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Abstract

Semantic mapping is crucial for intelligent obstacle avoidance and planning in SLAM systems. We proposed an autonomous semantic
mapping approach that integrates multimodal semantic segmentation and SLAM techniques to construct a dense 3D semantic map in real
time. Multimodal semantic segmentation based on camera images and LiDAR point clouds is performed in each frame, which assigns
image segmentation labels to LiDAR points, generating per-frame 3D semantic information. These segmented frames are then
incrementally fused within the SLAM framework to produce a globally consistent semantic map of the environment. The proposed
approach is validated through real-world experiments conducted around the Star Lake Building at Wuhan University using the Luo-Jia
Explorer system. The experimental results show that our method achieves real-time performance with an inference speed of up to 14Hz on
an RTX 4070 GPU, effectively processing sensor data on 10Hz while maintaining high segmentation accuracy in both indoor and outdoor

scenarios.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a widely used
framework for autonomous systems to estimate their position
while constructing a map of the environment (Esparza and Flores,
2022). SLAM and autonomous exploration play a vital role in
empowering unmanned systems to autonomously perceive and
comprehend their surroundings.

Semantic segmentation assigns a class label to each point in the
input data (Zhuang et al., 2021), allowing systems to interpret and
understand the 3D structure of their surroundings. By
distinguishing  different objects and surfaces, semantic
segmentation enhances the accuracy and reliability of SLAM
systems (Qian et al., 2020). However, due to the inherent
characteristics of point clouds—such as sparsity, uneven density,
and occlusions leading to incomplete contours—solely relying on
LiDAR data for 3D semantic segmentation presents challenges,
particularly in large-scale environments where edge points are
prone to misclassification. Since images provide rich textural
details while point clouds capture geometric structures, integrating
both modalities in multimodal semantic segmentation improves
both accuracy and robustness.

Semantic SLAM techniques combine semantic information to
filter out dynamic objects, such as pedestrians and vehicles,
reducing localization drift and improving long-term mapping
consistency. Additionally, the enriched map representation enables
more intelligent decision-making, such as identifying navigable
areas, classifying obstacles, and supporting high-level reasoning in
robotics applications. However, the semantic SLAM methods
often require significant computational resources due to the high
complexity of deep learning-based semantic segmentation and
data fusion, posing challenges on resource-constrained devices.

We proposed a lightweight autonomous semantic mapping
approach that combines multimodal semantic segmentation with
SLAM to generate a dense and globally consistent 3D semantic
map. In the multimodal semantic segmentation module, image
semantic segmentation is first performed and then LiDAR points
are projected onto the corresponding image to assign semantic
labels. The image semantic segmentation networks utilized in the
multimodal segmentation module are Mask2Former (Cheng et al.,

2022) based on experimental evaluation. The per-frame 3D
segmentation results are then integrated into the entire scene
through SLAM, ensuring accurate and real-time semantic mapping.

To validate its effectiveness, experiments were conducted around
the Star Lake Building at Wuhan University using the Luo-Jia
Explorer system (Wu et al., 2024). The results demonstrate real-
time performance, achieving an inference speed of up to 14Hz on
an RTX 4070 GPU while processing data at 10Hz, maintaining
high mapping accuracy in both indoor and outdoor environments.

2. Related Work
2.1 Multimodal Semantic Segmentation

2D semantic segmentation is primarily deep learning-based
methods (Guo et al., 2023). Early techniques relied on
Convolutional Neural Networks (CNNs) for feature extraction
(Chen et al., 2017; Ronneberger et al., 2015). However, with the
introduction of the Transformer architecture (Vaswani et al., 2017),
many segmentation models have adopted Transformer-based
networks, achieving state-of-the-art results. The Swin Transformer
(Liu et al., 2021) is widely used as a backbone for feature
extraction, and some studies have integrated it into segmentation
framework to enhance feature representation, such as the dual-
encoder Swin Transformer Embedding U-Net (He et al., 2022).
Mask2Former (Cheng et al., 2022), a unified segmentation model
that employs masked attention to focus on local features, has
demonstrated strong performance across multiple datasets.

