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Abstract 

 

LiDAR based simultaneous localization and mapping (SLAM) plays an important role for real-time localization and 3D mobile 

mapping of autonomous systems. However, the long-term scan-to-scan matching in the SLAM can introduce uncertainty into the 

position estimation. which results in a large drift. In this paper, we specifically focus on real-time estimation of the global positioning 

uncertainty of LiDAR SLAM so that it can enable the graceful weighting of LiDAR SLAM with other positioning systems in multi-

sensor fusion localization. We introduce Lie group theory and multiple fault hypothesis solution separation (MHSS) method into a 

Kalman-filter based LiDAR SLAM framework. First, the scan-to-scan matching uncertainty is obtained by establishing fault 

hypothesis utilizing MHSS method. Then the global positioning uncertainty is propagated on Lie group based on the scan-to-scan 

matching uncertainty in terms of the relative position and rotation. The NCLT dataset is used to validate the proposed method. 

Experimental results show that: comparing with previous solutions that treat scan-to-scan matching uncertainty as a constant, the 

proposed method is more adaptive and robust. And the real-time global positioning uncertainty estimation can envelop the real 

SLAM absolute trajectory error (ATE) for the most of the time and can reflect the real changing tendency of ATE. 

 

 

1. Introduction 

SLAM technology, since introduced by (Smith et al. 1986), 

has made great progress and is applied in many fields including 

autonomous driving, drone guidance, robot positioning and 

mobile mapping. Depending on the sensors, SLAM methods 

can be divided into visual SLAM (Macario et al. 2022), LiDAR 

SLAM (Zou et al. 2022) and multi-sensor fusion SLAM (Tian 

et al. 2023). LiDAR can obtain high-precision scanning point 

clouds with depth information and is unaffected by the changes 

in light conditions so that it has shown broad application 

prospects in SLAM tasks. 

A typical LiDAR SLAM system can be divided into two 

parts: the front end and the back end. The front end is designed 

to extract point, edge or planar features (Guo et al. 2022, Tsai et 

al. 2024). The back end usually performs scan-to-scan matching 

(e.g. ICP) and optimization process based on the extracted 

features to calculate the pose transform between scans (Cho et 

al. 2018). Since the optimization step performed in the back-end 

is actually the process of calculating the maximum likelihood 

estimate of the residual error and Jacobian matrix of feature 

matching, it will inevitably introduce uncertainty in the position 

estimation. The accumulated uncertainties from continuous 

matching of multiple scans will make the pose estimation drift 

away from the true value. The current common solution is to 

fuse LiDAR SLAM with additional positioning systems (e.g. 

Global Navigation Satellite System (GNSS), IMU, camera) to 

provide an integrated solution to improve the positioning 

accuracy and robustness. For example, the popular LIO-SAM 

framework (Shan et al. 2020) utilizes the GNSS positioning 

result as a graph optimization factor to help optimize the 

LiDAR SLAM to obtain a more accurate pose estimation result. 

The FAST-LIVO framework and its derivatives (Zheng et al. 

2022, Zheng et al. 2024) integrate the camera, LiDAR, and IMU 

sensors, obtaining robust positioning and mapping results. 

Therefore, one of the most important aspects of the integrated 

system is how it models the uncertainty of different positioning 

modalities (Talbot et al. 2023). This paper focuses on the 

positioning uncertainty estimation of a Kalman-filter based 

LiDAR SLAM framework, and provide a real-time maximum 

positioning error estimation (upper-limit) during the positioning 

process.   

As two basic LiDAR SLAM frameworks, LOAM 

(Zhang et al. 2014) and LeGO-LOAM (Shan et al. 2018) both 

extract edge and planar features and perform scan matching and 

factor graph optimization to obtain the optimal global pose 

estimation. The improvement of LeGO-LOAM over LOAM lies 

in the more refined extraction of edge features and the 

elimination of outliers. However, they are feature-based 

methods and may fail in weakly structured scenes. FAST-LIO 

becomes popular in recent years (Xu et al, 2021. Xu et al, 2022). 

