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Abstract

LiDAR based simultaneous localization and mapping (SLAM) plays an important role for real-time localization and 3D mobile
mapping of autonomous systems. However, the long-term scan-to-scan matching in the SLAM can introduce uncertainty into the
position estimation. which results in a large drift. In this paper, we specifically focus on real-time estimation of the global positioning
uncertainty of LIDAR SLAM so that it can enable the graceful weighting of LIDAR SLAM with other positioning systems in multi-
sensor fusion localization. We introduce Lie group theory and multiple fault hypothesis solution separation (MHSS) method into a
Kalman-filter based LiDAR SLAM framework. First, the scan-to-scan matching uncertainty is obtained by establishing fault
hypothesis utilizing MHSS method. Then the global positioning uncertainty is propagated on Lie group based on the scan-to-scan
matching uncertainty in terms of the relative position and rotation. The NCLT dataset is used to validate the proposed method.
Experimental results show that: comparing with previous solutions that treat scan-to-scan matching uncertainty as a constant, the
proposed method is more adaptive and robust. And the real-time global positioning uncertainty estimation can envelop the real
SLAM absolute trajectory error (ATE) for the most of the time and can reflect the real changing tendency of ATE.

1. Introduction

SLAM technology, since introduced by (Smith et al. 1986),
has made great progress and is applied in many fields including
autonomous driving, drone guidance, robot positioning and
mobile mapping. Depending on the sensors, SLAM methods
can be divided into visual SLAM (Macario et al. 2022), LiDAR
SLAM (Zou et al. 2022) and multi-sensor fusion SLAM (Tian
et al. 2023). LiDAR can obtain high-precision scanning point
clouds with depth information and is unaffected by the changes
in light conditions so that it has shown broad application
prospects in SLAM tasks.

A typical LIDAR SLAM system can be divided into two
parts: the front end and the back end. The front end is designed
to extract point, edge or planar features (Guo et al. 2022, Tsai et
al. 2024). The back end usually performs scan-to-scan matching
(e.g. ICP) and optimization process based on the extracted
features to calculate the pose transform between scans (Cho et
al. 2018). Since the optimization step performed in the back-end
is actually the process of calculating the maximum likelihood
estimate of the residual error and Jacobian matrix of feature
matching, it will inevitably introduce uncertainty in the position
estimation. The accumulated uncertainties from continuous
matching of multiple scans will make the pose estimation drift
away from the true value. The current common solution is to
fuse LIDAR SLAM with additional positioning systems (e.g.
Global Navigation Satellite System (GNSS), IMU, camera) to
provide an integrated solution to improve the positioning
accuracy and robustness. For example, the popular LIO-SAM
framework (Shan et al. 2020) utilizes the GNSS positioning
result as a graph optimization factor to help optimize the
LiDAR SLAM to obtain a more accurate pose estimation result.
The FAST-LIVO framework and its derivatives (Zheng et al.
2022, Zheng et al. 2024) integrate the camera, LiDAR, and IMU
sensors, obtaining robust positioning and mapping results.
Therefore, one of the most important aspects of the integrated
system is how it models the uncertainty of different positioning
modalities (Talbot et al. 2023). This paper focuses on the
positioning uncertainty estimation of a Kalman-filter based

LiDAR SLAM framework, and provide a real-time maximum
positioning error estimation (upper-limit) during the positioning
process.

As two basic LIDAR SLAM frameworks, LOAM
(Zhang et al. 2014) and LeGO-LOAM (Shan et al. 2018) both
extract edge and planar features and perform scan matching and
factor graph optimization to obtain the optimal global pose
estimation. The improvement of LeGO-LOAM over LOAM lies
in the more refined extraction of edge features and the
elimination of outliers. However, they are feature-based
methods and may fail in weakly structured scenes. FAST-LIO
becomes popular in recent years (Xu et al, 2021. Xu et al, 2022).
It directly matches the points in the two scan point clouds and
use the Kalman filter framework to iteratively optimize the
distance from the point to the nearby plane to obtain the pose
result, which makes it more robust in weakly structured scenes.
Moreover, they propose a novel filtering method and ikd-tree
data structure, which greatly improves the real-time
performance. Therefore, we introduce our real-time positioning
uncertainty module into FAST-LIO so that it not only estimates
global position but also the uncertainty of the global position.

