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Abstract

Cross-source point cloud registration technology offers the potential to harness the complementary advantages of multiple
data sources by registering and integrating point clouds from diverse origins. This paper proposes a cross-source point cloud
coarse registration method based on structured features in urban scenes. Firstly, we extract adjacent plane intersection lines and
vertical plane boundary lines from the vertical planes of the building point cloud. Subsequently, we construct triangles based on the
intersection of vertical feature lines with the ground, and use geometric constraints and semantic information for triangle matching.
Finally, quick validation and fine validation are sequentially employed to determine the optimal coarse registration transformation
matrix. Our experimental results demonstrate that, in comparison to point feature-based and similar point cloud coarse registration
methods, the proposed method exhibits superior average accuracy, efficiency, and robustness.

1. INTRODUCTION

The digitization of the urban landscape serves a critical
role in spatial planning, heritage conservation, and smart city
initiatives. Among the technologies enabling this digital trans-
formation are Light Detection and Ranging (LiDAR) and pho-
togrammetry, each contributing unique strengths to the field
of 3D reconstruction. LiDAR point clouds provide dense and
accurate data which is particularly robust to changes in light-
ing conditions, ensuring consistent performance regardless of
the time of day or weather conditions. However, LiDAR sys-
tems typically lack the rich texture and color information that
is crucial for visual analytics, and they can fall short in repres-
enting fine surface details compared to photogrammetric meth-
ods(Zhang and Lin, 2017).

Conversely, photogrammetry, which relies on passive ac-
quisition of images, excels in capturing surface textures and
color information necessary for creating photo-realistic 3D
models. The high-resolution imagery utilized in photogram-
metry can provide detailed information about material prop-
erties and aesthetics of the urban features. Despite these
strengths, photogrammetric point clouds usually have deficien-
cies in terms of absolute accuracy, particularly in dense urban
areas with high-rise structures and varying terrain, leading to
challenges in scale and perspective.

The registration and fusion of LiDAR and photogrammet-
ric point clouds address these individual limitations by combin-
ing the reliable geometric framework from the former with the
detailed textural and color information of the latter, thus en-
abling a more comprehensive and enriched representation of
urban scenes(Li et al., 2024). However, the process is non-
trivial due to differences in data characteristics, formats, dens-
ity, and acquisition geometry. The risks of misalignment and
data redundancy are significant, and require sophisticated pro-
cessing techniques.

This paper aims to explore the technical challenges in-
volved in the registration and fusion of urban LiDAR and photo-
grammetric point clouds and proposes an effective methodolo-
gical framework to combine the strengths of both technologies.
Through our research, we aspire to enhance the quality of urban
3D models, offering richer and more precise spatial data to sup-
port decision-making in areas such as urban planning and smart
city construction.

2. RELATED WORK

3D point cloud registration refers to the process of con-
verting 3D point cloud data from different coordinate systems
to the same coordinate system. The overall process can be di-
vided into two steps: coarse point cloud registration and fine
point cloud registration. Point cloud coarse registration is of-
ten performed without any prior knowledge, so coarse registra-
tion requires solving a larger range of coordinate transformation
problems. Based on the types of feature elements used and the
characteristics of point cloud registration methods, this article
divides point cloud coarse registration methods into three cat-
egories: point based registration, geometric based registration,
and learning based registration methods.

The point cloud fine registration is performed after the
point cloud coarse registration, with the aim of optimizing the
results of the point cloud coarse registration and obtaining more
accurate registration results. In order to achieve high-precision
registration, point cloud fine registration algorithms generally
use iterative methods to continuously optimize the registration
results. Many professionals at home and abroad are constantly
optimizing algorithms, from Iterative Closest Point (ICP)(Besl
and McKay, 1992) and 3D Normal Distribution Transform (3D-
NDT)(Magnusson et al., 2007) to Granger and Pennec(Granger
and Pennec, 2002) proposing an Expectation Maximization It-
erative Closest Point (EM-ICP) algorithm that combines multi-
scale and annealing schemes based on probability statistical
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models, or Fitzgibbon(Fitzgibbon, 2003) improving the con-
vergence speed and accuracy of ICP algorithm by introducing
Levenberg Marquardt algorithm, these new algorithms are im-
proving and promoting the development of point cloud registra-
tion.

