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Abstract 

Semantic mapping is crucial for intelligent obstacle avoidance and planning in SLAM systems. We proposed an autonomous semantic 
mapping approach that integrates multimodal semantic segmentation and SLAM techniques to construct a dense 3D semantic map in real 
time. Multimodal semantic segmentation based on camera images and LiDAR point clouds is performed in each frame, which assigns 
image segmentation labels to LiDAR points, generating per-frame 3D semantic information. These segmented frames are then 
incrementally fused within the SLAM framework to produce a globally consistent semantic map of the environment. The proposed 
approach is validated through real-world experiments conducted around the Star Lake Building at Wuhan University using the Luo-Jia 
Explorer system. The experimental results show that our method achieves real-time performance with an inference speed of up to 14Hz on 
an RTX 4070 GPU, effectively processing sensor data on 10Hz while maintaining high segmentation accuracy in both indoor and outdoor 
scenarios. 

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a widely used 
framework for autonomous systems to estimate their position 
while constructing a map of the environment (Esparza and Flores, 
2022). SLAM and autonomous exploration play a vital role in 
empowering unmanned systems to autonomously perceive and 
comprehend their surroundings. 

Semantic segmentation assigns a class label to each point in the 
input data (Zhuang et al., 2021), allowing systems to interpret and 
understand the 3D structure of their surroundings. By 
distinguishing different objects and surfaces, semantic 
segmentation enhances the accuracy and reliability of SLAM 
systems (Qian et al., 2020). However, due to the inherent 
characteristics of point clouds—such as sparsity, uneven density, 
and occlusions leading to incomplete contours—solely relying on 
LiDAR data for 3D semantic segmentation presents challenges, 
particularly in large-scale environments where edge points are 
prone to misclassification. Since images provide rich textural 
details while point clouds capture geometric structures, integrating 
both modalities in multimodal semantic segmentation improves 
both accuracy and robustness. 

Semantic SLAM techniques combine semantic information to 
filter out dynamic objects, such as pedestrians and vehicles, 
reducing localization drift and improving long-term mapping 
consistency. Additionally, the enriched map representation enables 
more intelligent decision-making, such as identifying navigable 
areas, classifying obstacles, and supporting high-level reasoning in 
robotics applications. However, the semantic SLAM methods 
often require significant computational resources due to the high 
complexity of deep learning-based semantic segmentation and 
data fusion, posing challenges on resource-constrained devices. 

We proposed a lightweight autonomous semantic mapping 
approach that combines multimodal semantic segmentation with 
SLAM to generate a dense and globally consistent 3D semantic 
map. In the multimodal semantic segmentation module, image 
semantic segmentation is first performed and then LiDAR points 
are projected onto the corresponding image to assign semantic 
labels. The image semantic segmentation networks utilized in the 
multimodal segmentation module are Mask2Former (Cheng et al., 

2022) based on experimental evaluation. The per-frame 3D 
segmentation results are then integrated into the entire scene 
through SLAM, ensuring accurate and real-time semantic mapping. 

To validate its effectiveness, experiments were conducted around 
the Star Lake Building at Wuhan University using the Luo-Jia 
Explorer system (Wu et al., 2024). The results demonstrate real-
time performance, achieving an inference speed of up to 14Hz on 
an RTX 4070 GPU while processing data at 10Hz, maintaining 
high mapping accuracy in both indoor and outdoor environments. 

2. Related Work

2.1 Multimodal Semantic Segmentation 

2D semantic segmentation is primarily deep learning-based 
methods (Guo et al., 2023). Early techniques relied on 
Convolutional Neural Networks (CNNs) for feature extraction 
(Chen et al., 2017; Ronneberger et al., 2015). However, with the 
introduction of the Transformer architecture (Vaswani et al., 2017), 
many segmentation models have adopted Transformer-based 
networks, achieving state-of-the-art results. The Swin Transformer 
(Liu et al., 2021) is widely used as a backbone for feature 
extraction, and some studies have integrated it into segmentation 
framework to enhance feature representation, such as the dual-
encoder Swin Transformer Embedding U-Net (He et al., 2022). 
Mask2Former (Cheng et al., 2022), a unified segmentation model 
that employs masked attention to focus on local features, has 
demonstrated strong performance across multiple datasets. 

