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Abstract

Magnetic field matching has emerged as one of the mainstream indoor positioning methods due to its independence
from base stations and its resilience to interference. A critical factor influencing magnetic field matching is the mag-
netic field map, and the challenge lies in generating a high-precision magnetic field map efficiently and cost-effectively.
This paper proposes a method for magnetic field map generation based on particle filtering. This approach requires
data collectors to traverse the same route repeatedly, using Pedestrian Dead Reckoning (PDR) to estimate trajectories
and employing the horizontal and vertical components of the magnetic field to detect when users return to historical
positions, thereby controlling position error accumulation. Furthermore, by leveraging the post-processing charac-
teristics of the magnetic field map, all particles are retrospectively analyzed, significantly enhancing the accuracy of
trajectory estimation. Subsequently, four non-colinear control points are used to calibrate the relative trajectories,
and bilinear interpolation is employed to generate a grid magnetic field map. Experimental results demonstrate that
the proposed method achieves a root mean square (RMS) positioning error of less than 1.3 m, meeting the require-
ments for meter-level magnetic field matching positioning. The generated magnetic field map exhibits errors of 30-40
mGauss in the northward, eastward, and vertical directions.

1. Introduction

With the proliferation of the Internet of Things
(IoT) and smartphones, location-based service (LBS) is
playing an increasingly crucial role in people’s everyday
activities, including indoor security, targeted advertising,
and indoor navigation. For LBS, acquiring precise loca-
tion information is essential. In outdoor environments,
Global Navigation Satellite System (GNSS) can provide
precise positioning service. However, GNSS is ineffective
indoors due to signal obstructions, presenting a signific-
ant challenge in achieving accurate and reliable location
estimation.

In recent years, various indoor positioning solu-
tions have been developed, categorized into relative and
absolute positioning methodologies. Relative position-
ing systems primarily include Simultaneous Localiza-
tion and Mapping (SLAM) techniques and dead reckon-
ing (Guo et al., 2020). SLAM approaches, such as visual
SLAM (Campos et al., 2021) and LiDAR SLAM (Huang,
2021), demonstrate high precision in feature-abundant
environments. However, visual SLAM necessitates op-
timal lighting conditions and distinct visual features,
while LiDAR SLAM requires expensive hardware and
substantial computational resources. Moreover, both
methods exhibit limitations in dynamic environments
and lack global localization capabilities. Similarly, dead
reckoning systems suffer from cumulative errors, primar-
ily serving as supplementary positioning aids. Abso-
lute positioning primarily relies on wireless and environ-
mental signal fingerprinting, encompassing various tech-
nologies such as cellular networks, WiFi (Tinh and Ho-
ang, 2022), Bluetooth Low Energy (BLE) (Jianyong et
al., 2014), and magnetic field strength (Kuang et al.,
2023). Among these, 3G and 4G positioning accuracy

is relatively low, whereas 5G positioning offers enhanced
accuracy through time difference of arrival (TDOA) ana-
lysis, its limited coverage restricts widespread applic-
ation. WiFi-based positioning leverages existing in-
frastructure but faces accuracy challenges from envir-
onmental interference. BLE systems require extensive
beacon deployment and are similarly affected by indoor
obstacles. In contrast, magnetic field matching posi-
tioning utilizes stable indoor magnetic field signatures
created by ferromagnetic material interactions with geo-
magnetic fields (Kuang et al., 2018). This approach re-
quires no additional infrastructure and maintains long-
term stability, making it currently the most cost-effective
and practical indoor positioning solution.

The magnetic field map is fundamental in the mag-
netic field matching, and its accuracy directly determ-
ines the precision of magnetic field matching. There-
fore, the generation of the magnetic field map is cru-
cial. Currently, manual collection is the most preval-
ent method for collecting magnetic field maps. The ap-
proach involves using specific surveying techniques to ob-
tain high-precision position coordinates, which is then
associated with collected magnetic field information to
form a “magnetic field-position” correspondence (Kuang
et al., 2021). The accuracy of this approach mainly de-
pends on the precision of position coordinate measure-
ments. Current magnetic field map generation meth-
ods may require deploying numerous control points, and
as the area and complexity of the scene increase, tradi-
tional manual collection methods become inconvenient
and labour-intensive in many scenarios.

