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Abstract

With the rapid development of mobile mapping technology, 3D point cloud data is widely used in the field of intelligent driving.
In intelligent driving systems, the recognition ability of point cloud objects is crucial for achieving safe driving. However, existing
deep neural networks are prone to making incorrect judgments when subjected to adversarial attacks, which may lead to serious
consequences. Most of the existing point cloud perturbation methods are based on white box attacks and cannot successfully attack
models with unknown parameters, which is still different from real usage scenarios. In this paper, we focus on studying the transfer-
ability of point cloud perturbation, that is, successful attacks on a model can also be transferred to models that have not participated
in generating perturbations, making them make incorrect judgments. We propose a new method for generating adversarial point
clouds, named MBDP, which decomposes the adversarial point cloud into two sub-perturbations using the decomposition perturb-
ation method. The momentum iterative fast sign algorithm is used to optimize both the sub-perturbation and the main-perturbation
simultaneously, generating adversarial samples that are far from the decision boundary and more transferable. Experimental results
show that both on real and synthetic 3D datasets, our proposed MBDP achieve the hightest attack success rate and transferability
score.

1. Introduction

With the rapid development of artificial intelligence techno-
logy and mobile mapping technology, deep neural networks are
widely used in visual tasks such as 2D and 3D object detection
and recognition. Due to the rapid development of mobile meas-
urement technology, 3D point cloud data has gradually become
the mainstream data format in the field of intelligent driving.
The correct recognition and classification of 3D point clouds is
an important guarantee for the application of artificial intelli-
gence systems in related fields.

In the field of intelligent driving, vehicle-mounted LiDAR can
capture surrounding 3D point cloud data with high accuracy and
precision. Deep neural network models can accurately identify
and locate surrounding vehicles, pedestrians, and other traffic
objects by analyzing and processing 3D point cloud data. How-
ever, existing deep neural network models exhibit fragility when
facing perturbation attacks (Zheng et al., 2023). Adversarial
perturbation refers to the addition of carefully designed small
noises to 3D point cloud data, which are difficult to detect visu-
ally by humans but can mislead deep learning models and cause
them to output incorrect results. Perturbation attacks refer to
the use of adversarial perturbation techniques to attack a 3D
point cloud model, with the aim of making the model unable
to correctly identify targets when faced with perturbed point
cloud data. This kind of disturbance attack will seriously af-
fect the intelligent driving system, causing it to make incorrect
judgments (Zheng et al., 2024). Such erroneous judgments and
decisions often lead to serious traffic safety hazards and even
traffic accidents, so it is very important to study 3D point cloud
perturbation attacks in the field of intelligent driving.

Most existing perturbation attacks are based on white box at-
tacks, where attackers can fully access the structure and para-
meters of the model and directly generate adversarial samples
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using gradient information. However, in real-world traffic scen-
arios, most attacks can only query the model and cannot ob-
tain detailed parameters, which cannot meet the requirements
of white box attacks (Guo et al., 2025). Therefore, studying
the transferability of perturbation attacks has more important
practical significance. Transferability refers to the similar mis-
leading ability of the same adversarial sample between different
models, and the transferability of adversarial point clouds gen-
erated by one model can also deceive other models. Figure 1
illustrates the concept of transferability. Studying the transfer-
ability of perturbation attacks is an important guarantee for the
successful deployment of artificial intelligence models in the
field of intelligent driving.

In this paper, we propose a new method, Momentum-based De-
compose Perturbation (MBDP), to enhance the transferability
of point cloud perturbation attacks. We use the decomposition
perturbation method to decompose the adversarial perturbation
into two sub-perturbations, and then use momentum-based op-
timization methods to constrain the direction of the adversarial
perturbation, iterative optimization generates transferable ad-
versarial samples far from the decision boundary.

The main contributions of this work are as follows:

• We propose an attack method, MBDP, that optimizes per-
turbations and their decomposed sub-perturbations to gen-
erate more transferable 3D adversarial samples.

• We embed momentum iterative fast gradient sign algorithm
to optimize perturbations and sub-perturbations, which ef-
fectively improve their information capture in high-dimensional
space.

