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Abstract

While 3D Gaussian Splatting (3DGS) has advanced surface reconstruction, existing implementations face critical challenges in
memory efficiency and geometric fidelity. Current approaches like PGSR generate excessive Gaussian primitives due to un-
controlled densification, leading to redundant memory consumption while struggling with surface artifacts in boundary regions.
This paper introduces GAGS (Gradient-Guided Adaptive Gaussian Splatting), a geometry-regularized framework that addresses
these limitations through three technical contributions: photometric gradient-driven adaptive densification that strategically con-
trols primitive subdivision using image gradient analysis, anisotropy-aware shape regularization for adaptive Gaussian scale con-
straint, and a dual regularization mechanism combining normal self-smoothing with depth-aware correction. Evaluations on the
DTU dataset demonstrate the framework’s effectiveness in maintaining visual quality while significantly reducing redundant prim-
itives—achieving an 83% reduction compared to PGSR baseline—with improved surface regularity in complex geometric regions.
Project web:https://3241674469.github.io/GAGS-project/

1. Introduction

Surface reconstruction constitutes a fundamental task in com-
puter vision with wide-ranging applications from robotic nav-
igation to virtual reality systems. Recently, 3D Gaussian Splat-
ting (3DGS) (Kerbl et al., 2023) has emerged as a breakthrough
paradigm in surface reconstruction, offering fast optimization,
explicit scene representation, and high-quality rendering cap-
abilities. This innovative approach optimizes the parameters
of anisotropic 3D Gaussian primitives and employs differen-
tiable a-blending for view-consistent rendering, thereby en-
abling real-time reconstruction at high resolutions with im-
pressive visual fidelity. Nevertheless, two critical limitations
hinder its practical deployment: (1) excessive memory con-
sumption from redundant primitives in geometrically complex
regions, and (2) surface irregularities along object boundaries
caused by unconstrained primitive distributions.

Recent advances in 3DGS-based surface reconstruction, ex-
emplified by PGSR (Chen et al., 2024), propose an unbiased
depth rendering framework derived from Gaussian distributions
to address topological inconsistencies. This approach com-
putes depth values through camera-to-plane distance measure-
ments and contribution partitioning, while integrating multi-
view geometric regularization with single-view geometric pri-
ors to preserve global accuracy. The framework further incor-
porates photometric consistency constraints and camera expos-
ure compensation to handle illumination variations. However,
despite these advancements, PGSR inherits fundamental lim-
itations from conventional 3DGS methodologies: the uncon-
trolled densification process generates redundant primitives in
texture-deficient regions, and the lack of adaptive shape con-
straints leads to persistent boundary artifacts due to unregulated
primitive distributions.

This paper presents GAGS (Gradient-Guided Adaptive Gaus-
sian Splatting), a novel framework that systematically addresses
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these challenges through three key technical innovations:

1. Photometric Gradient-Driven Adaptive Densification.
Unlike conventional heuristic densification strategies em-
ployed by 3DGS, GAGS leverages photometric gradi-
ents from real images to guide primitive densification.
This adaptively suppresses unnecessary splits in flat/low-
texture regions, reducing primitives up to 83% compared
to PGSR.

2. Anisotropy-Aware Gaussian Primitive Shape Regular-
ization. We impose adaptive shape constraints on Gaus-
sian primitives, compressing their scales along tangential
directions in flat regions to better align with thin surfaces
while preserving geometric fidelity in detailed areas.

3. Dual Regularization via Normal-Depth Consistency. A
normal self-smoothing loss and depth-aware normal cor-
rection module are jointly optimized to eliminate high-
frequency noise. By refining primitive positions using
depth-derived normals, our method generates structurally
coherent surfaces without sacrificing rendering quality.

The remainder of this paper is organized as follows: Section
2 discusses related work. Section 3 provides an overview of
the preliminary concepts of PGSR. The details of the proposed
method are presented in Section 4. Section 5 reports the per-
formance evaluation and experimental results of our work. Fi-
nally, conclusions and an outlook are drawn in Section 6.

2. Related Work

Surface reconstruction serves as a fundamental pillar in com-
puter vision, with the goal of producing precise geometric rep-
resentations from sparse or noisy input data. This paper fo-
cuses on efficient and geometry-regularized surface reconstruc-
tion based on PGSR (Chen et al., 2024). In this section, we ex-
plore three key research directions: 3D Gaussian compression,
neural surface reconstruction, and Gaussian splatting-based sur-
face reconstruction methods.
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Figure 1. Overview of our GAGS. Guided by image gradients, GAGS effectively reduces redundant Gaussians and optimizes their
distribution, leading to geometrically regularized surface reconstructions with minimized memory usage.