3D semantic segmentation methods can be broadly classified into 
single-modal and multimodal approaches. Single-modal methods 
rely solely on point clouds and are further divided into point-based 
(Charles et al., 2017; Qi et al., 2017) and voxel-based techniques 
(Poux and Billen, 2019; Zhou et al., 2020). For multimodal 3D 
segmentation, LiDAR-camera fusion techniques enhance 
segmentation accuracy by leveraging both geometric and texture 
information. Fusion strategies are categorized into early-fusion, 
deep-fusion, and late-fusion approaches (Huang et al., 2022). 
Early-fusion methods (Meyer et al., 2019) integrate LiDAR and 
image data at the input or feature level, preserving both texture 
and geometric details while maintaining computational efficiency. 
Deep-fusion techniques (Huang et al., 2020; Zhang et al., 2023) 
extract features independently from each modality before merging 
them at a later stage, while late-fusion approaches (Pang et al., 
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2020) process each modality separately and combine predictions at 
the decision-making stage. Deep-fusion and late-fusion require 
independent feature extraction for each modality, resulting in high 
computational costs. In contrast, early-fusion methods extract 
features only from images, making them more suitable for real-
time processing and commonly used in SLAM applications (Li et 
al., 2020; Liu and Miura, 2021). 

Our proposed method aligns with early-fusion approaches, 
providing a lightweight multimodal segmentation solution 
compatible with various SLAM systems. This approach achieves 
real-time, high-precision segmentation without requiring 
expensive hardware, making it practical for real-world 
applications. 

2.2 Semantic SLAM 

Nowadays, single-robot SLAM has made significant progress 
(Cong et al., 2024), classical methods such as FAST-LIO (Xu and 
Zhang, 2021) and ORB-SLAM (Mur-Artal et al., 2015) have been 
able to carry out high-precision 3D mapping. Learning-based 
methods further improve the performance of SLAM methods. For 
example, DROID-SLAM (Teed and Deng, n.d.) utilizes the 
advantages of RNN in processing image sequence and time data, 
iteratively updates camera attitude and depth information, thus to 
significantly improve the performance in complex environments. 
However, the lack of semantic information for SLAM remains a 
challenge. 

Many studies integrating semantic information into SLAM 
methods (Chen et al., 2022), with a typical target to remove 
dynamic objects. SuMa++ (Chen et al., 2019) utilizes semantic 
information to filter dynamic objects, performing remarkably well 
in dynamic environments. YOLO-SLAM (Wu et al., 2022) 
integrates a lightweight Darknet19-YOLOv3 network with depth-
based geometric constraints, thus effectively identifies dynamic 
object feature points. Combining semantic and geometric info 
removes moving object interference, Blitz-SLAM (Fan et al., 2022) 
enables accurate localization and clean mapping in dynamic 
scenes. Semantic information is also used in Collaborative SLAM, 
the fully distributed Kimera-Multi (Tian et al., 2022) system, 
leveraging visual-inertial sensors, is capable of constructing 
precise metric-semantic 3D meshes. SlideSLAM (Liu et al., 2024) 
presents a decentralized, real-time metric-semantic SLAM system, 
utilizing sparse object-level semantic maps to enhance inter-robot 
loop closures and facilitate seamless cooperation. 

Our method integrates 3D semantic Segmentation and Semantic 
SLAM, achieves real-time, lightweight performance, enabling 
efficient environment understanding as well as low-resource 
deployment. 

3. System Overview

The overall framework is illustrated in Figure. 1. The process 
begins with multimodal semantic segmentation for frame , which 
utilizes camera images and LiDAR point clouds captured by the 
Luo-Jia Explorer system simultaneously. 2D semantic 
segmentation is applied on images first. Then, within the 
multimodal fusion process, each LiDAR point is projected onto 
the corresponding image pixel based on sensor calibration 
parameters, and the pixel’s semantic label is assigned to the point, 
producing per-frame 3D semantic information. The SLAM module 
further integrates LiDAR and IMU data to estimate the system’s 
pose and build a globally consistent map. By incrementally fusing 
the per-frame segmentation results using SLAM, a dense 3D 
semantic map of the environment is ultimately obtained. 

Figure 1.  Overall framework of the semantic mapping approach. 

3.1 Multimodal Semantic Segmentation 

The multimodal semantic segmentation module employs both 
camera images and LiDAR point clouds, which are captured 
simultaneously by the Luo-Jia Explorer system. This process 
involves two main stages: 2D semantic segmentation and point-to-
image projection, which together generate point cloud with 
semantic information. 

The 2D semantic segmentation is driven by deep learning 
techniques that first extract features from the image using a 
backbone network, which produces image feature maps. A 
decoder then processes the feature map to generate the 2D 
segmentation results. Based on the performance and effectiveness, 
two 2D semantic segmentation models, Mask2Former and Tube-
Link, were initially selected. The introduction of these two models 
is as follows.  

Mask2Former is an enhanced version of MaskFormer (Cheng et 
al., 2021), replacing cross-attention with masked attention under 
the assumption that local features can represent most of the 
relevant information. Additionally, a pixel decoder generates 
multi-scale features to improve small object segmentation. Tube-
Link (Li et al., n.d.) is a video segmentation model that partitions 
input video into sub-clips and applies contrastive learning with 
self-attention to correlate object queries and their corresponding 
masks across frames. Both models have been trained with different 
backbone networks, and the final choice will be made based on the 
experimental results, which are discussed in Section Ⅳ.  