• The experiments both on real and synthetic datasets achieve
the hightest attack success rate and transferability score.
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Figure 1. A schematic figure of the transferability of 3D point
cloud adversarial perturbations. We deceive the victim network
DGCNN by adding perturbations to the clean van point cloud;
The generated perturbation point cloud can not only make the
target network make incorrect judgments, but also cause other

transfer network classification models that did not participate in
generating perturbations to produce incorrect categories.

2. Related Work

2.1 Progress of Deep Learning in 3D Point Clouds

As a core representation of 3D data, point clouds have been
extensively applied across a wide range of practical scenarios.
With the continuous advancement of deep learning techniques,
3D point cloud processing has progressively emerged as a pivotal
task within the realms of computer vision and robotics. This
section aims to provide an overview of the recent research pro-
gress in the application of deep learning to 3D point cloud pro-
cessing.

Point cloud enhancement, which is predicated on the utilization
of deep learning methods, is primarily concerned with trans-
forming low-quality raw point clouds into dense, clean, and
complete point clouds. This transformation is achieved through
a combination of denoising (Pistilli et al., 2020), completion ,
and upsampling techniques (Lin et al., 2020), thereby signific-
antly enhancing the overall performance of point clouds.

Point cloud classification, as a fundamental task in point cloud
analysis, is focused on assigning labels to individual points within
a point cloud to identify their respective attributes. With the
evolution of deep learning technology, direct processing meth-
ods for point clouds have gradually become the mainstream ap-
proach. Notably, PointNet (Qi et al., 2017a) and its variants,
such as PointNet++ (Qi et al., 2017b), have been widely adop-
ted and have demonstrated remarkable effectiveness in this do-
main. Significant progress has also been made in point cloud se-
mantic segmentation through the application of deep learning.
Researchers have proposed a variety of methods based on con-
volutional neural networks (CNNs) (Chua, 1997), graph neural
networks (GNNs) (Chen et al., 2019), and attention mechan-
isms (Niu et al., 2021). These methods are designed to better
capture both local and global features of point clouds, thereby
improving the accuracy and robustness of semantic segmenta-
tion. Furthermore, some researchers have optimized the recon-
struction of point clouds by integrating deep learning with clus-
tering models. For instance, variational methods (Pinheiro Cinelli
et al., 2021) have been employed to enhance the reconstruction
process, thereby achieving more accurate and efficient point
cloud reconstruction.

2.2 Adversarial Perturbation Attack on 3D Point Cloud

Point cloud data plays a crucial role in various fields such as
object recognition, autonomous driving, and robot navigation.
However, recent studies have highlighted that deep learning-
based point cloud models are vulnerable to adversarial attacks.
These attacks, by introducing meticulously crafted perturba-
tions into the input data, can significantly disrupt the model’s
prediction accuracy, thereby posing a severe threat to the model’s
security and robustness. Consequently, investigating adversarial
perturbations in point clouds is essential for assessing and en-
hancing the robustness of point cloud models.

Existing adversarial attack methods for point clouds can be broadly
categorized into point-based attacks, optimization-based attacks,
and gradient-based attacks. Xiang et al. (Xiang et al., 2019) pi-
oneered an adversarial attack approach for point cloud classific-
ation, proposing four distinct attack strategies: point displace-
ment, point addition, point cluster generation, and adversarial
object insertion. (Wen et al., 2020) introduced GeoA3, a geo-
metric perception-based optimization method that generates ad-
versarial point clouds with desirable set properties, making them
less perceptible to human observers. (Liu et al., 2019) adap-
ted the fast gradient sign method (Goodfellow et al., 2015),
commonly used in 2D image attacks, to 3D point clouds by
constraining the perturbation magnitude across different dimen-
sions, thereby enhancing the effectiveness of the adversarial
samples. Liu et al. (Liu et al., 2025) proposed to exploit the in-
terpretability of 3D deep networks to construct 3D adversarial
attacks on salient regions. Zheng et al. (Zheng et al., 2025) pro-
posed to use simulated smoke and water mist superimposed on
real targets to achieve adversarial attacks on 3D target recogni-
tion.

2.3 The Transferability of Perturbation Attacks

The transferability of point cloud perturbation attacks refers to
the characteristic that adversarial perturbations generated for
one model can effectively attack other models or datasets. Ex-
isting methods to improve the transferability of point cloud per-
turbation attacks are mainly divided into three categories: generator-
based methods, data augmentation and optimization, and trans-
membrane state transferability.