In response, we address the challenges of manual
magnetic field map collection by designing a particle
filtering-based magnetic field map generation method us-
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ing smartphones in this paper. This method employs a
particle filtering framework, leveraging position estim-
ates from PDR as prior information. It implements
closed-loop detection based on magnetic field fingerprint
features to effectively suppress PDR position drift. Fi-
nally, it utilizes particle backtracking to eliminate invalid
particles, achieving a more accurate trajectory. On this
basis, the integration of a small number of control points
and bilinear interpolation enables the generation of the
magnetic field map.

The remainder of this paper is structured as follows:
Section 2 reviews the relevant previous works. Section 3
provides an overview of the proposed methods. Section
4 detail magnetic field map generation method based on
particle filtering. Section 5 discusses the experiments
and results. Finally, the conclusion and future work are
presented in Section 6.

2. Relate work
The presence of reinforced concrete in building ma-

terials causes distortions in the geomagnetic field within
indoor environments, resulting in the emergence of a
distinctive environmental magnetic field. Additionally,
given that the structural composition of reinforced con-
crete within buildings remains unchanged over prolonged
periods, the characteristics of the environmental mag-
netic field remain stable over time (Ashraf et al., 2020).
The precision of the magnetic field map significantly in-
fluences the precision of the magnetic field matching.
The objective of constructing a magnetic field map is to
establish the correspondence between location and the
three-dimensional vectors of the magnetic field within
an area. Typically, the consumer-grade magnetometers
embedded in smartphones are sufficient in terms of ac-
curacy and sampling rate to meet the requirements for
magnetic field map generation.

Presently, the methods for collecting magnetic field
maps are predominantly manual, including point col-
lection (Galván-Tejada et al., 2014) (Liu et al., 2021),
line collection (Ouyang and Abed-Meraim, 2022), crowd-
sourcing, and simultaneous localization and mapping
(SLAM). In point collection, indoor areas are segmented
into several smaller regions where data collection is per-
formed. This method incurs high costs, and the difficulty
of collection escalates with the expansion of the collection
area, making it suitable only for small-scale, uncomplic-
ated indoor environments. Line collection involves set-
ting known control points and the lines connecting these
points, with data collectors traversing these lines. The
collectors’ location is determined through PDR and con-
trol points. Although this method is more efficient than
point collection, the precision of control points signific-
antly impacts the accuracy of data collection, making the
selection of control points crucial. However, not all envir-
onments are conductive for establishing control points,
and the number of control points often increases with
the collection area, similar to point collection, limiting
its applicability to compact indoor environments.

Crowdsourcing does not depend on control points
and manual calibration, making it suitable for large
areas. However, its accuracy is lower than that of point
and line collection. Currently, numerous studies have
been conducted on constructing magnetic field maps
through crowdsourcing. For instance, Luo processed

crowdsourced data by clustering magnetic field traject-
ories using geomagnetic signal observation models (Luo
et al., 2017). Chen constructed magnetic field maps by
merging multi-user paths and using the Dynamic Time
Warping (DTW) for location correction (Chen et al.,
2020). Nonetheless, crowdsourcing requires substantial
user data for clustering and stitching, and it is primarily
applicable to public areas. In specialized domains, the
limited data due to low foot traffic may not satisfy the
requirements for crowdsourcing.

SLAM leverages the similarity of magnetic field to
construct loop constraints, facilitating globally consistent
trajectory estimation. This approach does not require
pre-planning or the measurement of numerous control
points, thus reducing the demand for coordinate meas-
urement. Currently, SLAM-based magnetic field map
generation methods primarily include graph optimization
and particle filtering. Gao proposed a magnetic field map
generation method based on graph optimization, where
the front end detects loop closures using magnetic field
observations, and the back end solves the pose graph
optimization problem, refining the trajectory for global
consistency(Gao and Harle, 2017). Osman(Osman et
al., 2022), Gao(Gao and Harle, 2018), and Kok(Kok and
Solin, 2018) proposed particle filter-based magnetic field
map generation methods that utilizes the similarity of
magnetic field features for loop closure detection, integ-
rating magnetic field loop closures and linear constraints
into the filtering process to adjust particle weights. To
enhance particle filter performance, some studies employ
backtracking algorithms to improve filtering efficiency
by combining map information to eliminate ineffective
particles and retain effective particles for increased pre-
cision. Cock use PDR and building floor plans as prior
information(De Cock et al., 2021). When particles enter
dead-ends, they are considered invalid and replaced with
valid particles to recalculate and generate trajectories.
Zhang imposes constraints on the historical positions and
feasible regions of particles and applies backtracking to
newly generated particles, ensuring their validity(Zhang
et al., 2023). The aforementioned backtracking schemes
rely on the assistance of building maps. However, build-
ing maps are often not readily accessible.