It directly matches the points in the two scan point clouds and 

use the Kalman filter framework to iteratively optimize the 

distance from the point to the nearby plane to obtain the pose 

result, which makes it more robust in weakly structured scenes. 

Moreover, they propose a novel filtering method and ikd-tree 

data structure, which greatly improves the real-time 

performance. Therefore, we introduce our real-time positioning 

uncertainty module into FAST-LIO so that it not only estimates 

global position but also the uncertainty of the global position. 

For uncertainty estimation, there have been a series of studies.  

(Smith et al. 1990) models the motion of the autonomous 

system as a function of translation and Euler angles, and use the 

first-order linearization method to calculate the Jacobian matrix. 

By continuous multiplication of Jacobian matrix, it 

characterizes the error of translation. In more recent study, 

propagating errors on Lie groups is considered to be a more 

effective solution (Chirikjian et al. 2009, Chirikjian et al. 2011). 

(Barfoot et al. 2014) studies the propagation of uncertainty on 

the SE(3) group by compounding the poses. (Brossard et al. 

2022) considers the velocity state and study the propagation of 

uncertainty on the SE2(3) group. (Mangelson et al. 2020) 

abandons the assumption that poses are independent to each 

other and study the error propagation in non-Gaussian 

distribution and pose-dependent cases through pose inversion. 

Even though these methods consider non-Gaussian distribution 

and correlation between poses, they often treat uncertainty of 
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scan-to-scan matching as a constant, which usually undermine 

the real matching errors. 

The main contributions of this paper are as follows:  

(1) a self-adapting scan-to-scan matching uncertainty 

estimation method using MHSS method is proposed, without 

artificially setting the uncertainty as constant. It constructs fault 

hypotheses for each LiDAR measurement, calculating the state 

covariance under each subset, and finally obtains the pose 

uncertainty of the scan matching. It is then integrated into a 

Kalman filter based system. 

(2) when estimating the global positioning uncertainty, we 

use the inversion form of the relative pose between two 

consecutive scans from the scan-to-scan matching, which 

provides a relative pose transformation for propagating global 

positioning uncertainty over the SE(3) group, based on above 

acquired scan-to-scan matching uncertainty estimation. 

The effectiveness of our method is verified by the NCLT 

dataset. Experimental results show that the estimated global 

positioning uncertainty can envelop the SLAM ATE for the 

most of the time and can reflect its real changing tendency. 

 

 
Figure 1. The flowchart of our method. The front end consists of IMU and LiDAR for forward state propagation. The back end 

updates state with IESKF and we calculate scan matching uncertainty with parameters in optimization procedure. 

 

 

2. Methodology 

2.1 Overview 

Our method is inherited from the LiDAR-Inertial FAST-LIO 

framework. The role of IMU in the whole filter-based 

framework is to correct the distorted point cloud and provide 

the initial pose of the framework. It does not participate in the 

process of MHSS uncertainty calculation. 

Shown as Figure 1, in the front end, the residual and normal 

vectors of LiDAR points are calculated by point cloud 

registration. In the back end, we update the state and apply the 

MHSS module to calculate the uncertainty generated by scan-

to-scan matching based on Kalman filter. The calculated scan-

to-scan uncertainty is then used to obtain the global uncertainty 

through the Lie group propagation. 

 

2.2 State Definition and Filtering Process 

Since IMU measurements have a higher frequency than 

LiDAR, we use the pre-integration to estimate the relative pose 

between two LiDAR scans: 
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where W is the world frame. b is the body frame. p  is the 

IMU position,  v  is the velocity and q  is the quaternion 

representing the rotation. i  is the i-th IMU timestamp. 
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Where â  and ̂  are measurement values of the accelerometer 

and gyroscope. 
ab  and b  are the bias. 

Wg  is the gravity 

vector in world frame.  

The IMU pre-integration is implemented until the new 

LiDAR scan needs to perform ICP matching, we use iterated 

error state Kalman filter (IESKF) to optimize state estimation. 