Xiao et al. (Xiao et al., 2018) trained a generator using a GAN
generative adversarial network framework and directly synthes-
ized adversarial perturbations. Their method performed well
in black box attacks. Jandial et al. (Jandial et al., 2019) once
again proposed AdvGAN++, which introduces the intermediate
layer features of the target model as inputs to the generator and
improves its cross dataset transfer performance through hidden
layer features. Dong et al. (Dong et al., 2019) further improved
the transfer ability of adversarial samples across defense mod-
els by optimizing perturbation generation through translational
invariance. Luo et al. (Luo et al., 2024) found that the task vec-
tors of visual language models can transfer across text and im-
age modalities. By using attention mechanisms to address their
multimodal features, the transferability of perturbations can be
improved. Guo et al. (Guo et al., 2025) proposed to analyze
the target features from the perspective of hypothesis space to
achieve transferable adversarial attacks.
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Figure 2. Our method MBDP pipeline diagram, Part 1 (green
area) is the decomposition perturbations, Part 2 (blue area) is the

momentum iteration optimization T times, and Part 3 is the
addition of the final perturbations to generate more transferable

adversarial samples

3. Method

3.1 Preparation

The pipeline of MBDP is shown in Figure 2, which consists of
the perturbation factorization method and the momentum-based
iterative optimization method. First, we use the perturbation
factorization method to decompose the adversarial perturbation
into two sub-perturbations. Then, we employ the momentum-
based iterative optimization method to constrain the direction
of the sub-perturbations. Finally, we iteratively optimize both
the main perturbation and the sub-perturbations simultaneously
to generate adversarial point clouds that are farther away from
the decision boundary and thus more transferable.

We define a 3D point cloud P ∈ R(N∗3), where N is the num-
ber of points in the point cloud, which is set to 1024 in our
experiments. Given the point cloud P with its ground-truth la-
bel y, we denote f as the point cloud classification model and
∆ as the added perturbation. We aim to find the perturbation ∆
such that the model’s classification changes before and after the
perturbation is added, i.e., f(P +∆) = ̸= y. We consider such
a perturbation as a successful one.

We use the perturbation factorization method to decompose the
perturbation into two sub-perturbations:

∆ = Λ⊙∆1 + (1− Λ)⊙∆2, (1)

where⊙ denotes element-wise multiplication, and Λ is an N -th
order arithmetic mask matrix with elements in {0, 1}. Specific-
ally, each element of Λ can be represented as:

Λxy ∼ Bernoulli(p)
for x ∈ {1, 2, . . . , N} and y ∈ {1, 2, 3}. (2)

In order to reduce the computational burden, we randomly se-
lect a Λ′ for sampling during multiple iterations.

3.2 Momentum Iterative

In the process of iterative optimization, we used a momentum
gradient based method. Unlike common single-step gradient
based methods, the momentum iterative gradient method accu-
mulates historical gradient directions, avoiding the randomness
of single-step updates and forming a more stable update direc-
tion.

Algorithm 1 Momentum-based Decomposed Perturbation
Attack

1: INPUT: Clean sample x, target model f , iterations T , step
size α, momentum µ, budget ϵ

2: OUTPUT: Adversarial example xadv

3: Initialize velocity vectors v(0)1 ← 0 and v
(0)
2 ← 0

4: Initialize perturbations ∆(0)
1 ← 0 and ∆

(0)
2 ← 0

5: Initialize adversarial example x
(0)
adv ← x

6: for t = 0 TO T − 1 do
7: Decompose perturbation: δ(t) = ∆

(t)
1 +∆

(t)
2

8: for i = 1, 2 do
9: Compute gradient: g(t)i ← ∇∆iL(f(x

(t)
adv), y)

10: Update velocity: v(t+1)
i ← µ · v(t)i +

g
(t)
i

∥g(t)
i

∥1

11: Update sub-perturbation: ∆
(t+1)
i ← ∆

(t)
i + α ·

sign(v(t+1)
i )