3. System Overview

The generation of a magnetic field map involves ac-
quiring the distribution of environmental magnetic field
within indoor areas, necessitating the establishment of a
correspondence between magnetic field strength and loc-
ation. Given that environmental characteristics remain
consistent at the same location, sensor-extracted envir-
onmental features can identify previously visited loca-
tions, where successful identification is termed a success-
ful loop closure. Loop constraints can thus be employed
to mitigate error drift. Evidently, during the generation
of magnetic field map, magnetic field strength serves as
readily available environmental characteristics without
the need for additional attributes. Consequently, the
core idea of this study is to utilize a particle filter frame-
work, employing pedestrian walking trajectories as prior
information and magnetic field fingerprint features for
loop detection as observations, which aims to suppress
position drift, facilitating trajectory convergence. Ulti-
mately, particle backtracking is applied to eliminate inef-
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fective particles, resulting in a trajectory with improved
convergence.

The system algorithm framework for the proposed
magnetic field map generation method is depicted in Fig-
ure 1. The system comprises three primary modules: the
Particle Filtering module, the Position and Attitude Es-
timation module, and the Map Gridding module. The
Particle Filtering module is primarily responsible for es-
timating pedestrian positions. Pedestrian position estim-
ation can be represented by a set of particles derived from
Bayesian posterior probabilities, which adjust the overall
estimation as observational data, specifically loop closure
detection in this paper. The process of position estima-
tion based on particle filtering involves: Firstly, initial-
izing the grid and particles, then predicting the pedes-
trian’s motion state using a motion model, and progress-
ively expanding the grid map based on this prediction.
Maintaining state prediction and grid map expansion un-
til observations are received. Upon detecting a loop clos-
ure, particle weights are updated, and when the number
of loop closure particles is sufficient, particle backtrack-
ing and trajectory reconstruction are performed. Sub-
sequently, particle resampling occurs when particle de-
pletion conditions are met. Finally, the map is updated,
with particles updating based on observational data and
recording each feature in the map.

Figure 1. Magnetic Field Map Generation System
Framework

The Particle Filtering module provides position cor-
rection information for the Position and Attitude Estim-
ation module. Due to the low precision of MEMS-IMUs
built in smartphones, the accuracy of inertial navigation
states is low. Position correction yields relatively reliable
position and attitude information. After obtaining the
smartphone’s attitude, the magnetic field strength can
be transformed to the navigation frame (n-frame), and
associated with the smartphone’s position, establishing
the correspondence between magnetic field and location.
Ultimately, the area covered by the position is gridded,
resulting in a magnetic field grid map.

4. Magnetic Field Grid Map Generation Based on
Particle Filtering

In this section, we primarily introduce the al-
gorithmic components of grid map generation based on
particle filtering. The main components include particle
prediction and grid map construction, particle loop clos-
ure and updating, particle backtracking and trajectory
reconstruction, and particle resampling for how particle
filtering is employed for pedestrian position estimation.

Additionally, trajectory alignment and grid magnetic
field map generation are discussed concerning how the
pedestrian positions estimated by particle filtering are
used to generate a magnetic field grid map.

4.1 Particle Prediction and Particle Grid Map Con-
struction

The position estimation of pedestrians can be repres-
ented by a set of Bayesian posterior probability particles,
whose weights are adjusted with the update of observa-
tions, thereby refining the overall estimation. Similar to
the Kalman filter, the particle filter also comprises pre-
diction and observation phases. During the particle pre-
diction phase, the pedestrian’s motion model is employed
to forecast the trajectory of the particles, generating a
predicted state for each particle, which can be written as

p (xt|xt−1, ut) , (1)

where xt and xt−1 represent the pedestrian’s position at
the t-th epoch and the (t − 1)th epoch, respectively; ut
denotes the control variable. In this paper, the forward
relative displacement and heading increment of the ped-
estrian, as provide by PDR, are utilized to predict the
pedestrian’s position, which can be expressed as

xk =

[
rk−1 +∆rk + εrk

∆ψk ⊙ ψk−1 ⊙ expψ

(
εψk

) ]
[
εrk
εψk

]
∼ N

(
0, σ2

) (2)

where ∆rk denotes the increment in relative displace-
ment; Deltaψk is the heading increment; εrk and εψk rep-
resent Gaussian perturbations with a mean of zero added
to each particle. During prediction, the particles exhibit
a divergent state.

