid
development of HD maps provides a feasible alternative for agent
training, avoiding the burden and cost of expert work in HITL.

The main innovations of this paper can be summarized as follows:

a. HD Map in the Loop Framework: For different
training stages in RL, this paper incorporates various
characteristics of HD maps to build a map-based
autonomous driving HMITL framework. This
framework breaks the traditional limitation of using
HD maps solely as an information input source in end-
to-end training, broadening its role in autonomous
driving training.

b. Imitation Learning Based on HD Map Expert
Demonstrations: Combining the assistance of HD
map-based judgments, this paper introduces Shotgun
DAgger. This method allows the agent to fully utilize
the prior knowledge provided by HD maps with limited
training data, improving the efficiency of IL efficiently.
The result can be used as a pretrained model for RL.

c. Action Intervention and Reward Function Design
Based on HD Map Spatial Heterogeneity: This paper
uses guidance lines and special area information from
HD maps to intervene and restrict the agent’s actions
during training. This intervention effectively avoids
risks and extreme states that may be encountered in
training, reducing the distribution of extreme state
samples in the collected data and improving the safety
and stability of the agent's training process. By utilizing
the spatial information of HD maps, this paper also
provides a dense reward shaping function paired with
action intervention. Quantifying the geometric features
from HD maps helps mitigate the reward sparsity
problem caused by qualitative descriptions in
traditional reward shaping of RL.

d. HD Map-Based Prioritized Critic Network
Algorithm: This paper feeds HD map perceptual
information, global planning paths, and high-level
semantic instructions—obtained via HD maps into the
critic network only. The critic, equipped with global
perception and HD map features, then guides the actor.
While HD maps are used as an information source
limited to the critic instead of actor, the final agent
policy model can still make decisions independently of
HD maps.

In conclusion, the innovative methods presented in this paper, by
integrating HD maps at various stages of the RL process, not only
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effectively improve training efficiency but also alleviate the
expert-dependence problem inherent in existing HITL
approaches. This provides new ideas and solutions for efficient
training of end-to-end autonomous driving agents.
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