2.1 3D Gaussian Compression

Recent research in 3D Gaussian compression has prioritized
balanced optimization of memory efficiency and computational
performance while maintaining visual fidelity. Papantonakis
et al. (2024) developed an adaptive compression framework
integrating hierarchical pruning with parameter quantization,
achieving substantial memory reduction while preserving ren-
dering quality. Spatial optimization methods have emerged as
effective solutions, with Wang et al. (2024) proposing dynamic
radius adjustment to optimize Gaussian spatial distributions
and eliminate redundant splats. Hybrid compression strategies
demonstrate particular effectiveness, exemplified by Fan et al.
(2024b)’s entropy-coded parameterization that combines novel
encoding schemes with real-time rendering capabilities.

In parameter representation and scene scalability, Lee et al.
(2024) introduced a decomposed encoding method separating
geometric attributes from appearance features through hybrid
spherical-harmonic/hash-grid integration. For large-scale en-
vironment processing, Liu et al. (2025) implemented multi-
resolution clustering with view-dependent detail control. Com-
plementary approaches like Fang and Wang (2024)’s dynamic
primitive allocation and Zhang et al. (2024)’s gradient-aware
density modulation further enhance compression through geo-
metric constraints and perceptual optimization. These method-
ologies collectively advance 3D Gaussian splatting practicality
through spatial redundancy reduction, parametric efficiency im-
provement, and perceptually-guided simplification.

2.2 Neural Surface Reconstruction

Recent advances in neural surface reconstruction have demon-
strated the capability of deep learning to overcome funda-
mental limitations of conventional geometry processing tech-
niques, particularly in managing sparse input data and recon-
structing objects with intricate topological structures. Modern
approaches can be broadly categorized into explicit and implicit
representation paradigms, each presenting unique advantages
and limitations in terms of reconstruction accuracy, computa-
tional efficiency, and practical applicability.

Explicit Surface Reconstruction: Explicit methods construct
discrete geometric representations through structured formats
such as voxel grids, point clouds, and polygonal meshes. The
seminal work by Choy et al. (2016) proposed 3D-R2N2, a re-
current neural network architecture for multi-view 3D recon-
struction using volumetric representations. Subsequent innova-
tions improved scalability through hierarchical learning frame-
works like PointNet++ (Qi et al., 2017), which processes un-
structured point clouds via spatial partitioning strategies. Mesh-
based approaches achieved notable progress with techniques
such as Pixel2Mesh (Wang et al., 2018), employing graph con-
volutional networks (GCNs) to deform template meshes under
2D image guidance. While these explicit representations fa-
cilitate direct integration with downstream applications (e.g.,
CAD/CAM systems), they face inherent limitations: voxel rep-
resentations scale cubically with resolution, point clouds lack
inherent connectivity information, and mesh deformation ap-
proaches require careful initialization to avoid topological arti-
facts.

Implicit Surface Reconstruction: Implicit methods model
surfaces as continuous functions represented by neural net-
works, typically using signed distance functions (SDFs) or oc-
cupancy fields. Park et al. (2019) pioneered this approach
with DeepSDF, demonstrating continuous shape representation
through coordinate-based MLPs. Parallel work by Mescheder
et al. (2019) established Occupancy Networks for probabil-
istic surface estimation. The field experienced a transformat-
ive shift with Neural Radiance Fields (NeRF) (Mildenhall et
al., 2021), which unified geometry and appearance learning
through differentiable volume rendering. Subsequent advance-
ments, such as VoISDF (Yariv et al., 2021) integrated SDF con-
straints with radiance field formulations to produce watertight
surfaces. While demonstrating remarkable capability in recov-
ering intricate geometric details, these approaches typically re-
quire dense view sampling and suffer from high computational
costs during surface extraction.

Hybridization Strategies: Contemporary research focuses on
combining the strengths of both paradigms. Explicit methods
offer computational efficiency and direct editability, while im-
plicit representations excel at handling topological complexity
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and providing continuous surface descriptions. Notable hybrid
approaches include Neural Parts (Deng et al., 2020), which
integrates mesh-based components with neural implicit func-
tions to preserve both interpretability and reconstruction fidel-
ity. Such hybrid architectures demonstrate promising potential
for applications requiring both geometric precision and prac-
tical usability.

