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Abstract

High-throughput phenotyping monitoring has become increasingly important in modern agriculture, as it can collect plant images to
extract and analyse phenotype data related to growth and yield, thereby reducing crop monitoring costs. Aboveground biomass (AGB)
is a key indicator for evaluating plant health, growth, and productivity, and reflects the impact of environmental factors (such as water,
soil nutrients, and temperature) on plants. However, traditional methods for measuring AGB are often labor-intensive, costly, and
limited in spatial coverage. Unmanned aerial vehicles (UAVSs)-based remote sensing offer new solutions, enabling large-scale, high-
resolution data collection in agricultural fields. Therefore, this study evaluates the use of Vegetation indices (VIs) and Texture features
(TFs), as well as their combinations, derived from UAV multispectral imagery to estimate peanut AGB across different growth stages.
Specifically, nine VIs and eight TFs with different parameter settings were first derived from RGB and four single-band UAV images.
Based on random forest (RF) regression, the study explored the impact of different parameter combinations on the performance of
AGB models and analysed the potential of combining VIs and TFs to improve AGB estimation. The results show that TFs effectively
complement VIs, significantly enhancing peanut AGB estimation performance. The optimal window size was 77, with a direction of
90<and a grey level of 16. The combined VIs and TFs yield a regression with R2and RMSE of 0.929 and 0.032, respectively. These
findings suggest that the strategy of extracting image textures and combining features significantly improves the accuracy of AGB
estimation, providing a more precise method for monitoring AGB.

1. Introduction

Peanut is a crucial oilseed and economic crop in China, and its
high and stable yields is essential for ensuring national oil
security and promoting sustainable agricultural development
(Bodoira et al., 2022). Aboveground biomass (AGB), a key
parameter for assessing growth status of a population, directly
reflects plant vigor and nutrient uptake while also indicating
overall productivity levels (Morais et al., 2021). Real-time and
accurate estimation of peanut AGB is of great significance for
guiding precision field management and yield prediction. The
traditional AGB estimation methods primarily rely on manual
sampling. Although this approach provides accurate AGB, it is
destructive, labor-intensive, and time-consuming, making it
impractical for large-scale monitoring (Liu et al., 2022). With
advancements in sensor technology and intelligent control
systems, unmanned aerial vehicle (UAV)-based remote sensing
has emerged as a promising tool for large-scale crop phenotyping
due to its flexibility, efficiency, and ability to capture high
spatiotemporal resolution imagery at a low cost (Bhandari et al.,
2020, Wang et al., 2021). Consequently, leveraging UAV-based
remote sensing for rapid, non-destructive monitoring of peanut
AGB has become a hot topic in recent years.

VIs would primarily reflect the differences in reflectance
between vegetation and soil background in the visible and near-
infrared spectral bands, which quantitatively assess vegetation
growth under certain conditions (Masenyama et al., 2022). In
remote sensing applications, VIs have been widely used for
estimations for forests and crops AGB(Mutanga et al., 2023).
However, the spectral signals of remote sensing images are often
saturated in areas with dense vegetation, which might reduce
estimation accuracy(Sharma et al., 2022, Zhang et al., 2020).
Since the grey level co-occurrence matrix (GLCM) was proposed
for texture analysis (Haralick et al., 1973), researchers have
increasingly investigated the application of texture features (TFs)
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for AGB estimation (Zhu et al., 2021, Xu et al., 2022). TFs would
usually describe the microstructural characteristics of vegetation
(Fu et al., 2021). As a complement to VIs in AGB estimation,
they effectively mitigate the impact of spectral saturation in later
growth  stages, thereby improving AGB estimation
accuracy(Zheng et al., 2020).

Based on these advantages, this study proposes a non-destructive
peanut AGB estimation method that integrates VIs and TFs using
UAV multispectral imagery. The experiment involved
calculating VIs and TFs from UAV multispectral image,
analysing the correlation between VIs and peanut AGB, and
investigating the impact of GLCM parameters on AGB
estimation. Furthermore, using a random forest (RF) algorithm,
different feature sets were compared to evaluate their
performance in estimating peanut AGB, ultimately developing an
optimal model.

