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Abstract 

 

High-throughput phenotyping monitoring has become increasingly important in modern agriculture, as it can collect plant images to 

extract and analyse phenotype data related to growth and yield, thereby reducing crop monitoring costs. Aboveground biomass (AGB) 

is a key indicator for evaluating plant health, growth, and productivity, and reflects the impact of environmental factors (such as water, 

soil nutrients, and temperature) on plants. However, traditional methods for measuring AGB are often labor-intensive, costly, and 

limited in spatial coverage. Unmanned aerial vehicles (UAVs)-based remote sensing offer new solutions, enabling large-scale, high-

resolution data collection in agricultural fields. Therefore, this study evaluates the use of Vegetation indices (VIs) and Texture features 

(TFs), as well as their combinations, derived from UAV multispectral imagery to estimate peanut AGB across different growth stages. 

Specifically, nine VIs and eight TFs with different parameter settings were first derived from RGB and four single-band UAV images. 

Based on random forest (RF) regression, the study explored the impact of different parameter combinations on the performance of 

AGB models and analysed the potential of combining VIs and TFs to improve AGB estimation. The results show that TFs effectively 

complement VIs, significantly enhancing peanut AGB estimation performance. The optimal window size was 7×7, with a direction of 

90° and a grey level of 16. The combined VIs and TFs yield a regression with R² and RMSE of 0.929 and 0.032, respectively. These 

findings suggest that the strategy of extracting image textures and combining features significantly improves the accuracy of AGB 

estimation, providing a more precise method for monitoring AGB. 

 

1. Introduction 

Peanut is a crucial oilseed and economic crop in China, and its 

high and stable yields is essential for ensuring national oil 

security and promoting sustainable agricultural development 

(Bodoira et al., 2022). Aboveground biomass (AGB), a key 

parameter for assessing growth status of a population, directly 

reflects plant vigor and nutrient uptake while also indicating 

overall productivity levels (Morais et al., 2021). Real-time and 

accurate estimation of peanut AGB is of great significance for 

guiding precision field management and yield prediction. The 

traditional AGB estimation methods primarily rely on manual 

sampling. Although this approach provides accurate AGB, it is 

destructive, labor-intensive, and time-consuming, making it 

impractical for large-scale monitoring (Liu et al., 2022). With 

advancements in sensor technology and intelligent control 

systems, unmanned aerial vehicle (UAV)-based remote sensing 

has emerged as a promising tool for large-scale crop phenotyping 

due to its flexibility, efficiency, and ability to capture high 

spatiotemporal resolution imagery at a low cost (Bhandari et al., 

2020, Wang et al., 2021). Consequently, leveraging UAV-based 

remote sensing for rapid, non-destructive monitoring of peanut 

AGB has become a hot topic in recent years. 

 

VIs would primarily reflect the differences in reflectance 

between vegetation and soil background in the visible and near-

infrared spectral bands, which quantitatively assess vegetation 

growth under certain conditions (Masenyama et al., 2022). In 

remote sensing applications, VIs have been widely used for 

estimations for forests and crops AGB(Mutanga et al., 2023). 

However, the spectral signals of remote sensing images are often 

saturated in areas with dense vegetation, which might reduce 

estimation accuracy(Sharma et al., 2022, Zhang et al., 2020). 

Since the grey level co-occurrence matrix (GLCM) was proposed 

for texture analysis (Haralick et al., 1973), researchers have 

increasingly investigated the application of texture features (TFs) 
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for AGB estimation (Zhu et al., 2021, Xu et al., 2022). TFs would 

usually describe the microstructural characteristics of vegetation 

(Fu et al., 2021). As a complement to VIs in AGB estimation, 

they effectively mitigate the impact of spectral saturation in later 

growth stages, thereby improving AGB estimation 

accuracy(Zheng et al., 2020).  