2.3 Gaussian Splatting based Surface Reconstruction

Recent advancements in 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023) have expanded its utility beyond radiance field
rendering to explicit surface reconstruction. SuGaR (Guédon
and Lepetit, 2024) pioneered mesh extraction through regular-
ization terms that align Gaussians with scene surfaces. While
their Poisson reconstruction-based approach improves geomet-
ric accuracy, inherent limitations persist: irregular Gaussian
distributions cause surface fragmentation, particularly in low-
texture regions, and discrete sampling leads to incomplete geo-
metry reconstruction. Alternative representations attempt to ad-
dress geometric consistency. 2DGS (Huang et al., 2024) pro-
jects 3D Gaussians onto view-consistent 2D manifolds, enhan-
cing multi-view coherence at the cost of depth estimation bias
through planar approximations. GOF (Yu et al., 2024) con-
structs Gaussian opacity fields for surface extraction via level-
set identification, though global geometric consistency remains
challenging in complex scenes.

The state-of-the-art PGSR (Chen et al., 2024) introduces planar-
aligned Gaussian primitives that explicitly encode surface para-
meters (normals, origin distances), enabling analytic projection
for unbiased depth estimation. Through multi-view geomet-
ric regularization, PGSR achieves the highest geometric recon-
struction accuracy and rendering quality compared to the cur-
rent state-of-the-art methods. However, two critical limitations
emerge: (1) memory inefficiency from redundant primitives in
homogeneous regions due to conservative density thresholds,
and (2) boundary artifacts caused by sparse sampling and un-
constrained Gaussian overlaps near occlusion boundaries.

To address these limitations, this work proposes Gradient-
Guided Adaptive Gaussian Splatting (GAGS), which intro-
duces photometric gradient-driven densification to adaptively
suppress redundant primitive splits in homogeneous regions
through image-derived gradient modulation. Anisotropic shape
constraints are incorporated to compress Gaussians along
planar tangents for thin-surface alignment while preserving iso-
tropic fidelity in detailed areas. Additionally, dual normal-depth
regularization is integrated to eliminate boundary artifacts by
jointly applying self-smoothing and depth-aware correction.

3. Preliminary of PGSR

Building upon the foundation of 3D Gaussian Splatting (3DGS)
(Kerbl et al., 2023), PGSR (Chen et al., 2024) introduces a
structured framework for high-fidelity surface reconstruction
through three synergistic technical innovations. The method-
ology establishes geometric-aware constraints while preserving
the efficient differentiable rendering pipeline of 3DGS.

3.1 Planar-Aligned Gaussian Representation

The core geometric representation evolves from volumetric 3D
Gaussians to surface-oriented planar primitives. Each Gaussian

G; undergoes anisotropic compression along its minimum scal-
ing axis, enforced through a scale-aware regularization term:
Ls = |min(s1, s2, s3)||; where S; = diag(s1,s2,s3) (1)
This operation effectively collapses 3D ellipsoids into planar
elements whose orientation aligns with the surface normal:

n; = R;[;,k] where k = argmin s; @)
J

The planar compression enables explicit surface parameteriz-
ation while maintaining the differentiable rendering properties
of original 3DGS.

3.2 Unbiased Depth Rendering

To address the inherent depth bias in conventional Gaussian
splatting, PGSR reformulates the rendering pipeline through
plane-constrained ray casting. For each pixel p = (u,v), the
rendering process first aggregates planar parameters via alpha
blending:

- >, aidi o Do Qim
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where d; denotes the signed distance from camera center T
to the Gaussian plane. The final depth map Z is analytically
derived through planar-ray intersection:

D

z(p) = NT(K 1p) with = [u, v,1]" (&)

This formulation eliminates cumulative blending errors by en-
forcing physical consistency between planar orientation and
depth estimation.

3.3 Geometric Regularization

The geometric constraints form a multi-scale consistency
framework bridging local surface smoothness and global struc-
ture coherence.

The single-view consistency term leverages image gradients to
align rendered normals with local geometry:

Lsw =) |VI®)Il- | N:(p) = Ne(p)|l2 ©)

where IN,. denotes the rendered normal and IV, the geometry-
derived normal from depth variations.