12: end for
13: Aggregate perturbations: δ(t+1) ← ∆

(t+1)
1 +∆

(t+1)
2

14: Project perturbation: δ(t+1) ← clip(δ(t+1),−ϵ, ϵ)
15: Update adversarial example: x(t+1)

adv ← x+ δ(t+1)

16: end for
17: RETURN x

(T )
adv

Firstly, we calculate the gradient g(t)i of the standard model at
the current adversarial sample x

(t)
adv . The direction of the gradi-

ent indicates how to adjust δi to update the value of the objective
function L, thereby generating adversarial samples:

g
(t)
i = ∇∆iL(f(x

(t)
adv), y) (3)

Then we initialize the momentum term. For a given adversarial
perturbation, we use Equation 1 to decompose it into two sub-
perturbations, calculate gradients for each sub-perturbations,
and update the momentum term. The introduction of the mo-
mentum term makes the gradient smooth and updates, while
normalizing the gradient using the L1 norm to ensure that the
direction of the update is not affected by the magnitude of the
gradient:

v
(t+1)
i = µ · v(t)i +

g
(t)
i

∥g(t)i ∥1
(4)

Use the updated momentum term to update the sub perturba-
tions, and control the update amplitude using the step size para-
meter α to ensure that the perturbations are updated along the
optimization direction with a fixed step size, thereby improving
the efficiency of optimization:

∆
(t+1)
i = ∆

(t)
i + α · sign(v(t+1)

i ) (5)

In the end, we aggregate the perturbations and project them, up-
date the adversarial samples with new perturbations, and after
T iterations, generate the final adversarial samples with more
transferability.

The traditional single-step gradient perturbation generation method
is prone to interference from local gradient noise in the para-
meter space, resulting in unstable perturbation directions. We
introduce momentum terms to accumulate historical gradient
directions, weaken the noise influence of single-step gradients,
make the perturbation direction more consistent, focus on key
feature regions, gradually approach the decision boundary of
the model, and generate adversarial samples that are more likely
to deceive the model, achieving better attack success rates.
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Victim
Network

ϵ = 0.18 ϵ = 0.45

PointNet PointNet++
(SSG)

PointNet++
(MSG) DGCNN PointNet PointNet++

(SSG)
PointNet++

(MSG) DGCNN

PointNet 100.0 56.1 98.9 77.2 100 57.2 95.8 78.0
PointNet++
(SSG) 69.2 100.0 80.3 75.5 70.3 100.0 80.0 76.4
PointNet++
(MSG) 86.6 70.2 100.0 78.6 87.3 74.0 100.0 76.0

DGCNN 71.1 62.9 79.4 100.0 72.0 63.3 80.1 100.0

Table 1. Attack success rates (%) of MBDP method with different ϵ values on KITTI

3.3 Loss Function

In calculating disturbance loss, we use prediction probability
for optimization. We use g(P )y to represent the probability of
the y − th class predicted by the deep neural network model,
and use d(P,∆) to calculate the difference between the highest
probability outside the correct class and the true class probabil-
ity:

d(P,∆) = max
y′ ̸=y

(g(P +∆)y′ − g(P +∆)y)
2 (6)

The preliminary geometric constraint term l1 is obtained by ac-
cumulating the distance loss between the sub-perturbations and
the main-perturbation:

l1 = d(P,Λ′) + d(P, 1− Λ′) + d(P ) (7)

We give l1 a constraint parameter β and introduce both Cham-
fer distance and Hausdorff distance. The complete geometric
constraint terms l2 are as follows:

l2 = lcd + lhd + β ∗ l1 (8)

Among the Chamfer distance measures the average distance
between two sets of points and is calculated as follows:

ℓcd(P, P
′) =

1

n

n∑
i=1

min
j=1,...,n

∥Pi−P ′
j∥+

1

n

n∑
j=1

min
i=1,...,n

∥P ′
j−Pi∥

(9)
And the Hausdorff distance calculates the maximum of the min-
imum distance from the adversarial point cloud P ′ to P , and the
maximum of the minimum distance from P to P ′ and the cal-
culation method is as follows:

ℓhd(P, P
′) = max

(
max

i=1,...,n
min

j=1,...,n
∥Pi − P ′

j∥,

max
j=1,...,n

min
i=1,...,n

∥P ′
j − Pi∥

) (10)

We use the cross entropy loss function as a benchmark and in-
corporate geometric constraint terms. The loss function we ul-
timately attempted to optimize is:

min
∆

ℓfinal = −ℓcls(f(P
′), ytrue)+τ ·l2 s.t. ∥∆∥∞ ≤ ϵ, (11)

where τ is the penalty parameter used to adjust the weight of
the entire geometric constraint term. To better understand our
method, we propose Algorithm 1.