 

Based on these advantages, this study proposes a non-destructive 

peanut AGB estimation method that integrates VIs and TFs using 

UAV multispectral imagery. The experiment involved 

calculating VIs and TFs from UAV multispectral image, 

analysing the correlation between VIs and peanut AGB, and 

investigating the impact of GLCM parameters on AGB 

estimation. Furthermore, using a random forest (RF) algorithm, 

different feature sets were compared to evaluate their 

performance in estimating peanut AGB, ultimately developing an 

optimal model. 

 

2. Materials and Methods  

2.1 Description of Study Site 

The experimental site is located in Wangbian Community, 

Ningyang County, Tai'an City, Shandong Province (116°40′48″

E, 35°47 ′47″N), as shown in Fig. 1. Ningyang County falls 

within a warm temperate humid seasonal climate zone, 

characterized by distinct four seasons. 

 

2.2 Data Set 

2.2.1 Peanut AGB and Remote Sensing Data: The 

experimental field consisted of 43 independent plots. Sampling 

and data collection were carried out at four critical growth stages 

of peanut: seedling, flowering, pod-setting, and maturity. 
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In each plot, six representative peanut plants were randomly 

selected. Roots were removed, and the plants were thoroughly 

washed to eliminate soil and other contaminants, ensuring the 

accuracy of subsequent measurements. The processed samples 

were sealed in airtight bags to prevent moisture loss or 

contamination, then oven-dried at a constant temperature until a 

stable weight was reached. The dry weight of each sample was 

measured using a precision electronic balance and carefully 

recorded. The total dry weight across all plots was obtained by 

summing the dry weights from each plot. Considering the 

specific planting density of each plot, the data were further 

standardized and converted into AGB kg/m². 

 

The UAV (DJI Mavic 3 Enterprise) equipped with a multispectral 

sensor was used to capture remote sensing images of the field on 

June 7, June 12, July 5, and July 20, 2023, all under clear and 

cloud-free conditions between 10:00 and 14:00. The UAV 

recorded reflectance data in the green, red, red-edge, and near-

infrared bands. Additionally, RGB and multispectral images 

were mosaicked and preprocessed for further analysis. 

 

2.2.2 Vegetation Index Extraction: The VIs are metrics 

derived from multiple spectral bands to quantify vegetation 

characteristics. In this experiment, nine VIs were calculated using 

reflectance values from the UAV green, red, red-edge, and near-

infrared bands, along with the blue band from the RGB images. 

The selected indices (see in Table 1) include Difference 

Vegetation Indice (DVI), Green Normalized Difference 

Vegetation Indice (GNDVI), Modified Soil Adjusted Vegetation 

Indice (MSAVI), Normalized Difference Red-Edge indices 

(NDRE), Normalized Difference Vegetation Indice (NDVI), 

Normalized Difference Vegetation Indice (NIRv), Optimized 

Soil Adjusted Vegetation Indice (OSAVI), Ratio Vegetation 

Indice (RVI), and Soil-Adjusted Vegetation Indice (SAVI). The 

VIs for each sampled plot were computed as the average value of 

all pixels within the plot. 

 

2.2.3 Texture Feature Calculation: Texture is a visual 

feature that reflects homogeneous patterns in an image, revealing 

the spatial distribution and structural characteristics of vegetation 

(Luo et al., 2022). The GLCM is a widely used to extract TFs in 

image processing, which analyses the spatial relationships 

between pixels (Niu et al., 2024). In this experiment, the GLCM 

was applied to extract eight TFs from the UAV green band. The 

parameters were set as follows: three window sizes (3×3, 5×5, 

and 7×7), four directions (0°, 45°, 90°, and 135°), and three grey 

levels (16, 32, and 64). The eight TFs (see in Table2) were 

Contrast, Correlation, Dissimilarity, Entropy, Homogeneity, 

Mean, Second Moment, and Variance. 

 

 

 
Figure 1. The location of study site. 