For cross-view consistency, the multi-view photometric con-
straint employs normalized cross-correlation (NCC) to enforce
appearance consistency under planar warping:

Lhvy =Y (1= NCC(I,(p), In(Hrmp))) (7)

P

Simultaneously, the multi-view geometric regularization en-
sures coherent planar projections across viewpoints:

L£470 = " Ipr = Hor Henpr |12 ®
P
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These complementary constraints jointly suppress the Gaus-
sian splatting’s tendency towards local minima while preserving
high-frequency geometric details.

3.4 Exposure-Aware Optimization

To handle real-world illumination variations, PGSR intro-
duces per-image exposure parameters that decouple brightness
changes from geometric reconstruction:

Lezp = || exp(ai)Ir+bi—Igt||1 +ASSIM(exp(a; ) Ir, Ig:) (9)

This formulation allows simultaneous recovery of scene albedo
and transient illumination effects.

The complete optimization objective integrates all components
through balanced weighting:

L= Lrgy + 100Ls + 0.01Lsy + 0.2£57, 4+ 0.05L%2  (10)

This formulation achieves a Chamfer distance of 0.49 mm on
the DTU dataset (Jensen et al., 2014a) while maintaining a ren-
dering speed of 30 FPS. It outperforms 3DGS-based baselines
in terms of geometric accuracy.

4. Method

Our goal is to reduce redundancy in Gaussian primitives, partic-
ularly in flat 3D scene regions, guided by image gradients while
regularizing geometry. To achieve this, we propose GAGS
(Gradient-Guided Adaptive Gaussian Splatting), an advanced
approach built upon the PGSR (Chen et al., 2024) framework.
GAGS exploits photometric gradients extracted from real im-
ages to guide primitive densification, thereby significantly redu-
cing the number of redundant Gaussian primitives. Moreover,
GAGS imposes adaptive shape constraints on these primitives
by compressing their scales along tangential directions in flat
regions, resulting in better alignment with thin surfaces and im-
proved geometric fidelity of the reconstructed scene. Finally, a
normal self-smoothing loss and a depth-aware normal correc-
tion module are jointly optimized to suppress high-frequency
noise, refine primitive positions using depth-derived normals,
and enhance the overall robustness of 3D scene surface recon-
struction. The overview of our GAGS is illustrated in Figure 1,
and the following sections provide a detailed explanation of our
approach.

4.1 Gradient Feature Extraction

The gradient weighting mechanism establishes photometric-
geometric correspondence through continuous image analysis
and primitive association. Beginning with gradient field com-
putation, we employ central difference operators to capture ho-
rizontal and vertical intensity variations:

ol ol
Ge=7, Gu=15 (1)

The resultant gradient magnitude field M, calculated through
Euclidean norm M (p) = /G« (p)? + Gy(p)?, encodes local
texture complexity. To ensure cross-scene consistency, this
magnitude field undergoes max-min normalization followed by
quintic scaling:

w(p) = (AM>5 12)

Mmax - Mmin

This non-linear transformation amplifies weights in high-
frequency regions by 5 orders of magnitude while suppressing
flat areas, creating a photometric sensitivity map. Each Gaus-
sian primitive G; then associates with specific weights through
screen-space projection:

Wi = W (Clamp(in]707 W - 1)7 Clamp(Lyl-‘707H - 1))
(13)

where (z;,y;) denotes the primitive’s projected coordinates.
The coordinate clamping ensures valid texture sampling and
spatial coherence. This weight association bridges image gradi-
ents with 3D primitive density requirements - high w; values
demand precise representation in textured regions while per-
mitting sparsity in homogeneous areas.

4.2 Photometric Gradient-Driven Adaptive Densification

Traditional densification approaches often generate redundant
primitives in homogeneous regions due to uniform gradient
thresholds. Our adaptive mechanism establishes gradient-aware
primitive management through three interconnected operations:
accumulated gradient modulation, anisotropic splitting criteria,
and geometric consistency filtering.

The process begins with dual-gradient accumulation that com-
bines photometric weights from Sec. 4.1 with geometric gradi-
ents:

A(Gi) o [VGif - wi

(14)
Aas(Gi) x [VGi]| - wi

Normalized gradients .A/D drive splitting decisions through an
anisotropy-modulated threshold:

AlG) (1 4 lsilly ) (15)

D(G) II5illoo

where the scaling ratio ||s;||1/||si|| penalizes anisotropic
primitives.  Concurrently, absolute gradient accumulation
Aabs/Daps controls cloning frequency to maintain primitive
density in critical regions.