The state vector is defined as:   

 
W W W W

I I I ax R p v b b g
 =    (6) 

I  represents the IMU body coordinate. The 
W

IR , 
W

Ip  and 
W

Iv   

are the transformation vector of the rotation, position, and 

velocity from the IMU coordinate system to the world 

coordinate system. 

The measurement model can be summarized as: 

 ( )0 T W

j L j jn R s q= +  (7) 

where 
T

jn  is the corresponding normal vector of point j , 
W

LR  

is the rotation matrix that projects the point from the LiDAR 

coordinate to the world coordinate. q  is point matching with 

s . 
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The residual vector is calculated as: 

 r z Hx= −  (8) 

z  is the LiDAR measurement while H is the Jacobian matrix 

acquired by Eq.(7). 

The Kalman gain matrix K is: 

 ( )
1

T TK PH HPH N
−

= +  (9) 

P is the state variance matrix. N is the measurement noise 

matrix. The updated state and state variance is: 

 ( ) ( )x x Kr+ = − +  (10) 

 ( ) ( ) ( )P I KH P+ = − −  (11) 

The iteration process stops when the norm of the state update is 

less than a certain threshold. After the state update, we can get 

the optimal estimate of the global rotation and position of the 

LiDAR in the current scan, which enables us to establish the 

Lie group pose elements in later process. 

 

2.3 Scan-to-scan Matching Uncertainty Estimation based 

on MHSS 

In ICP process, the LIDAR measurements inevitably have 

ranging and angle errors, which will cause the optimal 

estimation results to be a theoretical maximum likelihood 

solution, and there is a certain uncertainty between the state 

estimation and the true value. Regarding this issue, we 

introduce the MHSS method to estimate the uncertainty 

introduced by scan-to-scan matching in Eq. (7). 

  According to MHSS method’s step, we establish the 

following fault hypothesis: 

 

0 1 2 3

0 1 2 3

0 1 2 3

j

j

j

FH FH FH FH FH

FH FH FH FH FH

P P P P P

      (12) 

where 
0FH  is the fault free hypothesis. This hypothesis means 

that we will use all LiDAR measurements for state updates. 

0  is state variance of rotation and position and can be 

extracted from state covariance matrix ( )P +  in Eq. (11). 

 ( )6 6 6 6

0
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T
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 = +   

   
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0FHP  is the probability of fault-free hypothesis occurring. 

jFH  is the j-th fault hypothesis which means the j-th 

measurement exists gross error. When calculating the 

corresponding state and state covariance under j-th hypothesis, 

we eliminate the j-th measurement from the whole Jacobian 

matrix and residual vector from Eq. (7).  

After acquiring the variance of the state of the six degrees of 

freedom   and the probability 
FHP , we can calculate the 

uncertainty of each state by (Blanch et al. 2012, Blanch et al. 

2015): 
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where 
dU  represents the uncertainty of the corresponding state. 

PHMI  is the integrity risk which represents the upper limit of 

the probability of all fault hypotheses occurring. 
unmonitoredP  is 

the unmonitored integrity risk, usually part of the overall 

integrity risk. 1, ,6d =  corresponds to every dimension of 

the rotation and position states.  Q represents the normal 

distribution. Thres  is the threshold calculated based on the 

continuous risk faP  and is in the form: 
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j

i d fa ss dThres K=   (15) 

 
1

faultmodes2

fa

fa

P
K Q

N

−  
=  

 
 (16) 

 
2 2

0

j

ss j = −  (17) 

After calculating the uncertainty of each rotation and 

translation, we form a diagonal matrix as the uncertainty 

introduced by the current scan matching: 

 ( )2 2 2 2 2 2

tx ty tz rx ry rzdiag U U U U U U  =    (18) 

Where tx , ty , tz  represents the translation in corresponding 

axis while rx , ry , rz  is the rotation. Note that the order of 

the states defined here is different from that in Eq. (6). This is 

to ensure consistency in propagating uncertainty on Lie group 

in the following chapter. 