  

VIs Formula 

DVI 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑  

GNDVI 
(𝜌𝑁𝐼𝑅 − 𝜌𝐺𝑟𝑒𝑒𝑛)

(𝜌𝑁𝐼𝑅 + 𝜌𝐺𝑟𝑒𝑒𝑛)
 

MSAVI 
2𝜌𝑁𝐼𝑅 + 1 − √(2𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝑅)

2
 

NDRE 
(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑 − 𝜌 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 − 𝜌 𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 

NDVI 
(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑)
 

NIRv 𝑁𝐷𝑉𝐼 × 𝜌𝑁𝐼𝑅 

OSAVI 
1.16 ∗ (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅  +  𝜌𝑅𝑒𝑑  +  𝑋)
;  𝑋 = 0.16 

RVI 
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
 

SAVI 
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 𝐿
(1 + 𝐿);  𝐿 = 0.5 

Table 1. Vegetation indices formula 
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2.3 Methods  

2.3.1 Feature Selection: Although research on VIs is 

relatively well-established, the optimal indices for estimating 

peanut AGB remain unclear. Therefore, this study employs 

Pearson correlation analysis to identify the most suitable input 

variables for peanut AGB estimation based on previous research 

findings and empirical knowledge. 

 

Pearson correlation analysis is a statistical method used to 

measure the strength of the linear relationship between two 

variables (Stoica and Babu, 2024) The correlation coefficient (r) 

ranges from -1 to 1, where the absolute value of r indicates the 

strength of the linear relationship. When r is close to 1, it 

indicates a positive correlation between the two variables; 

conversely, it indicates the existence of a negative correlation; 

and when the absolute value of r is close to 0, it indicates the 

existence of a weak correlation between the two variables. 

 

2.3.2 Peanut AGB Retrieval Models: Random Forest (RF) 

is a regression model based on ensemble learning (Breiman, 

2001). It effectively captures the complex nonlinear relationships 

between biomass and crop growth characteristics(Liu et al., 

2023). Compared to traditional single decision trees, RF 

aggregates predictions from multiple trees, reducing the risk of 

overfitting while enhancing model stability and accuracy, 

making it well-suited for crop biomass estimation (Mutanga et al., 

2012, Jiang et al., 2019). In the RF regression, each decision tree 

is trained using bootstrap sampling, where samples are randomly 

drawn with replacement from the original training dataset. At 

each split node within a tree, a randomly selected subset of 

features is considered, increasing model diversity and reducing 

overfitting (Burdett and Wellen, 2022). The final prediction is 

obtained by averaging the outputs of all decision trees. If the RF 

model consists of T trees, the predicted value H(x) is computed 

as: 

 

 𝐻(𝑥) =
1

𝑇
∑ ℎ𝑡

𝑇

𝑡=1
(𝑥) (1) 

 

where 𝑥 denotes the query sample, ℎ𝑡(𝑥) denotes the prediction 

of the t-th decision tree, 𝑇 denoteos the total number of trees in 

the forest. 

 

2.3.3 Assessment of Model Performance: In our 

implementation, the Coefficient of Determination (R²) and Root 

Mean Squared Error (RMSE) were used to evaluate the 

performance of the Random Forest (RF) model. Specifically, R² 

is used to assess the degree of model fit. RMSE measures the 

accuracy of the model’s predictions.  

 

 𝑅2 = 1 −
∑ (𝑓𝑖 − 𝑓𝑦)

2𝑚
𝑖=1

∑ (𝑦̅ − 𝑦𝑖)2𝑚
𝑖=1

 (2) 

 𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑓𝑖−𝑦1

)
2𝑚

𝑖=1
 (3) 

 

where 𝑓𝑖  denotes predicted value for the i-th observation, 𝑦𝑖 

denotes the i-th field observation, 𝑦̅ denotes mean of field values, 

𝑚 denotes number of observations.  