As pedestrians move in indoor environments, the
magnetic field strength within each grid is recorded as
they traverse, gradually filling the grid map as their tra-
jectory extends. Due to the inherent inaccuracies in the
heading determined by PDR, this paper utilizes the ho-
rizontal and vertical components as feature quantities,
instead of the triaxial magnetic field strength. The hori-
zontal and vertical components can be calculated as

M b =
[
mx my mz

]
, M =

[
mh mv

]
∥m∥ =

√
m2
x +m2

y +m2
z

mv = − sin θ ·mx + sinϕ cos θmy + cosϕ cos θmz

mh =
√

∥m∥ −m2
v

(3)

where M b represents the triaxial raw observations from
the magnetometer; mh and mv denote the horizontal and
vertical components of the magnetic field, respectively;
∥m∥ is the magnitude of the magnetic field; The pitch
angle θ and roll angle ϕ can be derived from accelero-
meter levelling. Meanwhile, due to the introduction of
random perturbations to each particle, the trajectory of
each particle and the magnetic field map are distinct.
When a particle’s trajectory extends beyond the N ×N
grid-covered region, it is necessary to appropriately ex-
pand the grid.
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4.2 Particle Loop Closure and Updating

Given that the accumulation of errors in PDR, we
employ path looping to construct observational condi-
tions to minimize errors without additional devices. Con-
sequently, the data collectors are required to walk along
a fixed trajectory multiple times to create loop condi-
tions. Theoretically, as long as the number of particles
is sufficiently large, at least one particle will return to
its original position, ensuring the occurrence of particle
looping.

To further ensure the reliability and accuracy of loop
detection, several criterial must be established. The pro-
cedure involves checking whether the grid currently ac-
cessed by the particle has been visited previously, with
an interval time greater than a certain threshold. Sub-
sequently, a similarity comparison of the magnetic field
sequences is performed. This involves comparing the se-
quence stored at the t-th epoch to the (t −m)-th epoch
with that at the k-th epoch to the (k−m)-th epoch, using
Pearson correlation coefficient and Euclidean distance as
metrics, which can be written as Rxy =

∑m
i=1 (Xi−X̄)(Y i−Ȳ )√∑m

i=1 (Xi−X̄)2
√∑m

i=1 (Y i−Ȳ )2

Dis =
∑m
i=1 (Xi − Y i)

2
(4)

where Rxy and Dis represent Pearson’s coefficient and
Euclidean distance, respectively. X and Y denote the
two sequences to be compared; Xi is the i-th value in
the sequence X . A higher Rxy signifies greater sequence
correlation, while a smaller Dis indicates higher correl-
ation. m denotes the length of the magnetic field se-
quence, which is typically set to approximately 10-20,
corresponding to a length of approximately 10 m, due
to the low-frequency nature of the magnetic field. If the
similarity conditions for the magnetic field sequences are
met, the grid is determined to be a revisited grid. When
Nthes out N of consecutive grids are identified as revis-
ited grids, a loop is successfully detected. Figure 2 il-
lustrates the process of particle revisits. Different colors
represent the walking paths of pedestrians indicated by
various particles, with the red path indicating a particle
revisit.

Figure 2. the Process of Particle Revisits

Upon the successful loop detection, it is necessary to
update the weight of the particle, which can be expressed
as

wit = wit−1
Nc
Np

exp (RMSE (Vc)) , Nc ≥ Nthes (5)

where wit and wit−1 are the weights of particle at the t-th

epoch and the (t− 1)-th epoch, respectively; Np and Nc
represent the number of grid windows considered for re-
visits and the number of grids satisfying the revisit condi-
tion, respectively; Vc denotes the set of similarity values
for all grids meeting the revisit condition; RMSE (·) is
the root mean square error (RMSE) of the set. Addition-
ally, the weight must be normalized, and upon comple-
tion of normalized, a weighted average of the particles is
performed to output the estimated value for the current
epoch.