2. Materials and Methods
2.1 Description of Study Site

The experimental site is located in Wangbian Community,
Ningyang County, Tai‘an City, Shandong Province (116°40'48"
E, 35°47'47"N), as shown in Fig. 1. Ningyang County falls
within a warm temperate humid seasonal climate zone,
characterized by distinct four seasons.

2.2 Data Set

221 Peanut AGB and Remote Sensing Data: The
experimental field consisted of 43 independent plots. Sampling
and data collection were carried out at four critical growth stages
of peanut: seedling, flowering, pod-setting, and maturity.
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Figure 1. The location of study site.

In each plot, six representative peanut plants were randomly
selected. Roots were removed, and the plants were thoroughly
washed to eliminate soil and other contaminants, ensuring the
accuracy of subsequent measurements. The processed samples
were sealed in airtight bags to prevent moisture loss or
contamination, then oven-dried at a constant temperature until a
stable weight was reached. The dry weight of each sample was
measured using a precision electronic balance and carefully
recorded. The total dry weight across all plots was obtained by
summing the dry weights from each plot. Considering the
specific planting density of each plot, the data were further
standardized and converted into AGB kg/m=

The UAV (DJI Mavic 3 Enterprise) equipped with a multispectral
sensor was used to capture remote sensing images of the field on
June 7, June 12, July 5, and July 20, 2023, all under clear and
cloud-free conditions between 10:00 and 14:00. The UAV
recorded reflectance data in the green, red, red-edge, and near-
infrared bands. Additionally, RGB and multispectral images
were mosaicked and preprocessed for further analysis.

2.2.2  Vegetation Index Extraction: The VIs are metrics
derived from multiple spectral bands to quantify vegetation
characteristics. In this experiment, nine VVIs were calculated using
reflectance values from the UAV green, red, red-edge, and near-
infrared bands, along with the blue band from the RGB images.
The selected indices (see in Table 1) include Difference
Vegetation Indice (DVI), Green Normalized Difference
Vegetation Indice (GNDVI), Modified Soil Adjusted Vegetation
Indice (MSAVI), Normalized Difference Red-Edge indices
(NDRE), Normalized Difference Vegetation Indice (NDVI),
Normalized Difference Vegetation Indice (NIRv), Optimized
Soil Adjusted Vegetation Indice (OSAVI), Ratio Vegetation
Indice (RVI), and Soil-Adjusted Vegetation Indice (SAVI). The
VIs for each sampled plot were computed as the average value of
all pixels within the plot.

2.2.3 Texture Feature Calculation: Texture is a visual
feature that reflects homogeneous patterns in an image, revealing
the spatial distribution and structural characteristics of vegetation
(Luo et al., 2022). The GLCM is a widely used to extract TFs in
image processing, which analyses the spatial relationships
between pixels (Niu et al., 2024). In this experiment, the GLCM
was applied to extract eight TFs from the UAV green band. The
parameters were set as follows: three window sizes (3>3, 5>5,
and 7x7), four directions (0< 45< 90< and 1359, and three grey
levels (16, 32, and 64). The eight TFs (see in Table2) were
Contrast, Correlation, Dissimilarity, Entropy, Homogeneity,
Mean, Second Moment, and Variance.

Vs Formula
DVI PNIR — PRed
GNDVI (PNIR — PGreen)
(Pnir + Preen)
MSAVI 2pnir + 1=+ QCpwir + 1% — 8(pyir — R)
2
NDRE (pNIR — PRed — pRedEdge)
(pNIR + Prea — P RedEdge)
NDVI (PniR — PRea)
(Pnir + Pred)
NIRv NDVI X pyir
1.16 -
OSAVI * (PR pRed); X =016
(onir + PRea + X)
RVI Puir
PRed
SAVI PNiR — PRed (1 4 1), 1 =05

PNIR + Prea + L

Table 1. Vegetation indices formula
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Table 2. Texture features formula

Second Moment

2.3 Methods

2.3.1 Feature Selection: Although research on VIs is
relatively well-established, the optimal indices for estimating
peanut AGB remain unclear. Therefore, this study employs
Pearson correlation analysis to identify the most suitable input
variables for peanut AGB estimation based on previous research
findings and empirical knowledge.