For uncertainty estimation, there have been a series of studies.
(Smith et al. 1990) models the motion of the autonomous
system as a function of translation and Euler angles, and use the
first-order linearization method to calculate the Jacobian matrix.
By continuous multiplication of Jacobian matrix, it
characterizes the error of translation. In more recent study,
propagating errors on Lie groups is considered to be a more
effective solution (Chirikjian et al. 2009, Chirikjian et al. 2011).
(Barfoot et al. 2014) studies the propagation of uncertainty on
the SE(3) group by compounding the poses. (Brossard et al.
2022) considers the velocity state and study the propagation of
uncertainty on the SE2(3) group. (Mangelson et al. 2020)
abandons the assumption that poses are independent to each
other and study the error propagation in non-Gaussian
distribution and pose-dependent cases through pose inversion.
Even though these methods consider non-Gaussian distribution
and correlation between poses, they often treat uncertainty of
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scan-to-scan matching as a constant, which usually undermine
the real matching errors.

The main contributions of this paper are as follows:

(1) a self-adapting scan-to-scan matching uncertainty
estimation method using MHSS method is proposed, without
artificially setting the uncertainty as constant. It constructs fault
hypotheses for each LIDAR measurement, calculating the state
covariance under each subset, and finally obtains the pose
uncertainty of the scan matching. It is then integrated into a
Kalman filter based system.
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(2) when estimating the global positioning uncertainty, we
use the inversion form of the relative pose between two
consecutive scans from the scan-to-scan matching, which
provides a relative pose transformation for propagating global
positioning uncertainty over the SE(3) group, based on above
acquired scan-to-scan matching uncertainty estimation.

The effectiveness of our method is verified by the NCLT
dataset. Experimental results show that the estimated global
positioning uncertainty can envelop the SLAM ATE for the
most of the time and can reflect its real changing tendency.

[P
Determine MHSS fault Uncertainty
hypotheses using PHMI | — propagation on Lie
group
Sector segmentation fault l )
modes reduction Glopal uncertamnty
in back end
TZJ 22
Calculation of variance of
pose and variance of
separate solutions
Tl: Z'1
MHSS single scan
uncertainty estimation To, Zo
[

Single scan uncertainty

Figure 1. The flowchart of our method. The front end consists of IMU and LiDAR for forward state propagation. The back end
updates state with IESKF and we calculate scan matching uncertainty with parameters in optimization procedure.

2. Methodology
2.1 Overview

Our method is inherited from the LiDAR-Inertial FAST-LIO
framework. The role of IMU in the whole filter-based
framework is to correct the distorted point cloud and provide
the initial pose of the framework. It does not participate in the
process of MHSS uncertainty calculation.

Shown as Figure 1, in the front end, the residual and normal
vectors of LiDAR points are calculated by point cloud
registration. In the back end, we update the state and apply the
MHSS module to calculate the uncertainty generated by scan-
to-scan matching based on Kalman filter. The calculated scan-
to-scan uncertainty is then used to obtain the global uncertainty
through the Lie group propagation.

2.2 State Definition and Filtering Process
Since IMU measurements have a higher frequency than

LiDAR, we use the pre-integration to estimate the relative pose
between two LiDAR scans:

PﬁYm = p\tfi +Vr,/iAt+%§iAt2 1)
Vo =Vy; + &AL %)

1
W' — W' ® 3
qb,|+1 qb,l %CT)IAt ( )

where W is the world frame. b is the body frame. p is the
IMU position, Vv is the velocity and ¢ is the quaternion
representing the rotation. i is the i-th IMU timestamp.
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Where 4 and @ are measurement values of the accelerometer
and gyroscope. b, and b, are the bias. gW is the gravity

vector in world frame.

The IMU pre-integration is implemented until the new
LiDAR scan needs to perform ICP matching, we use iterated
error state Kalman filter (IESKF) to optimize state estimation.
The state vector is defined as:

x=[R" p' V' b, b, g"] (6)

| represents the IMU body coordinate. The R, p," and v}’

are the transformation vector of the rotation, position, and
velocity from the IMU coordinate system to the world
coordinate system.

The measurement model can be summarized as:

0=n] (R's; +q;) @
where n]T is the corresponding normal vector of point j, R‘[V

is the rotation matrix that projects the point from the LiDAR
coordinate to the world coordinate. q is point matching with

S.
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The residual vector is calculated as:

r=z-Hx (8)
Z is the LIDAR measurement while H is the Jacobian matrix
acquired by Eq.(7).
The Kalman gain matrix K is:

K=PH" (HPH" +N)" ©)

P is the state variance matrix. N is the measurement noise
matrix. The updated state and state variance is:

x(+)=x(-)+Kr (10)
P(+)=(1-KH)P(-) (11)

The iteration process stops when the norm of the state update is
less than a certain threshold. After the state update, we can get
the optimal estimate of the global rotation and position of the
LiDAR in the current scan, which enables us to establish the
Lie group pose elements in later process.