Geometric pruning enforces compactness through multi-criteria
filtering:

a; <Ta V 1> 7 V ||Si|lec > 0.1 extent (16)

removing under-contributing, oversized, or degenerate primit-
ives. The complete pipeline (Algorithm 1) periodically executes
these operations, achieving:

e Edge-sensitive refinement through gradient-weight coup-
ling

e Anisotropy-aware splitting preventing over-flattening
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e Adaptive density control across texture variations

Algorithm 1 Adaptive Densification Pipeline

Require: Current Gaussian set G, gradient weights {w; }
Ensure: Optimized Gaussian set G’

1: Update accumulators via Eq.(1-2)

2: if iteration % update_interval == O then

3:  Normalize gradients: g; < A(G;)/D(G5)

4:  Split primitives satisfying Eq.(3)
5 Clone primitives meeting Eq.(4)
6:  Prune using Eq.(5)

7: end if

4.3 Anisotropy-Aware Shape Regularization

To align Gaussian primitives with underlying surface geometry
while maintaining rendering stability, we develop an adaptive
scale adjustment mechanism based on photometric gradients.
The process begins by identifying each primitive’s minimum
scaling component s = min(s;1, s;2, s;3), which corres-
ponds to the principal compression direction. This minimum
scale is then modulated according to local texture complexity

through gradient-weighted adjustment:

M = max(Tm, 7 (1 — aw;)) (17)

where w; from Sec. 4.1 controls compression strength (o =
0.8), and 7, = 10~* prevents numerical instability. The ad-
justment creates geometry-aware deformations - strong com-
pression (w; — 0) in flat regions produces planar-aligned
Gaussians, while minimal scaling (w; — 1) preserves iso-
tropic shapes in textured areas. The updated scale parameter
is propagated through covariance matrix updates using scatter
operations, maintaining differentiability during optimization.

This adaptive mechanism achieves dual objectives through
gradient coupling: (1) geometric compliance by enforcing
surface-aligned flattening in homogeneous regions, and (2) ren-
dering stability via minimum scale constraints. The parallel im-
plementation (Algorithm 2) ensures efficient scale adjustment
across all visible primitives while preserving gradient flow for
end-to-end training.

Algorithm 2 Adaptive Scale Adjustment

Require: Visible Gaussians {G}}, gradient weights {w; }
Ensure: Adjusted scaling parameters {3; }

1: for each G; in parallel do

2:  Find k = argmin(s;1, sj2, $;3)

3:  Compute §;r = max(Tm, sjx(l — aw;)

4:  Update s;i < Sk

5: end for

4.4 Dual Regularization via Normal-Depth Consistency

To enhance surface continuity and geometric accuracy, we in-
troduce dual regularization that combines normal field smooth-
ing with depth-derived geometric constraints. The joint formu-
lation addresses high-frequency noise while enforcing consist-
ency between view-dependent normals and geometric surface
orientation.

The first component applies gradient-weighted normal smooth-
ing to suppress artifacts caused by primitive misalignment:

Lsmooth = EP [w(p)an(p)H?] (18)

where the expectation is computed over all pixels €2, with w(p)
from Sec. 4.1 emphasizing edges. Finite differences compute
normal gradients Vn(p), while gradient-guided depth aver-
aging preserves geometric features during preprocessing.

The second constraint aligns rendered normals n(p) with
geometry-derived orientations nq(p):

(781Da 7ayD7 1)T
(0:D)* + (9, D)* + €

na(p) = J 19)

where depth derivatives 0,D,0,D are computed from
smoothed depth maps. The alignment loss:

Enormal = ]E:D [w(p)Hn(p) - nd(p)HQ] (20)

penalizes deviations between photometric and geometric nor-
mals. The combined loss £ = Lsmooth + 0.5Lnormal balances
surface smoothness with geometric faithfulness, where the 0.5
weighting prevents over-constraining from depth noise.

5. Experiments

We conducted a comprehensive evaluation of GAGS by com-
paring its surface reconstruction performance with state-of-the-
art methods. Furthermore, ablation studies were performed to
systematically examine the effectiveness of three critical com-
ponents in our proposed framework.

5.1 Datasets

To validate the effectiveness of our approach, we conducted ex-
periments on 6 object-centric scenes randomly selected from
the DTU dataset Jensen et al. (2014b). This benchmark data-
set provides high-quality multi-view scans with precise camera
calibration and ground truth point clouds for accurate recon-
struction quality assessment under various lighting conditions
and material properties.