 

3. Results and Analysist 

3.1 AGB Estimation from Vegetation Indices 

The experiment calculated the correlation between nine VIs and 

AGB. The results are shown in Fig.2. By observing the scatter 

plot distribution, it is possible to preliminarily determine whether 

there is a linear relationship between VIs and AGB, as well as the 

strength of their correlation. For example, the scatter points of 

DVI and NIRv are roughly arranged along a straight line, 

indicating that these two features have a linear relationship with 

AGB. The scatter distribution and the trend of the green line 

explain the positive or negative correlation between the VIs and 

AGB. For instance, there is a positive correlation between DVI 

and AGB. Conversely, if the trend were reversed, it would 

indicate a negative correlation. Furthermore, the tighter the 

scatter points are distributed and the closer they are to the trend 

line, the stronger the correlation between the VIs and AGB; 

otherwise, the correlation is weaker. Among the 9 VIs, all 

showed a positive correlation with AGB. Except for NDRE, the 

absolute values of the correlation coefficients for the remaining 

VIs were all greater than 0.8, indicating a strong correlation with 

peanut AGB. DVI is calculated as the simple difference between 

NIR and Red reflectance, and it maintains a good linear 

relationship even under high vegetation cover. NIR reflects the 

actual near-infrared reflectance, which is directly related to 

chlorophyll content, canopy structure, and other biophysical 

parameters. Therefore, compared to the traditional NDVI, these 

two VIs (DVI and NIRv) demonstrate greater advantages under 

high LAI or high vegetation coverage conditions. NDRE 

exhibited the lowest correlation, which may be due to its loss of 

sensitivity at later growth stages with high vegetation coverage, 

weakening its response to AGB variations. As a result, the 

experiment excluded NDRE and used the remaining 8 indices for 

peanut AGB estimation. 

 

As shown in Figure 3, the RF regression model demonstrates a 

high level of fit for both the training and test datasets, indicating 

that the selected eight VIs have strong predictive capability for 

AGB. The RMSE and R² for the two sets are similar, suggesting 

that the model has good generalization ability without significant 

overfitting issues. According to regression equation, the slope = 

0.940 and intercept = 0.010, indicating that the prediction results 

have a small deviation from the field values when using this 

TFs Formula 

Contrast 
∑ 𝑖𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0
 

Correlation 
∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
[
(𝑖 − 𝜇𝑥)(𝑖 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
] 

Dissimilarity 
∑ 𝑖𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0
 

Homogeneity 
∑ 𝑖

𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0
 

Entropy 
∑ 𝑖𝑃(− ln 𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0
 

Mean 
∑ 𝑖𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
 

Variance 
∑ 𝑖𝑃𝑖,𝑗(𝑖 − 𝜇)2

𝑁−1

𝑖,𝑗=0
 

Second Moment 
∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0
 

Table 2. Texture features formula 
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feature set. The black dashed line in the figure represents the ideal 

line, which almost overlaps with the blue fitted line, and the data 

points are evenly distributed on both sides of the fitted line. This 

suggests a strong consistency between the predicted and the field 

values. The RMSE for the two data sets are 0.031 and 0.049, 

respectively, indicating that the model's error is low and its 

predictions are relatively stable. The R² for the training set and 

test set are 0.961 and 0.912, respectively, demonstrating high 

accuracy in AGB prediction. Furthermore, the model maintains 

strong generalization ability, ensuring high stability on the test 

set. Therefore, VIs provide a reliable indication of AGB, 

confirming their effectiveness in peanut biomass estimation. 

 

3.2 AGB Estimation from Texture Features 

To investigate the impact of GLCM parameters on the 

enhancement of the RF model and identify the optimal parameter 

combination, the experiment evaluated 36 different combinations 

of TF parameters, including window size (3 levels), direction (4 

levels), and grey levels (3 levels), for peanut AGB estimation. R² 

and RMSE were used as selection criteria. As illustrated in Fig. 

4, the estimation performance of TFs in the training set exhibited 

no significant variation across different parameters. The overall 

R2 exceeded 0.9, and RMSE remained below 0.050, 

demonstrating that the model performed well on the training set. 