After obtaining the segmentation mask, each LiDAR point is 
mapped onto the corresponding image pixel to assign semantic 
labels and construct a per-frame 3D semantic representation. 
Assuming the current time step is , the preprocessed point cloud 
is , which is filtered beyond a predefined depth range, and each 
point is represented as ( , , ). Using the rotation matrix  and 
the translation vector  calculated by the calibrated extrinsic 
parameters, the LiDAR coordinates are transformed into the 
camera coordinate system, resulting in the transformed coordinates 
( , , ). The coordinate conversion formula is shown in 
Equation (1). 
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(1) 

These transformed coordinates are then projected onto a 
normalized plane to acquire the normalized coordinates ( , ), 
as shown in Equation (2). Distortion correction is applied using 
the distortion coefficients, and the corrected normalized 
coordinates ( , ) are obtained for image coordinates 
calculation.  

(2) 

Using the provided camera intrinsic parameters, the camera matrix 
is formulated. This matrix includes four key parameters:  and , 
which denote the focal lengths, and  and , representing the 
optical center coordinates. Finally, the corrected normalized 
coordinates are mapped to the image coordinate system to 
determine the image coordinates ( , ), as expressed in Equation 
(3). 

(3) 

After projection, points within the camera’s field of view are 
assigned segmentation labels based on their corresponding pixel 
coordinates in the mask. This results in a colored point cloud 
representing per-frame 3D semantic information.  

Figure. 2 illustrates the point cloud segmentation result at a 
specific moment, while the full 360-degree point cloud is in the 
left and the segmented points within the camera’s field of view 
highlighted on the full point cloud is in the right, overlaid with 
semantic colors. The yellow box marks the region where the 
segmented points are mapped on the original point cloud. It can be 
seen that the semantic segmentation is accurate. 

Although single-frame segmentation is limited to the camera’s 
field of view, SLAM integrates data collected along a closed-loop 
trajectory to construct a dense and globally consistent 3D semantic 
map of the environment (Chen et al., 2024). 

Figure 2. The original point cloud and the colored point cloud 
within camera’s frustum. 

3.2 SLAM 

In this study, single-robot SLAM is utilized for semantic mapping, 
leveraging LiDAR and IMU data for accurate localization and map 
construction. The system employs LiDAR-based SLAM to 
generate a globally consistent point cloud representation, which 

forms the basis for 3D semantic mapping. To improve localization 
accuracy, IMU measurements are integrated to compensate for 
motion during data acquisition. The system fuses LiDAR and IMU 
data using an extended Kalman filter for state estimation, ensuring 
robust trajectory tracking and mapping. 

As shown in Figure. 3, as a portion of the experimental scene, the 
SLAM trajectory in yellow and the corresponding registered point 
cloud are presented. The seamless alignment of per-frame point 
cloud demonstrates the accuracy of SLAM in both localization and 
map construction. After semantic labeling, the colored point cloud 
forms the 3D semantic map. 

Figure 3. The SLAM trajectory and the corresponding registered 
point cloud. 

4. Experimental Results

4.1 System Configuration and Data Collection 

The Luo-Jia Explorer system consists of multiple unmanned 
ground vehicles (UGVs), among which UGV1 was deployed in 
the experiment. The vehicle is equipped with an Ouster OS1-128 
LiDAR, an Intel RealSense D455 depth camera, and an IMU. The 
camera supports multiple resolutions, with 640×480 and 1280×720 
being selected for this experiment. To facilitate efficient 
computation, the UGV is integrated with two GPUs, a GeForce 
RTX 2060 and an RTX 4070. Additionally, inference speed 
comparisons were conducted on external RTX 3090 and RTX 
4060 GPUs to evaluate the performance of different segmentation 
models and backbone architectures. 

To assess system performance, real-world data collection was 
performed around the Star Lake Building at Wuhan University, 
covering both an underground parking garage and surrounding 
outdoor areas. A key challenge encountered during data 
acquisition was the significant change in lighting conditions when 
transitioning from indoor to outdoor environments, requiring 
robust adaptation to illumination variations. The dataset was 
recorded at 10 Hz, capturing synchronized LiDAR point clouds 
and camera images, ultimately yielding 5,957 frames. 

4.2 Multimodal Semantic Segmentation Results 

The segmentation results produced by the two models are 
visualized in Figure. 4. Specifically, Figure. 4(b) and Figure. 4(c) 
depict results from the underground garage, while Figure. 4(e) and  
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Figure 4.  The camera images and segmentation results of Mask2Former and Tube-Link in indoor and outdoor scenes.