 

2.4 Covariance Propagation on SE(3) Group 

In our SLAM framework, the defined states include rotation 

R  and position p . They can be represented by homogeneous 

matrices of the special Euclidean group: 

 ( )

( )

4 4

3

|
3

3 ,

R p
T

ISE

R SO p


  

=   
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 

  

 (19) 

( )3SO  is the special orthogonal group representing rotation. 

In Section 2.2, we obtain the rotation and position estimation 

results of the previous scan and obtain the rotation and position 

estimation of the current scan through Kalman filtering in Eq. 

(10). These two sets of states can be expressed as special 

Euclidean groups 
0T  and 

1T̂  through Eq.(19). The propagation 

of uncertainty requires the change between two pose, so we use 

the inverse method to obtain it: 

 
1

1 1 0
ˆT T T −=  (20) 

According to the analysis in Section 2.3, 
0T  has global 

uncertainty after propagation, and 
1T  has uncertainty 

introduced by scan matching. Their true value and uncertainty 

expectation is: 

    0 0 1 1, , ,T T   (21) 

Consider the common case where the LiDAR starts moving 

from rest, 
0  is the uncertainty of the initial pose, which can 

be set to a matrix of all zeros. 
1  is obtained by Eq.(18). The 

uncertainty of the pose can be expressed as the true transform 

left multiplied by a small perturbation: 

 
( )

( )

0 0 0

1 1 1

exp
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T T

T T









=

=
 (22) 

For 
1T̂  which compounds the two poses 

0T  and 
1T , its 

uncertainty can be written as: 

 ( ) ( ) ( )( )11 1 1 0 1 0

ˆˆ exp exp exp left

TT T TT  


 = =   (23) 

1

left

T  is in the form: 
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( )


 is the skew-symmetric matrix of the vector. The state 

uncertainty covariance matrix 
0  of pose 

0T  can be written as: 
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0, 3
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By propagating the 
0 with pose 

1T , the covariance matrix will 

be: 
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In chapter 2.3, we introduce how to calculate the scan matching 

uncertainty 
1  of the pose 

1T . By compounding the propagated 

uncertainty with 
1 , we can get the global uncertainty of the 

current scan, which is in the same form as the Eq.(18). The 

multiplication of the exponential mapping of 

( ) ( )( )11 0exp exp left

T 


   is a series of polynomials with 

specific coefficients which implies that the global uncertainty 

after propagation in the current scan can be expressed as a 

specific polynomial composed of the global uncertainty of the 

previous scan and the uncertainty introduced by the current 

scan matching. Due to space limitations, interested readers can 

refer to the method of applying the Baker-Campbell-Hausdorff 

(BCH) Formula (Mielnik et al. 1970) in (Barfoot et al. 2014).  

 

3. Experiment results 

This section provides a detailed information of the 

experimental dataset and the evaluation of the effectiveness of 

proposed method. 

 

3.1 Data description 

We selected four routes from the NCLT dataset (Carlevaris-

Bianco et al. 2016). Table 1 show some detailed description 

about these routes. The LiDAR used is Velodyne HDL-32E 

LIDAR. Each route is equipped with camera and IMU sensors. 

The ground truth is coming from RTK positioning results.  

Datas

et 

Desciption 

Scenario Trajectory 

Length/m 

Time 

Duratio

n/s 

Scan 

num 

LiDA

R type 

Seq1 Campus 

Road 

1146.28 1025.3 10253 HDL-

32E 

Seq2 Campus 

Road 

3201.98 2580.5 25805 HDL-

32E 

Seq3 Campus 

Road 

4107.57 3295.0 32950 HDL-

32E 

Seq4 Campus 

Road 

4998.16 4110.5 41105 HDL-

32E 

Table 1 Detailed information about NCLT dataset 

 

Four routes are all collected in the University of Michigan 

North Campus. Except for the Seq1 which was collected in 

cloudy weather, all other routes were collected in sunny 

weather. 

 

3.2 Experiment Setup 

In order to verify the effectiveness of our method, we set up 

fully comparative experiments. It is a common practice in 

current research to put the pose uncertainty obtained from scan-

to-scan matching as a constant. Usually, they use Monte Carlo 

to simulate the movement of a large number of initial particles 

under an assumption of pose uncertainty, and then evolve all 

possible distributions of particles in terms of global position. 