3D semantic segmentation methods can be broadly classified into
single-modal and multimodal approaches. Single-modal methods
rely solely on point clouds and are further divided into point-based
(Charles et al., 2017; Qi et al., 2017) and voxel-based techniques
(Poux and Billen, 2019; Zhou et al., 2020). For multimodal 3D
segmentation, LiDAR-camera fusion techniques enhance
segmentation accuracy by leveraging both geometric and texture
information. Fusion strategies are categorized into early-fusion,
deep-fusion, and late-fusion approaches (Huang et al., 2022).
Early-fusion methods (Meyer et al., 2019) integrate LiDAR and
image data at the input or feature level, preserving both texture
and geometric details while maintaining computational efficiency.
Deep-fusion techniques (Huang et al., 2020; Zhang et al., 2023)
extract features independently from each modality before merging
them at a later stage, while late-fusion approaches (Pang et al.,

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-51-2025 | © Author(s) 2025. CC BY 4.0 License. 51



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

2020) process each modality separately and combine predictions at
the decision-making stage. Deep-fusion and late-fusion require
independent feature extraction for each modality, resulting in high
computational costs. In contrast, early-fusion methods extract
features only from images, making them more suitable for real-
time processing and commonly used in SLAM applications (Li et
al., 2020; Liu and Miura, 2021).

Our proposed method aligns with early-fusion approaches,
providing a lightweight multimodal segmentation solution
compatible with various SLAM systems. This approach achieves
real-time, high-precision segmentation without requiring
expensive hardware, making it practical for real-world
applications.

2.2 Semantic SLAM

Nowadays, single-robot SLAM has made significant progress
(Cong et al., 2024), classical methods such as FAST-LIO (Xu and
Zhang, 2021) and ORB-SLAM (Mur-Artal et al., 2015) have been
able to carry out high-precision 3D mapping. Learning-based
methods further improve the performance of SLAM methods. For
example, DROID-SLAM (Teed and Deng, n.d.) utilizes the
advantages of RNN in processing image sequence and time data,
iteratively updates camera attitude and depth information, thus to
significantly improve the performance in complex environments.
However, the lack of semantic information for SLAM remains a
challenge.

Many studies integrating semantic information into SLAM
methods (Chen et al., 2022), with a typical target to remove
dynamic objects. SuMa++ (Chen et al., 2019) utilizes semantic
information to filter dynamic objects, performing remarkably well
in dynamic environments. YOLO-SLAM (Wu et al., 2022)
integrates a lightweight Darknet19-YOLOvV3 network with depth-
based geometric constraints, thus effectively identifies dynamic
object feature points. Combining semantic and geometric info
removes moving object interference, Blitz-SLAM (Fan et al., 2022)
enables accurate localization and clean mapping in dynamic
scenes. Semantic information is also used in Collaborative SLAM,
the fully distributed Kimera-Multi (Tian et al., 2022) system,
leveraging visual-inertial sensors, is capable of constructing
precise metric-semantic 3D meshes. SlideSLAM (Liu et al., 2024)
presents a decentralized, real-time metric-semantic SLAM system,
utilizing sparse object-level semantic maps to enhance inter-robot
loop closures and facilitate seamless cooperation.

Our method integrates 3D semantic Segmentation and Semantic
SLAM, achieves real-time, lightweight performance, enabling
efficient environment understanding as well as low-resource
deployment.

3. System Overview

The overall framework is illustrated in Figure. 1. The process
begins with multimodal semantic segmentation for frame ¢, which
utilizes camera images and LiDAR point clouds captured by the
Luo-Jia Explorer system simultaneously. 2D  semantic
segmentation is applied on images first. Then, within the
multimodal fusion process, each LiDAR point is projected onto
the corresponding image pixel based on sensor calibration
parameters, and the pixel’s semantic label is assigned to the point,
producing per-frame 3D semantic information. The SLAM module
further integrates LIDAR and IMU data to estimate the system’s
pose and build a globally consistent map. By incrementally fusing
the per-frame segmentation results using SLAM, a dense 3D
semantic map of the environment is ultimately obtained.
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Figure 1. Overall framework of the semantic mapping approach.

3.1 Multimodal Semantic Segmentation

The multimodal semantic segmentation module employs both
camera images and LiDAR point clouds, which are captured
simultaneously by the Luo-Jia Explorer system. This process
involves two main stages: 2D semantic segmentation and point-to-
image projection, which together generate point cloud with
semantic information.

The 2D semantic segmentation is driven by deep learning
techniques that first extract features from the image using a
backbone network, which produces image feature maps. A
decoder then processes the feature map to generate the 2D
segmentation results. Based on the performance and effectiveness,
two 2D semantic segmentation models, Mask2Former and Tube-
Link, were initially selected. The introduction of these two models
is as follows.

Mask2Former is an enhanced version of MaskFormer (Cheng et
al., 2021), replacing cross-attention with masked attention under
the assumption that local features can represent most of the
relevant information. Additionally, a pixel decoder generates
multi-scale features to improve small object segmentation. Tube-
Link (Li et al., n.d.) is a video segmentation model that partitions
input video into sub-clips and applies contrastive learning with
self-attention to correlate object queries and their corresponding
masks across frames. Both models have been trained with different
backbone networks, and the final choice will be made based on the
experimental results, which are discussed in Section I'V.