Pearson correlation analysis is a statistical method used to
measure the strength of the linear relationship between two
variables (Stoica and Babu, 2024) The correlation coefficient (r)
ranges from -1 to 1, where the absolute value of r indicates the
strength of the linear relationship. When r is close to 1, it
indicates a positive correlation between the two variables;
conversely, it indicates the existence of a negative correlation;
and when the absolute value of r is close to 0, it indicates the
existence of a weak correlation between the two variables.

2.3.2 Peanut AGB Retrieval Models: Random Forest (RF)
is a regression model based on ensemble learning (Breiman,
2001). It effectively captures the complex nonlinear relationships
between biomass and crop growth characteristics(Liu et al.,
2023). Compared to traditional single decision trees, RF
aggregates predictions from multiple trees, reducing the risk of
overfitting while enhancing model stability and accuracy,
making it well-suited for crop biomass estimation (Mutanga et al.,
2012, Jiang et al., 2019). In the RF regression, each decision tree
is trained using bootstrap sampling, where samples are randomly
drawn with replacement from the original training dataset. At
each split node within a tree, a randomly selected subset of
features is considered, increasing model diversity and reducing
overfitting (Burdett and Wellen, 2022). The final prediction is
obtained by averaging the outputs of all decision trees. If the RF
model consists of T trees, the predicted value H(x) is computed
as:

T

he (x) )

t=1

H(x) =%

where x denotes the query sample, h;(x) denotes the prediction
of the t-th decision tree, T denoteos the total number of trees in
the forest.

2.33 Assessment of Model Performance: In our

implementation, the Coefficient of Determination (R3Fand Root

Mean Squared Error (RMSE) were used to evaluate the

performance of the Random Forest (RF) model. Specifically, R=
is used to assess the degree of model fit. RMSE measures the

accuracy of the model’s predictions.

(- h)
X G - y)? @
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where f; denotes predicted value for the i-th observation, y;
denotes the i-th field observation, y denotes mean of field values,
m denotes number of observations.

R?=1

3. Results and Analysist
3.1 AGB Estimation from Vegetation Indices

The experiment calculated the correlation between nine Vls and
AGB. The results are shown in Fig.2. By observing the scatter
plot distribution, it is possible to preliminarily determine whether
there is a linear relationship between VIs and AGB, as well as the
strength of their correlation. For example, the scatter points of
DVI and NIRv are roughly arranged along a straight line,
indicating that these two features have a linear relationship with
AGB. The scatter distribution and the trend of the green line
explain the positive or negative correlation between the VIs and
AGB. For instance, there is a positive correlation between DVI
and AGB. Conversely, if the trend were reversed, it would
indicate a negative correlation. Furthermore, the tighter the
scatter points are distributed and the closer they are to the trend
line, the stronger the correlation between the VIs and AGB;
otherwise, the correlation is weaker. Among the 9 Vis, all
showed a positive correlation with AGB. Except for NDRE, the
absolute values of the correlation coefficients for the remaining
VIs were all greater than 0.8, indicating a strong correlation with
peanut AGB. DVI is calculated as the simple difference between
NIR and Red reflectance, and it maintains a good linear
relationship even under high vegetation cover. NIR reflects the
actual near-infrared reflectance, which is directly related to
chlorophyll content, canopy structure, and other biophysical
parameters. Therefore, compared to the traditional NDVI, these
two VIs (DVI and NIRv) demonstrate greater advantages under
high LAl or high vegetation coverage conditions. NDRE
exhibited the lowest correlation, which may be due to its loss of
sensitivity at later growth stages with high vegetation coverage,
weakening its response to AGB variations. As a result, the
experiment excluded NDRE and used the remaining 8 indices for
peanut AGB estimation.

As shown in Figure 3, the RF regression model demonstrates a
high level of fit for both the training and test datasets, indicating
that the selected eight VIs have strong predictive capability for
AGB. The RMSE and R=for the two sets are similar, suggesting
that the model has good generalization ability without significant
overfitting issues. According to regression equation, the slope =
0.940 and intercept = 0.010, indicating that the prediction results
have a small deviation from the field values when using this
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Figure 2. The correlation between Vs and AGB.
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Figure3. Field versus predicted AGB values based on VIs.

feature set. The black dashed line in the figure represents the ideal
line, which almost overlaps with the blue fitted line, and the data
points are evenly distributed on both sides of the fitted line. This
suggests a strong consistency between the predicted and the field
values. The RMSE for the two data sets are 0.031 and 0.049,
respectively, indicating that the model's error is low and its
predictions are relatively stable. The R2 for the training set and
test set are 0.961 and 0.912, respectively, demonstrating high
accuracy in AGB prediction. Furthermore, the model maintains
strong generalization ability, ensuring high stability on the test
set. Therefore, VIs provide a reliable indication of AGB,
confirming their effectiveness in peanut biomass estimation.