2.3 Scan-to-scan Matching Uncertainty Estimation based
on MHSS

In ICP process, the LIDAR measurements inevitably have
ranging and angle errors, which will cause the optimal
estimation results to be a theoretical maximum likelihood
solution, and there is a certain uncertainty between the state
estimation and the true value. Regarding this issue, we
introduce the MHSS method to estimate the uncertainty
introduced by scan-to-scan matching in Eq. (7).

According to MHSS method’s step, we establish the
following fault hypothesis:

FH, FH, FH, FH, - FH,
Q, Q Q, Q - Q 12)
PFHO PFHl PFHZ PFH3 o PFHJ

where FH, is the fault free hypothesis. This hypothesis means
that we will use all LIDAR measurements for state updates.
Q, is state variance of rotation and position and can be

extracted from state covariance matrix P(+) in Eq. (11).

_ lo.s 6.6 '
SR W L I

PFHO is the probability of fault-free hypothesis occurring.

FH, is the jth fault hypothesis which means the j-th

measurement exists gross error. When calculating the
corresponding state and state covariance under j-th hypothesis,
we eliminate the j-th measurement from the whole Jacobian
matrix and residual vector from Eq. (7).

After acquiring the variance of the state of the six degrees of

freedom € and the probability P., , we can calculate the
uncertainty of each state by (Blanch et al. 2012, Blanch et al.

2015):
U Nisgtimodes U, —Thres
2Q| =+ P, Q| ——2<L
Q[%]+§ JQ( q ] (14)

=PHMI| 1- Punmonitored
PHMI

where U, represents the uncertainty of the corresponding state.

PHMI is the integrity risk which represents the upper limit of
the probability of all fault hypotheses occurring. P

unmonitored is
the unmonitored integrity risk, usually part of the overall
integrity risk. d =1,---,6 corresponds to every dimension of

the rotation and position states.

distribution. Thres is the threshold calculated based on the
continuous risk P, and is in the form:

Q represents the normal

Thres, , = K, Q! , (15)

Ku=Q" [p—fj (16)
2 Nfaultmodes

QL=02-0} (17)

After calculating the uncertainty of each rotation and
translation, we form a diagonal matrix as the uncertainty
introduced by the current scan matching:

H 2 2 2 2 2 2
T=diag([UZ U2 Uz V2 U2 UZ]) s
Where tX, ty, tz represents the translation in corresponding
axis while rx, ry, rz is the rotation. Note that the order of

the states defined here is different from that in Eq. (6). This is
to ensure consistency in propagating uncertainty on Lie group
in the following chapter.

2.4 Covariance Propagation on SE(3) Group

In our SLAM framework, the defined states include rotation
R and position p. They can be represented by homogeneous

matrices of the special Euclidean group:

T:|:R p:|e]R4><4|
SE(3) = [ (19)
ReSO(3),peR’

SO(3) is the special orthogonal group representing rotation.

In Section 2.2, we obtain the rotation and position estimation
results of the previous scan and obtain the rotation and position
estimation of the current scan through Kalman filtering in Eq.
(10). These two sets of states can be expressed as special

Euclidean groups T, and TA1 through Eq.(19). The propagation

of uncertainty requires the change between two pose, so we use
the inverse method to obtain it:

T, =TT, (20)
According to the analysis in Section 2.3, T, has global
uncertainty after propagation, and T, has uncertainty

introduced by scan matching. Their true value and uncertainty
expectation is:

{To. Zo b {T0 24 (21)
Consider the common case where the LiDAR starts moving
from rest, 2, is the uncertainty of the initial pose, which can

be set to a matrix of all zeros. X, is obtained by Eq.(18). The

uncertainty of the pose can be expressed as the true transform
left multiplied by a small perturbation:

T, =exp(& )T,
T, = eXp(flA )171

For 'ﬁ which compounds the two poses T, and T, , its
uncertainty can be written as:

T —exp( )T —exp(& e (1405) )T, @)

F'Tel“ is in the form:

(22)
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. R pR
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(1), is the skew-symmetric matrix of the vector. The state
uncertainty covariance matrix >, of pose T; can be written as:

z by

_ 0,00 0,09
20,55(3) = |:20 » Zo w:| (25)