4.3 Particle Backtracking and Trajectory Reconstruc-
tion

In indoor environments, pedestrian trajectories are
frequently restricted by various factors, primarily due
to impassable paths formed by the arrangement of in-
door furniture and walls. Consequently, when employing
particle filtering for pedestrian position estimation, it is
possible to filter and exclude particles based on actual
conditions to enhance computational precision. For in-
stance, if a particle is detected to cross furniture or walls,
which is inconsistent with logical scenarios, it should be
considered invalid and removed. The pedestrian traject-
ory estimation is then recalculated based on the remain-
ing valid particles.

The data collection scheme in this paper necessit-
ates that collectors walk along a prescribed route mul-
tiple times to meet loop construction conditions. Hence,
particles that do not form loops should be deemed in-
valid and excluded. When loop closure is successfully
identified, particles can be corrected. However, there
are periods lacking observational information in prac-
tical scenarios, such as walking in previously unexplored
areas. During these times, particles may diverge, and
even when observational information becomes available
again, only the current particles can be corrected, while
historical particles remain fixed, deteriorating the global
consistency of the trajectory. As shown in Figure 3, when
walking along the path 1-2-3-4-1-2-3-4-5-6-7-8, there are
shared edges in the small loop regions that satisfy the
objective loop conditions. Ideally, as shown in subfigure
(a), small loops in local regions should maintain consist-
ency. However, due to the lack of observational informa-
tion while walking along 5-6-7-8_1, the particle traject-
ory estimates diverge. Although loop observational in-
formation corrects the current particles upon reaching
path 8, the historical particles remain fixed and cannot
be adjusted.

Figure 3. Schematic of Particle Loop Closure

Therefore, it is essential to regenerate trajectories
by discarding invalid particles and retaining valid ones,
a process known as particle backtracking. The spe-
cific procedure is as follows: First, upon updating all
particles at a given epoch, the system quantifies the num-
ber of particles that have generated loop observations
and records the temporal information. When the pro-
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portion of observed particles reaches N% of the total
particle population, the temporal verification phase is
initiated. The current timestamp is evaluated against
the previous backtracking time. if the differential ex-
ceeds a predetermined threshold, the backtracking pro-
cess commences. Particle weights are arranged in des-
cending order, with the upper m% preserved and the
lower m% eliminated. The correlation between m and
N is m = 2N . This approach ensures the retention of
particles generating loop observations while maintain-
ing a subset of non-generating particles, thereby minim-
izing trajectory discontinuities and preserving continu-
ity. Subsequently, new trajectories are reconstructed
from the retained particles, replacing the original paths
from the current timestamp to the previous backtrack-
ing point. In this paper, m is configured at 30 and n at
15. After backtracking, Gaussian perturbations are ap-
plied to the remaining particles to maintain population
diversity before proceeding to the subsequent epoch’s
particle prediction and update phase. Figure 4 demon-
strates the trajectory comparison before and after back-
tracking implementation. It can be observed that after
backtracking, the red dashed line regenerates the path
segment 5-6-7, maintaining overall consistency compared
to the blue path.

Figure 4. Comparison of Trajectories before and after
backtracking

4.4 Particle Resampling
After several iterations of loop observations, a small

number of particles typically acquire larger weights,
while the majority are assigned smaller weights, lead-
ing to the particle impoverishment. Particles with smal-
ler weights contribute minimally to the system’s estim-
ation. To address this problem, it is necessary to in-
crease the number of particles with larger weights and
decrease those with smaller weights, which requires res-
ampling the particles. The number of samples for each
particle is determined by its corresponding weight, mean-
ing particles with larger weights are sampled more fre-
quently, while those with smaller weights are sampled
less. Additionally, it is essential to assess the deviation
of particle weights to determine whether resampling is
required, and the criterion for this assessment can be ex-
pressed as

Neff =
1∑N

i=1 (w
i)2

(6)

where Neff is the threshold for resampling, and a smaller
Neff indicates more severe degradation. Subsequently,
the cumulative probability Ci is calculated to transform
the originally weighted samples

{
xit, w

i
t

}N
i=1

into equally

weighted samples
{
x̃it, 1/N

}n
i=1

.
4.5 Trajectory Alignment

The loop trajectory obtained after particle back-
tracking is relatively consistent in shape with the true
trajectory, exhibiting translation, rotation, and scale as
the three error components. To correct this, four known
position coordinates need to be marked on the map. As
illustrated in Figure 5, the black line represents the true
trajectory, while the grey line depicts the loop closure
trajectory. The loop trajectory is aligned with the true
trajectory by four known points.