After obtaining the segmentation mask, each LiDAR point is
mapped onto the corresponding image pixel to assign semantic
labels and construct a per-frame 3D semantic representation.
Assuming the current time step is t, the preprocessed point cloud
is P,, which is filtered beyond a predefined depth range, and each
point is represented as (X, ¥, Z). Using the rotation matrix R and
the translation vector T calculated by the calibrated extrinsic
parameters, the LiDAR coordinates are transformed into the
camera coordinate system, resulting in the transformed coordinates
(X., Y., Z_). The coordinate conversion formula is shown in
Equation (1).
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These transformed coordinates are then projected onto a
normalized plane to acquire the normalized coordinates (x,,, ¥,),
as shown in Equation (2). Distortion correction is applied using
the distortion coefficients, and the corrected normalized
coordinates ( X, 4, Vnq ) are obtained for image coordinates
calculation.

xnzg_:-yn:zi: 2
Using the provided camera intrinsic parameters, the camera matrix
is formulated. This matrix includes four key parameters: f,. and f,,,
which denote the focal lengths, and c, and c,,, representing the
optical center coordinates. Finally, the corrected normalized
coordinates are mapped to the image coordinate system to
determine the image coordinates (u, v), as expressed in Equation

3).
U="fe Xpa+Cx, V=1 Yua +cy 3)

After projection, points within the camera’s field of view are
assigned segmentation labels based on their corresponding pixel
coordinates in the mask. This results in a colored point cloud
representing per-frame 3D semantic information.

Figure. 2 illustrates the point cloud segmentation result at a
specific moment, while the full 360-degree point cloud is in the
left and the segmented points within the camera’s field of view
highlighted on the full point cloud is in the right, overlaid with
semantic colors. The yellow box marks the region where the
segmented points are mapped on the original point cloud. It can be
seen that the semantic segmentation is accurate.

Although single-frame segmentation is limited to the camera’s
field of view, SLAM integrates data collected along a closed-loop
trajectory to construct a dense and globally consistent 3D semantic
map of the environment (Chen et al., 2024).

£

Figure 2. The original point cloud and the colored point cloud
within camera’s frustum.

3.2 SLAM

In this study, single-robot SLAM is utilized for semantic mapping,
leveraging LiDAR and IMU data for accurate localization and map
construction. The system employs LiDAR-based SLAM to
generate a globally consistent point cloud representation, which

forms the basis for 3D semantic mapping. To improve localization
accuracy, IMU measurements are integrated to compensate for
motion during data acquisition. The system fuses LIDAR and IMU
data using an extended Kalman filter for state estimation, ensuring
robust trajectory tracking and mapping.

As shown in Figure. 3, as a portion of the experimental scene, the
SLAM trajectory in yellow and the corresponding registered point
cloud are presented. The seamless alignment of per-frame point
cloud demonstrates the accuracy of SLAM in both localization and
map construction. After semantic labeling, the colored point cloud
forms the 3D semantic map.
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Figure 3. The SLAM trajectory and the corresponding registered
point cloud.

4. Experimental Results
4.1 System Configuration and Data Collection

The Luo-Jia Explorer system consists of multiple unmanned
ground vehicles (UGVs), among which UGV1 was deployed in
the experiment. The vehicle is equipped with an Ouster OS1-128
LiDAR, an Intel RealSense D455 depth camera, and an IMU. The
camera supports multiple resolutions, with 640x480 and 1280x720
being selected for this experiment. To facilitate efficient
computation, the UGV is integrated with two GPUs, a GeForce
RTX 2060 and an RTX 4070. Additionally, inference speed
comparisons were conducted on external RTX 3090 and RTX
4060 GPUs to evaluate the performance of different segmentation
models and backbone architectures.

To assess system performance, real-world data collection was
performed around the Star Lake Building at Wuhan University,
covering both an underground parking garage and surrounding
outdoor areas. A key challenge encountered during data
acquisition was the significant change in lighting conditions when
transitioning from indoor to outdoor environments, requiring
robust adaptation to illumination variations. The dataset was
recorded at 10 Hz, capturing synchronized LiDAR point clouds
and camera images, ultimately yielding 5,957 frames.

4.2 Multimodal Semantic Segmentation Results

The segmentation results produced by the two models are
visualized in Figure. 4. Specifically, Figure. 4(b) and Figure. 4(c)
depict results from the underground garage, while Figure. 4(e) and
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Figure 4. The camera images and segmentation results of Mask2Former and Tube-Link in indoor and outdoor scenes.