3.2 AGB Estimation from Texture Features

To investigate the impact of GLCM parameters on the
enhancement of the RF model and identify the optimal parameter
combination, the experiment evaluated 36 different combinations
of TF parameters, including window size (3 levels), direction (4
levels), and grey levels (3 levels), for peanut AGB estimation. R=2
and RMSE were used as selection criteria. As illustrated in Fig.
4, the estimation performance of TFs in the training set exhibited
no significant variation across different parameters. The overall
R exceeded 0.9, and RMSE remained below 0.050,
demonstrating that the model performed well on the training set.
However, the test set results showed noticeable variations. The
combination of a 7>7 window, 90<direction, and 16 grey levels
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Figure 4. Field versus predicted AGB values based on GLCM
TFs.

achieved the best performance, with the highest R?and the lowest
RMSE.
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Figure 5. Field versus predicted AGB values based on the
optimal TFs.

Fig.5 presents the AGB estimation by using optimal TF
combination. The high R=for both two data sets indicate that the
model effectively predicts peanut AGB. However, the fitting
accuracy and performance on the test set are noticeably lower
than those on the training set, with R== 0.79 and RMSE = 0.054.
While these results are within an acceptable range, they suggest
that the RF model exhibits a weaker generalization ability on the
test set.

Overall, while TFs computed with different parameters can be
used for AGB estimation, the experimental results did not reach
the same level of accuracy as VIs and fell short of the desired
estimation goal.

3.3 AGB Estimation based on Vegetation and Texture
Features

To assess whether combining VIs and TFs can enhance the
accuracy of peanut AGB estimation, this study incorporated a
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total of 16 features, comprising both VIs and TFs, as input
variables for regression. As shown in Fig.6, compared to models
using only a single type of feature, the current model exhibits a
significant improvement in both R2and RMSE metrics. Most
data points align closely with the black ideal line, indicating a
high level of consistency between the predicted and actual values.
Both the training and test datasets exhibit a strong linear trend,
demonstrating the model's excellent fit. The intercept is 0.004,
which is close to zero, indicating minimal systematic bias. The
R=values for the training and test sets are 0.969 and 0.929,
respectively, demonstrating the model's ability to effectively
explain AGB variability while maintaining strong generalization
capability.
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0.0

VIs+TFs.
Input Test Test
Vs 0.912 0.049
TFs 0.791 0.054
VIs+TFs 0.929 0.032

Table 3. Results of different feature sets

Table 3 summarizes the performance of three different input
feature sets in predicting peanut AGB. The combination of VIs
and TFs achieved the highest test set R=2of 0.929, making an
improvement of 1.86% and 17.59% compared to using only Vls
or TFs, respectively. Moreover, this combination resulted in the
lowest test set RMSE of 0.032, reducing errors by 34.69% and
40.74% compared to VIs or TFs alone. These findings highlight
that integrating VIs and TFs forms the optimal feature set,
delivering more accurate and stable predictions than relying on a
single feature type. The inclusion of TFs as a complementary
variable to VIs significantly improves the accuracy of AGB
prediction.

4. Discussion

In precision agriculture and ecological monitoring, remote
sensing has become a crucial method for estimating crop AGB.
Due to its computational efficiency and sensitivity to crop growth
status, remote sensing techniques have been widely applied in
AGB estimation. In this study, Pearson correlation analysis
revealed a strong correlation between VIs and peanut AGB. A
peanut AGB estimation model was constructed by using 8 VIs,
achieving R=2and RMSE of 0.912 and 0.049, respectively. These

results confirm that VIs play a crucial role in peanut AGB
estimation.