By propagating the X, with pose T, , the covariance matrix will
be:
20 — FITezftzor!sll,lranspose —
PRE,PR+RE ,pR+p R, R+RE R Rzﬂ¢R+pszwR}
Rz, R+RZ,p R RZ,R

(26)

In chapter 2.3, we introduce how to calculate the scan matching
uncertainty &, of the pose T, . By compounding the propagated

uncertainty with & , we can get the global uncertainty of the

current scan, which is in the same form as the Eq.(18). The
multiplication ~ of  the  exponential mapping  of

exp(éf)exp((l"{“;‘o)A) is a series of polynomials with

specific coefficients which implies that the global uncertainty
after propagation in the current scan can be expressed as a
specific polynomial composed of the global uncertainty of the
previous scan and the uncertainty introduced by the current
scan matching. Due to space limitations, interested readers can
refer to the method of applying the Baker-Campbell-Hausdorff
(BCH) Formula (Mielnik et al. 1970) in (Barfoot et al. 2014).

3. Experiment results

This section provides a detailed information of the
experimental dataset and the evaluation of the effectiveness of
proposed method.

3.1 Data description

We selected four routes from the NCLT dataset (Carlevaris-
Bianco et al. 2016). Table 1 show some detailed description
about these routes. The LIiDAR used is Velodyne HDL-32E
LIDAR. Each route is equipped with camera and IMU sensors.
The ground truth is coming from RTK positioning results.

3.2 Experiment Setup

In order to verify the effectiveness of our method, we set up
fully comparative experiments. It is a common practice in
current research to put the pose uncertainty obtained from scan-
to-scan matching as a constant. Usually, they use Monte Carlo
to simulate the movement of a large number of initial particles
under an assumption of pose uncertainty, and then evolve all
possible distributions of particles in terms of global position.
Moreover, to the best of our knowledge, there are few works on
global positioning uncertainty estimation using real-world
datasets. In this paper, we compare our proposed method with a
benchmark method with constant uncertainty assumption of
scan-to-scan matching and finally compare their real-time
performances of global positioning uncertainty estimation.
Evaluation criteria. To evaluate the performance of the global
positioning uncertainty estimation, we calculate the trajectory
ATE (Sturm et al. 2012) of our SLAM framework. The closer
the estimated positioning uncertainty is to the ATE, the better
the performance. The calculation tool is EVO (Grupp. et al.
2017). The horizontal and vertical positioning uncertainty are
calculated separately. The global uncertainty is:

O-hori = \juti +Ut§ (27)
Overt = \jué

Ué , U 2 are the corresponding diagonal elements

of in the global uncertainty covariance matrix (18) after
propagation in current scan.

Implementation details: All the experiments are implemented
by C++ and tested on Ubuntu 20.04 LTS. The CPU is AMD
Ryzen 7 5800H and 16G RAM.

Considering the simulation experiment parameters set in
(Barfoot et al. 2014, Brossard et al. 2017), the benchmark
method has a constant scan-to scan matching uncertainty
matrix as:

Yonq =diag([10° 10° 120° 10% 10* 10%])  (28)
3.3 Comparative Results

Where U 2

tx !

Figure 2 shows the route estimation results of four sequences.
The APE shown in the figure is the result displayed by the
EVO tool, and its meaning is consistent with ATE. Table 2
shows the ATE and maximum error of the four sequences.

Datas _ Desciption

Dataset Not aligned mean ATE/max error (m)
Seql 6.36/18.91
Seq2 12.93/23.25
Seq3 27.62/55.53
Seq4 16.53/42.56

et Scenario  Trajectory  Time Scan LiDA
Length/m  Duratio  num R type
n/s

Seql  Campus 1146.28 1025.3 10253 HDL-
Road 32E

Seq2  Campus 3201.98 2580.5 25805 HDL-
Road 32E

Seq3 Campus  4107.57 3295.0 32950 HDL-
Road 32E
Seq4  Campus 4998.16 4110.5 41105 HDL-
Road 32E

Table 1 Detailed information about NCLT dataset

Four routes are all collected in the University of Michigan
North Campus. Except for the Seql which was collected in
cloudy weather, all other routes were collected in sunny
weather.