Figure. 4(f) illustrate the outdoor environment. In the indoor
scenario, an object enclosed in the red box (identified as a
signboard in Figure. 4(a)) is correctly segmented by Mask2Former,
whereas Tube-Link fails to detect it. Similarly, in the outdoor
environment, Figure. 4(e) shows that Mask2Former successfully
recognizes a distant signboard, whereas Figure. 4(f) highlights
Tube-Link’s strength in identifying nearby objects, particularly a
person riding a motorcycle, with well-defined segmentation
contours. However, Tube-Link struggles with smaller objects.

To further analyze performance across consecutive frames,
segmentation results were compiled into video sequences. Both
models demonstrated instability in recognizing upper structures in
the underground garage, frequently misclassifying categories.
Additionally, a sudden category shift was observed in road
segmentation in outdoor scenes. Despite these inconsistencies, the
models achieved reliable performance across most object
categories.

To evaluate the computational efficiency of the two semantic
segmentation models, inference speeds under different
configurations were recorded, as summarized in Table I. Since the
projection algorithm executes within 0.01 seconds, the overall
processing speed is predominantly influenced by the segmentation
stage. Additionally, the results in Table I include the time required
for visualization, which contributes to nearly one-sixth of the total
processing time.

As indicated in Table I, when using the Swin-1 backbone,
Mask2Former significantly outperforms Tube-Link in processing
1280%720 resolution images. For a lower resolution of 640x480,
Mask2Former with the Swin-t backbone achieves an inference
speed of 14 Hz on RTX 4070, and this could potentially reach 17
Hz if visualization is excluded, while the inference speed will be
lower on GPU such as the 3090 or 2090. Given its superior
balance of accuracy and efficiency, Mask2Former with a Swin-t
backbone was selected for deployment on the Luo-Jia Explorer
system, supporting the recognition of 124 object categories.

Figure. 5 presents a 3D semantic segmentation result with the
corresponding image segmentation mask for a specific frame. In
Figure. 5(a), the colored point cloud within the camera's view
frustum is depicted from multiple viewpoint. The front-facing
perspective of the colored point cloud is provided in Figure. 5(b).
A comparison with the segmentation mask in Figure. 5(c) reveals
a high degree of projection accuracy, confirming the effectiveness
of the method.

TABLE L. THE INFERENCE SPEED OF DIFFERENT MODELS AND
DIFFERENT CONFIGURATIONS (WITH VISUALIZATION)
Mask2Former Tube-Link
GPU
640%480 (Swin-t) 1280%720 1280%720
2060 5Hz - -
5SHz (Resnet-50) 8Hz (Resnet-50)
3090 - 4.5Hz (Swin-t) -
2.5Hz (Swin-1) 0.6Hz (Swin-1)
4060 10Hz S5Hz (Swin-t) -
4070 14Hz - -

By aggregating segmentation results across multiple frames, a
complete 3D semantic map of the environment is constructed, as
illustrated in Figure. 6. The zoomed-in visualization highlights
various segmented objects, such as vehicles (blue), trees (green),
and structural elements like pillars (red) in the underground garage,
as well as indoor ceilings. The segmentation accuracy for these
categories appears visually reliable. Additionally, the proposed
mapping method enables real-time map construction. The
semantic mapping approach provides valuable contributions to the
reconstruction of both indoor and outdoor environments.
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Figure 5. The projected colored point cloud displayed with the overall
point cloud and the image segmentation mask.

|

SN S

Zoom-in

Figure 6. The 3D semantic segmentation map of the entire scene.

5. Conclusion

Semantic mapping plays a vital role in enhancing obstacle
avoidance and path planning in autonomous SLAM systems. We
proposed an autonomous semantic mapping approach that
combines multimodal semantic segmentation with SLAM
techniques to construct a dense and globally consistent 3D
semantic map in real time. The experiments conducted around the
Star Lake Building at Wuhan University using the Luo-Jia
Explorer system validate the effectiveness of this approach. The
results demonstrate that the method meets real-time performance
requirements, achieving an inference speed of up to 14Hz on an
RTX 4070 GPU while processing data at 10Hz. The generated 3D
semantic maps maintain high segmentation accuracy across both
indoor and outdoor environments. Future work will focus on
accelerating the mapping process by optimizing SLAM efficiency
and improving the real-time integration of semantic information.
Additionally, enhancing the robustness of mapping in dynamic
environments, such as handling moving objects and illumination
changes, will be explored to improve the adaptability of the
system in diverse real-world scenario.
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