However, the test set results showed noticeable variations. The 

combination of a 7×7 window, 90° direction, and 16 grey levels  

 

achieved the best performance, with the highest R2 and the lowest 

RMSE. 

Fig.5 presents the AGB estimation by using optimal TF 

combination. The high R² for both two data sets indicate that the 

model effectively predicts peanut AGB. However, the fitting 

accuracy and performance on the test set are noticeably lower 

than those on the training set, with R² = 0.79 and RMSE = 0.054. 

While these results are within an acceptable range, they suggest 

that the RF model exhibits a weaker generalization ability on the 

test set. 

 

Overall, while TFs computed with different parameters can be 

used for AGB estimation, the experimental results did not reach 

the same level of accuracy as VIs and fell short of the desired 

estimation goal. 

 

3.3 AGB Estimation based on Vegetation and Texture 

Features 

To assess whether combining VIs and TFs can enhance the 

accuracy of peanut AGB estimation, this study incorporated a 

 
Figure 2. The correlation between VIs and AGB. 

 
Figure3. Field versus predicted AGB values based on VIs. 

 

 
Figure 4. Field versus predicted AGB values based on GLCM 

TFs. 

 

 
Figure 5. Field versus predicted AGB values based on the 

optimal TFs. 
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total of 16 features, comprising both VIs and TFs, as input 

variables for regression. As shown in Fig.6, compared to models 

using only a single type of feature, the current model exhibits a 

significant improvement in both R² and RMSE metrics. Most 

data points align closely with the black ideal line, indicating a 

high level of consistency between the predicted and actual values. 

Both the training and test datasets exhibit a strong linear trend, 

demonstrating the model's excellent fit. The intercept is 0.004, 

which is close to zero, indicating minimal systematic bias. The 

R² values for the training and test sets are 0.969 and 0.929, 

respectively, demonstrating the model's ability to effectively 

explain AGB variability while maintaining strong generalization 

capability.  

 

 

Table 3 summarizes the performance of three different input 

feature sets in predicting peanut AGB. The combination of VIs 

and TFs achieved the highest test set R² of 0.929, making an 

improvement of 1.86% and 17.59% compared to using only VIs 

or TFs, respectively. Moreover, this combination resulted in the 

lowest test set RMSE of 0.032, reducing errors by 34.69% and 

40.74% compared to VIs or TFs alone. These findings highlight 

that integrating VIs and TFs forms the optimal feature set, 

delivering more accurate and stable predictions than relying on a 

single feature type. The inclusion of TFs as a complementary 

variable to VIs significantly improves the accuracy of AGB 

prediction. 

 

4. Discussion 

In precision agriculture and ecological monitoring, remote 

sensing has become a crucial method for estimating crop AGB. 

Due to its computational efficiency and sensitivity to crop growth 

status, remote sensing techniques have been widely applied in 

AGB estimation. In this study, Pearson correlation analysis 

revealed a strong correlation between VIs and peanut AGB. A 

peanut AGB estimation model was constructed by using 8 VIs, 

achieving R² and RMSE of 0.912 and 0.049, respectively. These 

results confirm that VIs play a crucial role in peanut AGB 

estimation. 

 

The predictive accuracy of the RF model is optimized when the 

window size, orientation, and grey levels of the GLCM align well 

with the spatial structure and spectral characteristics of the crop 

targets. A window size that is too small may fail to capture local 

details, resulting in insufficient differentiation of texture features 

within the peanut canopy structure. Conversely, an excessively 

large window may obscure critical details such as leaf 

distribution and inter-row plant variations. The smallest window 

size (3×3) did not yield the best peanut AGB estimation 

performance (Fig.4), a result consistent with findings from 

previous studies (Liu et al., 2023), who reported that window 

(7×7) provided the optimal estimation performance for rice AGB 

throughout the growing season. Peanut plants exhibit low-

growing, prostrate growth characteristics, forming a dense 

vegetation layer that extensively covers the ground surface. 