Figure 5. Loop Closure Trajectory Alignment to True
Trajectory

Given a set of coordinates A =
[
a1 a2 a3 a4

]
from the true trajectory that are not collinear and are
widely dispersed, and a corresponding set of coordinates
B =

[
b1 b2 b3 b4

]
from the loop closure trajectory,

the requirement is that A = RB + t, where R encom-
passes the rotation and scale factors, and t is the trans-
lation vector. Therefore, the trajectory alignment can be
transformed into solving for R and t.

First, calculate the centroid coordinates of A and
B, denoted as CA and CB, respectively. Subtract each
centroid from all points in A and B to eliminate the
effect of translation, which can be written as{

A′ = A−CA

B′ = B −CB
(7)

where A′ and B′ only maintain the relationship A′ =
RB′ after removing the translation effect. Since the
points in B are not collinear, the least squares method
can be used to determine R, which can be written as

R = A′B′T
(
B′B′T

)−1

(8)

Meanwhile, since A = RB + t also holds for the
centroid coordinates CA and CB, the calculation of the
translation vector t can be expressed as

t = CA −RCB (9)

4.6 Grid Magnetic Field Map Generation
Given that the inability of surveyors to ensure uni-

formly high-density magnetic field feature collection, it
is necessary to encrypt the magnetic field feature to gen-
erate a uniformly distributed magnetic field map. Since
the distribution of the environmental magnetic field is
relatively smooth, it can be assumed that the intens-
ity changes linearly with distance, and interference from
ferromagnetic materials on the environmental magnetic
field is confined to small areas. Therefore, a uniform
magnetic field grid map can be generated through grid-
ding and linear interpolation (Kuang et al., 2021).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W2-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W2-2025-9-2025 | © Author(s) 2025. CC BY 4.0 License.

 
13



5. Experiments and Results
5.1 Experimental Setting

To validate the accuracy of map generation of the
proposed particle filtering-based magnetic field map gen-
eration method, two tests were conducted in Xinghu
Building at Wuhan University. The test areas are the
17th floor public area and the underground parking lot
(B1) of the building, representing typical indoor pedes-
trian positioning scenarios. The experimental areas are
indicated by the red diagonal lines shown in Figure 6.
Due to the small size of the public area on the 17th
floor of the Xinghu Building, loops are easily formed,
and data collection was conducted by walking directly
along the outer perimeter. The underground parking
area is larger. Thus, during data collection, the area
was first divided into several smaller sub-regions with
shared common edges. Multiple laps were walked along
the outer perimeter of the entire area to ensure sufficient
loop closure of the trajectory, and then data for each
sub-region were collected. The magnetic field map of the
entire area was constructed using the common edges and
the backtracking algorithm.

Figure 6. CAD Drawing of the Test Area. (a) 17th Floor
of the Xinghu Building (b) Underground Parking Lot of

the Xinghu Building

The accuracy of the magnetic field generation is eval-
uated in two aspects: first, by assessing the accuracy of
the trajectories used to generate the map, and second,
by comparing the generated magnetic field map with the
one constructed by Foot-INS.
5.2 Loop Closure Trajectory Comparison

Figure 7 illustrates the PDR trajectories, the tra-
jectories incorporating loop closure constraints, and the
trajectories resulting from the integration of loop closure
constraints with historical state backtracking within the
test areas. It can be observed that the PDR trajectories
(depicted as black paths in the figure) exhibit a grow-
ing positional error as the walking distance increases, at-
tributable to continuous heading divergence. The loop
closure constraints effectively suppress the positional er-
ror caused by heading divergence to some extent. On
this basis, the historical state backtracking method lever-
ages the advantages of data post-processing to further
improve the precision of trajectory estimation.

Figure 8 presents the trajectories before and after
alignment using four control points, in addition to the
depiction of the control points themselves. The se-
lected control points are relatively dispersed and non-
colinear. It is evident that the aligned trajectories closely
match the reference trajectories. Additionally, the error
between the aligned and reference trajectories was calcu-
lated for both scenarios, with the RMS positional errors
being 1.13 m and 1.21 m for the 17th floor and B1 floor,
respectively. The errors corresponding to the 68% are
0.99 m and 1.32 m, while the errors corresponding to the
95% are 2.10 m and 2.20 m. The magnetic field maps
derived from these trajectories meet the requirements for
meter-level magnetic field matching positioning.