4. Experiments

4.1 Experimental Preparation

4.1.1 Dataset We conducted our undifferentiated adversarial
attack experiment using the real-world scenario dataset KITTI
(Wu et al., 2015) and the synthetic dataset ModelNet40. We
conducted point cloud extraction based on 3dbbox on KITTI
Street scenic spot cloud data, selecting six categories including
cars, vans, trucks, pedestrians, bicycles, and trams for classific-
ation experiments. We selected 2000 car point clouds and 800
other categories, totaling 6000 point clouds, as our processed
KITTI dataset, with 4800 as training samples and 1200 as test
samples. ModelNet40 is a widely used dataset for training and
evaluating model performance, consisting of 12311 CAD mod-
els and 40 different object categories, with 9843 samples for
training and 2468 samples for testing.For the KITTI dataset, we
randomly selected 40 point clouds from each category, totaling
240, to generate adversarial samples. For the ModelNet40 data-
set, we randomly selected 25 point clouds from ten categories,
totaling 250, to generate adversarial samples.

4.1.2 Model We used the common PointNet (Qi et al., 2017a)
and its variants, PointNetPP++(SSG) and PointNetPP+
+(MSG) (Qi et al., 2017b), as well as the DGCNN (Wang et
al., 2019), as the attacked and evaluated models. The Point-
Net family of networks is trained strictly according to GeoA3

(Wen et al., 2020), and the parameters of the DGCNN are set as
follows: k=20, emb-dims=1024, dropout=0.5.

4.1.3 Parameter Settings We use PF-Attack (He et al., 2023)
as the baseline for our experiment, with the following specific
parameter settings: τ = 10, β = 0.5, η = 0.01, p = 0.5,
ϵ ∈ {0.18, 0.45}. Momentum optimization part (Dong et al.,
2018): mometum=0.9 and step− szie=0.01;

4.1.4 Evaluation Metrics We use attack success rate(ASR)
and transferability score to evaluate the effectiveness of perturb-
ation attacks. The success rate of attacks refers to the propor-
tion of samples that result in misclassification of the model after
adding adversarial measures in the total number of test samples.
The transferability score is calculated by weighting the success
rate of attacks on a total of four experimental models with per-
turbations. We believe that the higher the success rate and trans-
ferability score of perturbation attacks, the stronger the transfer-
ability of perturbation attacks.

4.2 Experimental Results

4.2.1 Results on KITTI The KITTI dataset we processed
contains 6000 point clouds of traffic objects, including 2000 car
labeled point clouds, 800 cyclist, pedestrian, tram, truck, and
van labeled point clouds each, divided into 4800 point clouds
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Victim
Network

Attack
Method

ϵ = 0.18 ϵ = 0.45

PointNet PointNet++
(MSG)

PointNet++
(SSG) DGCNN PointNet PointNet++

(MSG)
PointNet++

(SSG) DGCNN

PointNet

3D-Adv
KNN
GeoA3

AdvPC
MBDP (Ours)

100
100
100
98.8
100

8.4
9.6

20.0
20.4
30.8

10.4
10.8
19.6
27.6
46.1

6.8
6.0
7.2

22.4
46.2

100
100
100
98.8
100

8.8
9.6

23.6
18.0
32.5

9.6
8.4

20.8
26.8
46.6

8.0
6.4
7.2

20.4
47.3

PointNet++
(MSG)

3D-Adv
KNN
GeoA3

AdvPC
MBDP (Ours)

6.8
6.4
4.4

13.2
27.2

100
100
100
97.2
100

28.4
22.0
14.4
54.8
93.7

11.2
8.8
6.4

39.6
55.7

7.2
6.4
4.4

18.4
27.0

100
100
100
98

100

29.2
23.2
13.6
58.0
92.5

11.2
7.6
6.0

39.2
55.4

PointNet++
(SSG)