The predictive accuracy of the RF model is optimized when the
window size, orientation, and grey levels of the GLCM align well
with the spatial structure and spectral characteristics of the crop
targets. A window size that is too small may fail to capture local
details, resulting in insufficient differentiation of texture features
within the peanut canopy structure. Conversely, an excessively
large window may obscure critical details such as leaf
distribution and inter-row plant variations. The smallest window
size (3>3) did not yield the best peanut AGB estimation
performance (Fig.4), a result consistent with findings from
previous studies (Liu et al., 2023), who reported that window
(77) provided the optimal estimation performance for rice AGB
throughout the growing season. Peanut plants exhibit low-
growing, prostrate growth characteristics, forming a dense
vegetation layer that extensively covers the ground surface.
When the window size is too small, the extracted TFs fail to
capture the macro-structural characteristics of peanut plants
effectively. A 7x7 window size enables the capture of global
information while minimizing background soil interference,
allowing for a more comprehensive structural description.
Peanuts are typically grown in row-based planting patterns,
where TFs aligned with row directions (0<or 90 provide more
effective information capture. In this study, under the 77
window configuration, TFs extracted at 90< which closely aligns
with the planting row direction—yielded the best performance,
whereas 45 °resulted in the poorest outcomes. This discrepancy
may be attributed to the decreasing inter-row gaps as peanut AGB
increases, where TFs parallel to planting rows more effectively
capture these structural changes, thereby enhancing the accuracy
of peanut AGB estimation. Grey levels influence the granularity
of GLCM calculations. Previous studies on grey-level selection
have been limited. In peanut canopy texture analysis, 16 grey
levels effectively retain texture contrast and capture pixel
variations without excessively segmenting grey values, which
could otherwise disperse the extracted features. These findings
underscore the significant impact of GLCM parameter selection
on the predictive performance of the RF model.

As shown in Table 3, the estimation accuracy of peanut AGB
significantly improves when VIs and TFs are combined
compared to using a single feature type. In remote sensing-based
crop AGB estimation, VIs and TFs serve as two complementary
sources of information. VIs would primarily capture spectral
characteristics. For example, NDWI reflects plant water status,
which indirectly influences peanut growth and final biomass.
However, at high biomass levels, the estimation accuracy of VIs
may be affected by saturation effects. In contrast, TFs provide
insights into crop canopy structure, uniformity, and growth
variability. For instance, which quantifies the dispersion of pixel
values, effectively differentiates between high- and low-biomass
regions. However, since TFs are derived from image greyscale
distributions, they do not directly reflect the physiological and
biochemical properties of vegetation. By integrating VIs and TFs,
the peanut AGB estimation model achieves the best fitting
performance and estimation accuracy, with R==0.929 and RMSE
=0.032. These results confirm that combining VIs and TFs is the
optimal approach for accurately retrieving peanut AGB.

5. Summary and Outlook

Accurately assessing peanut above-ground biomass (AGB)
provides valuable insights for estimating and managing crop
health and productivity. This study, focusing on field-grown
peanuts, developed models based on three different feature sets
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(VIs, TFs, and VIs + TFs) demonstrating the strong potential of
VIs for AGB estimation.

Importantly, the three core parameters of the GLCM are
interrelated rather than independent. A comprehensive evaluation
of various TFs was conducted to identify optimal GLCM
configurations for AGB estimation, with results indicating that a
77 window, 90 orientation, and 16 grey levels yielded the best
performance. By incorporating TFs, the study -effectively
mitigated the spectral saturation problem commonly associated
with VIs. The integration of VIs and TFs not only demonstrated
the feasibility of using combined features for AGB estimation but
also significantly improved prediction accuracy. This integrated
approach provides a promising pathway for crop monitoring in
precision agriculture.

However, several challenges remain. The reliance on UAV-
derived data introduces sensitivity to weather conditions, such as
cloud cover and wind, which can impact data acquisition quality
and consistency. Additionally, the manual delineation of sample
plots, while ensuring accuracy, is labor-intensive and may limit
scalability in large-scale agricultural applications.

In future work, we aim to address these limitations by automating
sampling processes and exploring the use of additional spectral
inputs beyond the green band, such as red-edge or near-infrared
wavelengths, which have the potential to further enhance model
robustness and accuracy under diverse field conditions.
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