5.2 Implementation Details

The training strategy and hyperparameters are maintained con-
sistent with PGSR (Chen et al., 2024), with all scenes trained
for 30,000 iterations. A Photometric Gradient-Driven Adapt-
ive Densification strategy is employed for progressive densi-
fication, performed every 300 iterations until iteration 15,000.
Depth maps are rendered for each training view, followed by
TSDF field generation through the volumetric fusion algorithm
(Curless and Levoy, 1996). Final meshes are extracted from the
reconstructed TSDF volumes. All experiments were conducted
on an NVIDIA RTX 4090 GPU.
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Figure 2. Qualitative comparison results. When comparing the reconstruction results of GAGS with PGSR on the DTU dataset, our
GAGS achieves more robust reconstructions with fewer Gaussian primitives.

Table 1. Comprehensive Performance Analysis of 3D
Reconstruction Methods on the DTU Dataset

Gaussian | Chamfer |

Scene Method (k) Distance
DGS 0.123
scan24 GOF 209 0100
PGSR 311 0.100
GAGS 81 0.085
2DGS 0.118
scan40 GOF 720 o0
PGSR 435 0.103
GAGS 77 0.101
2DGS 0.108
scan69 GOF 320 0050
PGSR 180 0.090
GAGS 27 0.100
2DGS 0.113
GOF 461 0.095
scan97 PGSR 291 0.102
GAGS 53 0.082
2DGS 0.106
scanl10 GOF 133 e
PGSR 188 0.115
GAGS 19 0.112
2DGS 0.120
scanl14 GOFP 3 0124
PGSR 310 0.124
GAGS 3] 0.112
Average
2DGS 0.115
GOF 411 0.110
PGSR 294 0.106
GAGS 48 0.099

Bold Red: Best Chamfer Distance in scene (lower is better)

Blue: Second best Chamfer Distance
Green: Lowest Gaussian count in scene (lower is better)
: Second lowest Gaussian count

l: Lower is better

5.3 Surface Reconstruction Evaluation

Our evaluation framework rigorously compares GAGS against
state-of-the-art 3DGS variants, including PGSR (Chen et al.,
2024), 2DGS (Huang et al., 2024), and GOF (Yu et al., 2024).
Inspired by TrimGS (Fan et al., 2024a), this work proposes a
dual-metric paradigm that quantifies reconstruction efficiency
through Gaussian primitive counts while assessing geomet-
ric accuracy using Chamfer Distance (CD) between recon-
structed and ground-truth point clouds. This geometric evalu-
ation strategy directly operates on point clouds, effectively cir-
cumventing quantization artifacts inherent in mesh-based ap-
proaches while maintaining sensitivity to outlier distributions.

Following the standardized DTU evaluation protocol (Jensen
et al., 2014b), the assessment pipeline comprises four critical
stages. Initial spatial normalization eliminates scale discrep-
ancies across reconstructions. Coarse-to-fine registration is
then performed using RANSAC (Fischler and Bolles, 1981) for
global alignment and ICP (Besl and McKay, 1992) for local re-
finement. To ensure density-invariant comparison, normalized
point clouds undergo uniform voxel downsampling that retains
only the centroid-closest points within each volumetric unit, ef-
fectively mitigating density-induced biases. Final metric com-
putation focuses on Chamfer Distance to quantify surface devi-
ation accuracy.

Quantitative results in Table 1 demonstrate GAGS’ superior
performance, achieving 6.6% lower CD than PGSR with 83.7%
fewer Gaussians. Visual comparisons in Figure 2 further val-
idate these findings, showing enhanced geometric regularity
in GAGS reconstructions, particularly evident in thin struc-
tures where conventional methods exhibit over-densification ar-
tifacts. The sparser yet more accurate primitive distributions
confirm our method’s effectiveness in balancing reconstruction
efficiency with geometric fidelity.

5.4 Ablation Study

To rigorously evaluate the contribution of each proposed com-
ponent in GAGS, we conduct controlled ablation studies on
DTU Scanl14 under identical experimental settings. We se-
quentially disable individual modules while maintaining other
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Figure 3. Qualitative comparison of meshes on the DTU dataset.

components to isolate their effects. The baseline PGSR (Chen
et al.,, 2024) is provided as reference for comparison. As
shown in Figure 3, qualitative comparisons using mesh visual-
izations indicate that the surface reconstruction results achieved
by GAGS are visually superior. It can also be observed
that the Photometric Gradient-Driven Adaptive Densification
and Anisotropy-Aware Gaussian Primitive Shape Regulariza-
tion modules play a crucial role in shape regularization, signi-
ficantly contributing to the overall quality of the reconstructed
surfaces.