When the window size is too small, the extracted TFs fail to 

capture the macro-structural characteristics of peanut plants 

effectively. A 7×7 window size enables the capture of global 

information while minimizing background soil interference, 

allowing for a more comprehensive structural description. 

Peanuts are typically grown in row-based planting patterns, 

where TFs aligned with row directions (0° or 90°) provide more 

effective information capture. In this study, under the 7×7 

window configuration, TFs extracted at 90°, which closely aligns 

with the planting row direction—yielded the best performance, 

whereas 45° resulted in the poorest outcomes. This discrepancy 

may be attributed to the decreasing inter-row gaps as peanut AGB 

increases, where TFs parallel to planting rows more effectively 

capture these structural changes, thereby enhancing the accuracy 

of peanut AGB estimation. Grey levels influence the granularity 

of GLCM calculations. Previous studies on grey-level selection 

have been limited. In peanut canopy texture analysis, 16 grey 

levels effectively retain texture contrast and capture pixel 

variations without excessively segmenting grey values, which 

could otherwise disperse the extracted features. These findings 

underscore the significant impact of GLCM parameter selection 

on the predictive performance of the RF model. 

 

As shown in Table 3, the estimation accuracy of peanut AGB 

significantly improves when VIs and TFs are combined 

compared to using a single feature type. In remote sensing-based 

crop AGB estimation, VIs and TFs serve as two complementary 

sources of information. VIs would primarily capture spectral 

characteristics. For example, NDWI reflects plant water status, 

which indirectly influences peanut growth and final biomass. 

However, at high biomass levels, the estimation accuracy of VIs 

may be affected by saturation effects. In contrast, TFs provide 

insights into crop canopy structure, uniformity, and growth 

variability. For instance, which quantifies the dispersion of pixel 

values, effectively differentiates between high- and low-biomass 

regions. However, since TFs are derived from image greyscale 

distributions, they do not directly reflect the physiological and 

biochemical properties of vegetation. By integrating VIs and TFs, 

the peanut AGB estimation model achieves the best fitting 

performance and estimation accuracy, with R² =0.929 and RMSE 

= 0.032. These results confirm that combining VIs and TFs is the 

optimal approach for accurately retrieving peanut AGB. 

 

5. Summary and Outlook 

Accurately assessing peanut above-ground biomass (AGB) 

provides valuable insights for estimating and managing crop 

health and productivity. This study, focusing on field-grown 

peanuts, developed models based on three different feature sets 

 
Figure 6. Field versus predicted biomass values based on 

VIs+TFs. 

 

Input Test Test 

VIs 0.912 0.049 

TFs 0.791 0.054 

VIs+TFs 0.929 0.032 

Table 3. Results of different feature sets 
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(VIs, TFs, and VIs + TFs) demonstrating the strong potential of 

VIs for AGB estimation. 

 

Importantly, the three core parameters of the GLCM are 

interrelated rather than independent. A comprehensive evaluation 

of various TFs was conducted to identify optimal GLCM 

configurations for AGB estimation, with results indicating that a 

7×7 window, 90° orientation, and 16 grey levels yielded the best 

performance. By incorporating TFs, the study effectively 

mitigated the spectral saturation problem commonly associated 

with VIs. The integration of VIs and TFs not only demonstrated 

the feasibility of using combined features for AGB estimation but 

also significantly improved prediction accuracy. This integrated 

approach provides a promising pathway for crop monitoring in 

precision agriculture. 

 

However, several challenges remain. The reliance on UAV-

derived data introduces sensitivity to weather conditions, such as 

cloud cover and wind, which can impact data acquisition quality 

and consistency. Additionally, the manual delineation of sample 

plots, while ensuring accuracy, is labor-intensive and may limit 

scalability in large-scale agricultural applications. 

 

In future work, we aim to address these limitations by automating 

sampling processes and exploring the use of additional spectral 

inputs beyond the green band, such as red-edge or near-infrared 

wavelengths, which have the potential to further enhance model 

robustness and accuracy under diverse field conditions. 
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