Moreover, to the best of our knowledge, there are few works on 

global positioning uncertainty estimation using real-world 

datasets. In this paper, we compare our proposed method with a 

benchmark method with constant uncertainty assumption of 

scan-to-scan matching and finally compare their real-time 

performances of global positioning uncertainty estimation. 

Evaluation criteria. To evaluate the performance of the global 

positioning uncertainty estimation, we calculate the trajectory 

ATE (Sturm et al. 2012) of our SLAM framework. The closer 

the estimated positioning uncertainty is to the ATE, the better 

the performance. The calculation tool is EVO (Grupp. et al. 

2017). The horizontal and vertical positioning uncertainty are 

calculated separately. The global uncertainty is: 

 

2 2

2

hori tx ty

vert tz

U U

U





= +

=

 (27) 

Where 
2

txU , 2

tyU , 
2

tzU are the corresponding diagonal elements 

of in the global uncertainty covariance matrix (18) after 

propagation in current scan. 

Implementation details: All the experiments are implemented 

by C++ and tested on Ubuntu 20.04 LTS. The CPU is AMD 

Ryzen 7 5800H and 16G RAM.  

Considering the simulation experiment parameters set in 

(Barfoot et al. 2014, Brossard et al. 2017), the benchmark 

method has a constant scan-to scan matching uncertainty 

matrix as:  

 ( )6 6 6 4 4 410 10 10 10 10 10const diag − − − − − −  =  
 (28) 

3.3 Comparative Results 

Figure 2 shows the route estimation results of four sequences. 

The APE shown in the figure is the result displayed by the 

EVO tool, and its meaning is consistent with ATE. Table 2 

shows the ATE and maximum error of the four sequences.  

 

Dataset Not aligned mean ATE/max error (m) 

Seq1 6.36/18.91 

Seq2 12.93/23.25 

Seq3 27.62/55.53 

Seq4 16.53/42.56 

Table 2 Comparison of the accuracy of not aligned trajectories 

 

Figure 3 shows the global positioning uncertainty 

comparison of proposed method and the benchmark method for 

sequences 1-4, and the real trajectory ATE. In the left figure, 

the left 1-sigma circles represent the calculated global 

uncertainty, while the purple ones represent the global 

uncertainty calculated by constant scan matching uncertainty. 

From the figure, we can see that since the constant scan-to-scan 

matching uncertainty in the benchmark method is difficult to 

reflect the actual scan matching uncertainty, the global 

positioning uncertainty after multi scans propagation is very 

small and it is difficult to reflect the real tendency of ATE. Our 

method introduces MHSS to calculate more accurate scan-to-

scan matching uncertainty. Therefore, the final global 

positioning uncertainty can envelop the real ATE, and is fully 

adaptive without the need to manually set prior parameters. At 
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the same time, the change trend of global uncertainty can also 

reflect the change trend of the real ATE. This can enable the 

graceful weighting of LiDAR SLAM with other positioning 

systems in multi-sensor fusion localization. 

 

4. Conclusions 

In this paper, we propose a self-adapting scan-to-scan 

matching uncertainty estimation method using MHSS, which 

enables the global uncertainty to propagate global positioning 

uncertainty over the SE(3) group. The MHSS method can 

establish fault hypothesis and calculate state variance and 

variance difference. Compared with the benchmark method 

with constant scan-to-scan matching uncertainty using the 

NCLT dataset, our method can envelop the real SLAM ATE 

and can reflect the real changing tendency of ATE as well. 

Future research will focus on integrating sensors such as 

IMU or GNSS into the SLAM framework, performing 

uncertainty analysis for each sensor to weight their positioning 

contributions. 

 
Figure 2. The real trajectory ATE of FAST-LIO for the four routes. The colorbar changes from blue to red, indicating that the 

positioning error gradually increases.
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Figure 3. Comparison of ATE and global positioning uncertainty estimation from our method and the benchmark method.  a, b, c, d 

represent the dataset sequence 1-4 respectively.  
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