Figure 7. Comparison between Loop Closure and
Backtracking. (a) 17th Floor of the Xinghu Building (b)

Underground Parking Lot

Figure 8. Comparison of Trajectory Alignment Before
and After. (a) 17th Floor of the Xinghu Building (b)

Underground Parking Lot of the Xinghu Building

5.3 Magnetic Field Map Results
This study employs pedestrian location and attitude

estimation using PDR, constrained by loop closure and
historical state backtracking methods, to correlate with
magnetic field strength for generating a magnetic field
map as the evaluation sample. The reference map is gen-
erated by associating pedestrian location and attitude es-
timated by P-POS with magnetic field strength. Figure
9 and 10 display the comparative results for three dir-
ectional components of the magnetic field maps in two
test areas. The figures demonstrate that the proposed
method closely aligns with the P-Pos generated magnetic
field maps in the north, east, and vertical components of
the magnetic field.

17th Floor (mGauss) Parking Lot (mGauss)
RMS 68% 95% RMS 68% 95%

North 33.2 19.9 75.2 31.2 22.0 63.7
East 28.4 21.4 53.1 33.9 33.1 59.8
Vertical 22.8 19.0 48.1 45.3 44.8 79.9
Table 1. Error Statistics of the Magnetic Field Map.

A quantitative analysis was performed by subtract-
ing the reference values from the maps generated by the
proposed method. The results, as illustrated in Fig-
ure 11 and 12, reveal that in most areas, the magnetic
field differences are within 50 mGauss, with some re-
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Figure 9. Magnetic Field Map of the 17th of Xinghu Building (North, East, and Vertical Components, mGauss). (a)
Reference, (b) Generated by the Proposed Method in this Paper

Figure 10. Magnetic Filed Map of the Underground Parking Lot (North, East, and Vertical Components, mGauss). (a)
Reference, (b) Generated by the Proposed Method in this Paper

gions near the map edges reaching 200 mGauss. These
areas are walls and columns, containing ferromagnetic
materials like rebar, acting as sources of magnetic in-
terference where the magnetic field decays rapidly, ne-
cessitating high positional accuracy. Since these areas
are relatively small and not typical pedestrian pathways
(pedestrians generally avoid walking close to walls and
columns), the impact on pedestrian positioning is min-
imal. Table 1 summarizes the errors in the magnetic
field maps generated by the proposed method. The stat-
istical results indicate that the magnetic filed map errors
for the two test areas range between 30 and 40 mGauss
(RMS), approximately one-tenth of the indoor magnetic
field fluctuations, suggesting that from a signal-to-noise
ratio perspective, there will not be a significant decline
in positioning performance due to magnetic field feature
matching. Figure 11. Difference between the Magnetic Field Map of

the 17th Floor of Xinghu Building and Reference (North,
East, and Vertical Components, mGauss)
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Figure 12. Difference between the Magnetic Field Map of
the Underground Parking Lot and Reference (North,

East, and Vertical Components, mGauss)

6. Conclusion and Future Work

This paper proposed a particle filtering-based mag-
netic field map generation method, addressing the com-
plexity and cost limitations of existing techniques. By
necessitating repeated traversals of collection routes, the
method leverages PDR for initial trajectory estimation
and employs the horizontal and vertical components
of the magnetic field to automatically identify revisits
to previously traversed paths, thereby mitigating pos-
itional error accumulation. A notable contribution is
the backtracking of historical particle states during post-
processing, improving trajectory heading convergence
and estimation precision. The relative trajectory is cal-
ibrated utilizing non-collinear control points and bilinear
interpolation to generate a gridded magnetic field map.
Experiments demonstrate the proposed method’s capab-
ility to estimate trajectories with RMS errors below 1.3
m, fulfilling the requirements for meter-level magnetic
field matching. The generated magnetic field map ex-
hibits errors within the 30-40 mGauss in the north, east,
and vertical directions.

The method’s effectiveness and cost-effectiveness
enable widespread applications, particularly for indoor
smartphone navigation in GNSS-denied environments
like shopping malls and underground facilities. Never-
theless, several limitations warrant further investigation.
Firstly, to accommodate various pedestrian smartphone-
holding modes, future work will encompass data col-
lection across various modes, including swinging and
calling, extending beyond the current flat smartphone-
holding mode. Additionally, the particle filtering al-

gorithm requires enhancement; integrating structural in-
formation, such as architectural floor plans or designated
non-traversable regions, could facilitate intelligent prun-
ing or elimination of invalid particles, thereby augment-
ing the precision and reliability of trajectory generation.
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