Figure. 4(f) illustrate the outdoor environment. In the indoor 
scenario, an object enclosed in the red box (identified as a 
signboard in Figure. 4(a)) is correctly segmented by Mask2Former, 
whereas Tube-Link fails to detect it. Similarly, in the outdoor 
environment, Figure. 4(e) shows that Mask2Former successfully 
recognizes a distant signboard, whereas Figure. 4(f) highlights 
Tube-Link’s strength in identifying nearby objects, particularly a 
person riding a motorcycle, with well-defined segmentation 
contours. However, Tube-Link struggles with smaller objects.  

To further analyze performance across consecutive frames, 
segmentation results were compiled into video sequences. Both 
models demonstrated instability in recognizing upper structures in 
the underground garage, frequently misclassifying categories. 
Additionally, a sudden category shift was observed in road 
segmentation in outdoor scenes. Despite these inconsistencies, the 
models achieved reliable performance across most object 
categories. 

To evaluate the computational efficiency of the two semantic 
segmentation models, inference speeds under different 
configurations were recorded, as summarized in Table I. Since the 
projection algorithm executes within 0.01 seconds, the overall 
processing speed is predominantly influenced by the segmentation 
stage. Additionally, the results in Table I include the time required 
for visualization, which contributes to nearly one-sixth of the total 
processing time. 

As indicated in Table I, when using the Swin-l backbone, 
Mask2Former significantly outperforms Tube-Link in processing 
1280×720 resolution images. For a lower resolution of 640×480, 
Mask2Former with the Swin-t backbone achieves an inference 
speed of 14 Hz on RTX 4070, and this could potentially reach 17 
Hz if visualization is excluded, while the inference speed will be 
lower on GPU such as the 3090 or 2090. Given its superior 
balance of accuracy and efficiency, Mask2Former with a Swin-t 
backbone was selected for deployment on the Luo-Jia Explorer 
system, supporting the recognition of 124 object categories. 

Figure. 5 presents a 3D semantic segmentation result with the 
corresponding image segmentation mask for a specific frame. In 
Figure. 5(a), the colored point cloud within the camera's view 
frustum is depicted from multiple viewpoint. The front-facing 
perspective of the colored point cloud is provided in Figure. 5(b). 
A comparison with the segmentation mask in Figure. 5(c) reveals 
a high degree of projection accuracy, confirming the effectiveness 
of the method. 

By aggregating segmentation results across multiple frames, a 
complete 3D semantic map of the environment is constructed, as 
illustrated in Figure. 6. The zoomed-in visualization highlights 
various segmented objects, such as vehicles (blue), trees (green), 
and structural elements like pillars (red) in the underground garage, 
as well as indoor ceilings. The segmentation accuracy for these 
categories appears visually reliable. Additionally, the proposed 
mapping method enables real-time map construction. The 
semantic mapping approach provides valuable contributions to the 
reconstruction of both indoor and outdoor environments. 

TABLE I. THE INFERENCE SPEED OF DIFFERENT MODELS AND 
DIFFERENT CONFIGURATIONS (WITH VISUALIZATION) 

GPU 
Mask2Former Tube-Link 

640×480 (Swin-t) 1280×720 1280×720 

2060 5Hz - - 

3090 - 

5Hz (Resnet-50) 8Hz  (Resnet-50) 

 4.5Hz (Swin-t) - 

2.5Hz (Swin-l) 0.6Hz (Swin-l) 

4060 10Hz 5Hz (Swin-t) - 

4070 14Hz - - 
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Figure 5. The projected colored point cloud displayed with the overall 
point cloud and the image segmentation mask. 

Figure 6. The 3D semantic segmentation map of the entire scene. 

5. Conclusion

Semantic mapping plays a vital role in enhancing obstacle 
avoidance and path planning in autonomous SLAM systems. We 
proposed an autonomous semantic mapping approach that 
combines multimodal semantic segmentation with SLAM 
techniques to construct a dense and globally consistent 3D 
semantic map in real time. The experiments conducted around the 
Star Lake Building at Wuhan University using the Luo-Jia 
Explorer system validate the effectiveness of this approach. The 
results demonstrate that the method meets real-time performance 
requirements, achieving an inference speed of up to 14Hz on an 
RTX 4070 GPU while processing data at 10Hz. The generated 3D 
semantic maps maintain high segmentation accuracy across both 
indoor and outdoor environments. Future work will focus on 
accelerating the mapping process by optimizing SLAM efficiency 
and improving the real-time integration of semantic information. 
Additionally, enhancing the robustness of mapping in dynamic 
environments, such as handling moving objects and illumination 
changes, will be explored to improve the adaptability of the 
system in diverse real-world scenario. 
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