Table 2 Comparison of the accuracy of not aligned trajectories

Figure 3 shows the global positioning uncertainty
comparison of proposed method and the benchmark method for
sequences 1-4, and the real trajectory ATE. In the left figure,
the left 1-sigma circles represent the calculated global
uncertainty, while the purple ones represent the global
uncertainty calculated by constant scan matching uncertainty.
From the figure, we can see that since the constant scan-to-scan
matching uncertainty in the benchmark method is difficult to
reflect the actual scan matching uncertainty, the global
positioning uncertainty after multi scans propagation is very
small and it is difficult to reflect the real tendency of ATE. Our
method introduces MHSS to calculate more accurate scan-to-
scan matching uncertainty. Therefore, the final global
positioning uncertainty can envelop the real ATE, and is fully
adaptive without the need to manually set prior parameters. At
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the same time, the change trend of global uncertainty can also
reflect the change trend of the real ATE. This can enable the
graceful weighting of LIDAR SLAM with other positioning
systems in multi-sensor fusion localization.

4. Conclusions

In this paper, we propose a self-adapting scan-to-scan
matching uncertainty estimation method using MHSS, which
enables the global uncertainty to propagate global positioning
uncertainty over the SE(3) group. The MHSS method can
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Figure 2. The real trajectory ATE of FAST-LIO for the four routes. The colorbar changes from blue to red, indicating that the

establish fault hypothesis and calculate state variance and
variance difference. Compared with the benchmark method
with constant scan-to-scan matching uncertainty using the
NCLT dataset, our method can envelop the real SLAM ATE

and can reflect the real changing tendency of ATE as well.

Future research will focus on integrating sensors such as
IMU or GNSS into the SLAM framework, performing
uncertainty analysis for each sensor to weight their positioning

contributions.

APE w.r.t. translation part /m) - 23.254
(not aligned) —-- reference
=300
=200
~100~
s 3
5 0N
~— .23 BT N
1 P ~100 -11.770
&
gy o 200
=300
-~ 500
~ 400
. 7 03000
0 ’ >
Hlonm 2T 100
300400 . 0 3
X (500 -100
m) 600 | e
APE w.r.t. translation part (m) = 27.573
(not aligned) —-- reference
~ 400
=200
“oE
e o N P S 0 N
ESIEs) -13.876
Y S ~200
~400
~ 600
e ~ 400
0 ¢ ~ 200
200 ; &
400 0 .0~ 0y
=1/ -200
- 9% -0.179

positioning error gradually increases.

~——~1-¢ circle(pos)
140 \ ¢+ pos-sample
pos-all

o pos-sample;,

esti

- - - - pos-all,

y [m]
3

-20 -

. . . . )
-100 0 100 200 300 400 500 600
x[m]

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

20F
Esf
s uncertaintySE3
é 10 positioning error
2 57
0 ! ! n . .
0 2000 4000 6000 8000 10000 12000
epoch
20
315*
T 10
£
o
> 5¢F
0 . e . . .
0 2000 4000 6000 8000 10000 12000
epoch

https://doi.org/10.5194/isprs-annals-X-1-W2-2025-75-2025 | © Author(s) 2025. CC BY 4.0 License.

79



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

450

400

350

300 -

250

E 200}
>
{
150 - |,
------- !/
100 - ¢ /]
] /
50 I i Y s
{
o RIS
50 } I L | | | J
-100 0 100 200 300 400 500 600 700
x [m]
450
400 -
350
300 -
250 ’
_ q
|
E 200 !
>
150 -
100 -
/ | { _-n "
50l ¢ ! | CLIN
[ S N N et v
0 e—pr——===k]
50 I L | | I L I | J
100 0 100 200 300 400 500 600 700 800
x [m]
450
400
350
300
250
E 200t
=
150 -
100 -
50 -
ot
-50
100 0

x [m]

o
S

IS
S

horizontal [m]
N
S

0 0.5 1 1.5 2 25 3

epoch x10*
40
E30
g
£20
o
=10
0 | | | I .
0 05 1 15 2 25 3
epoch x10*

E
I
<
o
i
5
2
35
epoch x10*
60
Esof
T
S
S0t
2
o | | | | |
0 05 1 1.5 2 25 3 35
epoch x10*
80
Eeof
s
€ 40
i
220*
0 ! " n I ] ] ] .
0 05 1 15 2 25 3 35 4 45 5
epoch x10*
80
E6of
T 40
5
> 20+
0 | I L | | | | | L
0 05 1 15 2 25 3 35 4 45 5
epoch x10*

Figure 3. Comparison of ATE and global positioning uncertainty estimation from our method and the benchmark method. a, b, c, d
represent the dataset sequence 1-4 respectively.
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