3D-Adv
KNN
GeoA3

AdvPC
MBDP(Ours)

7.6
6.4
5.2

12.0
27.5

9.6
9.2

10.4
27.2
83.5

100
100
100
100
100

6.0
6.4
2.2

22.8
56.0

7.2
6.8
4.8

14.0
25.1

10.4
7.6
9.2

30.8
91.3

100
100
100
100
100

7.2
6.0
4.0

27.6
54.1

DGCNN

3D-Adv
KNN
GeoA3

AdvPC
MBDP(Ours)

9.2
7.2
4.4
19.6
35.0

11.2
9.6

27.2
46.0
74.0

31.2
14.0
27.6
64.4
81.1

100
99.6
100
94.8
100

9.6
6.8
4.4

32.8
47.7

12.8
10.0
26.8
48.8
92.0

30.4
11.2
25.6
64.4
92.6

100
99.6
100
97.2
100

Table 2. The presentation of the success rates of various attack methods on the ModelNet40 dataset. The results of 3D-Adv, KNN and
AdvPC are reported in (Hamdi et al., 2020). Number in bold indicates the best.

Figure 3. The visualization effect of point clouds on the KITTI dataset shows that the first row (black) of point clouds is a clean initial
point cloud, and the second row (red) of point clouds is an adversarial point cloud perturbed by our MBDP method.

Figure 4. The visualization effect of point clouds on the ModelNet40 dataset shows that the first row (black) of point clouds is a clean
initial point cloud, and the second row (red) of point clouds is an adversarial point cloud perturbed by our MBDP method.
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ϵ
Transferability Score(%)

3D-Adv KNN GeoA3 MBDP(Ours)
0.18 12.2 9.7 12.4 54.7
0.45 12.6 9.2 12.5 58.3

Table 3. Compare different attack methods in transferability
score on ModelNet40.

for the training set and 1200 point clouds for the testing ma-
chine. We randomly selected 40 point clouds from each cat-
egory, totaling 240 point clouds, for attack experiments. The
experimental results are shown in Table 1. At the same time,
we calculated the transferability score of perturbation attacks,
which is 75.5 when ϵ = 0.18 and 75.9 when ϵ = 0.45.

In order to verify the effectiveness of our attack method from
multiple perspectives, we visualized the initial point clouds and
successfully perturbed adversarial point clouds of some cat-
egories. It can be observed that while the attack success rate
and transferability score are high, the added perturbations still
have good imperceptibility, as shown in Figure 3.

4.2.2 Results on ModelNet40 For the ModelNet40 data-
set, we strictly followed the previous work for parameter set-
tings, normalized and sampled all point clouds to the same 1024
points. We use the entire training dataset to train the victim
model. We also randomly selected ten out of 40 categories from
the ModelNet40 dataset in the test set, and randomly selected
25 samples from each category to form the data used to eval-
uate perturbation attack methods. The experimental results are
shown in Table 2. Based on the success rate of the attack, we
calculated the transferability score of a at different values, as
shown in Table 3.

Similarly, we randomly selected several categories of point cloud
samples from the ModelNet40 dataset for visualization, verify-
ing that our method achieves high attack success rates while
also having good imperceptibility, as shown in Figure 4.

5. Conclusion

In this paper, we propose a method called MBDP for generat-
ing 3D point clouds with transferability to counteract perturba-
tions. We explore the effective information contained in the sub
perturbations generated by random decomposition adversarial
perturbations. By using the momentum iterative fast gradient
sign algorithm to optimize both the main perturbation and sub
perturbations, we can more effectively capture information in
high-dimensional space. Introducing a momentum term can
accumulate historical gradient directions, making the perturb-
ation direction closer to the negative gradient main direction of
the loss function, thereby minimizing the adversarial loss func-
tion more efficiently and generating adversarial samples that
are more transferable away from the decision boundary. The
research on adversarial sample generation technology is bene-
ficial for improving the robustness of neural network models
and enhancing the safety of intelligent driving systems, and the
research on the transferability of adversarial samples has, to
some extent, accelerated the efficient implementation of vari-
ous applications of artificial intelligence systems in the physical
world.
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