Quantitative evaluation employs two complementary metrics:
Fl-score (higher better) measuring reconstruction complete-
ness, and Chamfer Distance (CD, lower better) assessing geo-
metric accuracy. As detailed in Table 2, our analysis reveals
three key insights:

1. The Photometric Gradient-Driven Adaptive Densification
module is critical for CD optimization. Removing this
module increases CD by 8.93% (0.112—0.122) compared
to full GAGS

2. The Anisotropy-Aware Gaussian Primitive Shape Regular-
ization module primarily enhances surface quality. Its re-
moval reduces F1-score by 1.59% (0.63—0.62) relative to
full GAGS, but still maintains 17.0% improvement over
PGSR

3. The Dual Regularization via Normal-Depth Consistency
module plays a critical role in effectively integrating nor-
mal and depth information. Disabling this module causes
the largest Fl-score drop (11.11%, 0.63—0.56) and CD
increase (5.36%, 0.112—0.118) versus full GAGS

5.5 Limitations

While achieving leading performance in geometric reconstruc-
tion, the GAGS framework exhibits three critical limitations
requiring resolution. Firstly, the system demonstrates com-
promised effectiveness when reconstructing highly reflective
surfaces, as exemplified by metallic materials in scan110, re-
vealing inherent challenges in specular surface reconstruction.
Secondly, the substantial 83% reduction in Gaussian primitives
(averaging from 294k to 48k compared to PGSR) establishes
an essential trade-off between noise suppression and detail pre-
servation. Although effectively eliminating outliers (evidenced
by 6.6% CD improvement over PGSR) while enhancing recon-
struction precision, this sparsity inevitably induces loss of fine

Table 2. Ablation Study of GAGS Components (DTU Scan114)

F1 Score Chamfer Distance

Configuration 4 1
Baseline (PGSR) 0.53 0.124
w/o Photometric 0.60 0.122

Gradient-Driven
Adaptive Densification

w/0 Anisotropy-Aware 0.62 0.117
Gaussian Primitive

Shape Regularization

w/o Dual Regularization 0.56 0.118
via Normal-Depth

Consistency
Full GAGS 0.63

0.112

Bold Red: Best performance in category (F1: higher better, Chamfer:
lower better)
1: Higher is better, |: Lower is better

geometric details. Thirdly, parameter sensitivity persists in crit-
ical modules - the adaptive densification and shape regulariz-
ation components rely on empirically tuned hyperparameters
(e.g., pruning thresholds), necessitating scene-specific adjust-
ments for optimal performance across diverse environments.

6. Conclusion and Future Work

Conclusion. This paper presents GAGS, a novel gradient-
guided adaptive Gaussian splatting framework that addresses
critical limitations in 3DGS-based surface reconstruction.
By introducing three key innovations—photometric gradient-
driven adaptive densification, anisotropy-aware shape reg-
ularization, and dual normal-depth consistency regulariza-
tion—GAGS achieves significant improvements in both effi-
ciency and geometric fidelity. Experimental results on the DTU
dataset demonstrate that GAGS reduces the number of Gaus-
sian primitives by an average of 83% while maintaining com-
parable visual quality, significantly enhancing surface recon-
struction quality and accuracy, and showing a clear advant-
age over PGSR.The gradient-guided densification mechanism
effectively suppresses redundant primitives in low-texture re-
gions, while anisotropic shape constraints and dual regulariz-
ation synergistically eliminate boundary artifacts and enforce
surface coherence. These advancements make GAGS a prac-
tical solution for high-fidelity, memory-efficient surface recon-
struction in real-world applications.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
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Future Work. Although GAGS has shown promising results
in geometric reconstruction, several challenges remain. Future
work will focus on improving performance in large-scale, de-
tailed scenes without compromising efficiency. Specifically,
we aim to enhance reconstruction quality on reflective surfaces
and better balance rendering quality with reconstruction accur-
acy. Additionally, we plan to develop a robust, scene-adaptive
parameter optimization method to reduce reliance on manually
tuned hyperparameters. Tackling these issues will help expand
GAGS’s applicability to a wider range of environments.
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