Heterogeneous point cloud refers to the point cloud data
obtained by different sensor systems, which has obvious dif-
ferences in scale, resolution, color characteristics, overlap rate
and noise level. Researchers have developed many methods for
registering heterogeneous point clouds based on points, graph
theory, and structural features. Although point based registra-
tion methods are difficult to search for point correspondences in
heterogeneous point clouds, they have strong universality and
can be applied to different types of point cloud scenes. There-
fore, researchers have adapted and improved traditional point
based registration methods for heterogeneous point cloud re-
gistration. Graph theory methods can effectively characterize
complex structural relationships in point cloud data and have
good robustness to noise and outliers. Therefore, graph the-
ory based methods are an effective way to solve the problem of
heterogeneous point cloud registration. However, the existing
methods for registering heterogeneous point clouds are still not
perfect and mature enough, and it is necessary to conduct more
research on the registration of heterogeneous point clouds.

These technical methods should be referenced from FPF-
HSAC (Rusu et al., 2009), K4PCS (Theiler et al., 2014), FGR
(Zhou et al., 2016), and PLADE (Chen et al., 2019).

3. PROPOSED METHOD

3.1 Overview of the methodology

The implementation of the proposed coarse registration
method comprises 4 fundamental steps: 1) extraction of ver-
tical feature lines, 2) matching of structured features, and 3)
transformation estimation and 4) parameter verification. De-
tailed instructions for each step will be expounded upon in the
subsequent sections.

As point clouds in urban scenes often contain an excess-
ive amount of raw data, , voxel grid down-sampling is used,
dividing the point cloud into uniform voxel units and replacing
points with centroids to significantly reduce the data volume.
Additionally, statistical filtering method is applied to eliminate
noise from cross-source point cloud data, minimizing the im-
pact of noise on feature extraction and registration processes.
Subsequently, weighted principal component analysis is util-
ized to estimate the normal vectors of the point clouds. The
registration method presented in this paper utilizes vertical fea-
ture lines from building point clouds and the maximum plane
from ground point clouds to create structured features. Fur-
thermore, we note that cross-source vegetation point clouds can
substantially interfere with subsequent planar feature extraction
and registration. Based on this, we employ the Cloth Simulation
Filter (CSF) algorithm(Zhang et al., 2016) to separate ground
point clouds and then apply the Euclidean clustering algorithm
with normal vector angle constraints to differentiate between
vegetation and building point clouds in urban scenes.

3.2 Extraction of vertical feature lines

In order to make the registration more robust, we con-
sider increasing the number and types of features. Therefore,

this paper introduces two types of vertical feature lines. This
method first utilizes the RANSAC algorithm(Schnabel et al.,
2007) to accurately extract planar features from building point
clouds. Subsequently, adjacent plane intersection lines and ver-
tical plane boundary lines are extracted based on all vertical
planes, as shown in figure 1. The following are the methods for
extracting these two types of feature lines:

Adjacent plane intersection lines. Firstly, the intersection
line of two non-parallel vertical planes is computed based
on their parameters. If the distance between the current
intersection line and the point clouds of the two vertical planes
meets the specified distance constraint, the intersection line is
considered valid.

Vertical plane boundary lines. This method first extracts
boundary points from each vertical plane point cloud, and then
fits lines in the boundary points using the RANSAC algorithm
combined with the number of line point cloud, number and dir-
ection of lines.

Figure 1. Extraction of Vertical Feature Lines.

3.3 Matching of structured features

3.3.1 Triangle construction In this paper, we obtain dis-
tinctive feature points by intersecting the ground plane with the
extracted vertical feature lines. These feature points are utilized
to construct triangles based on the spatial topological relation-
ship between them. To achieve this, we adopt the triangle con-
struction method proposed in GlobalMatch(Wang et al., 2023),
which is based on the K-nearest neighbors. Specifically, we es-
tablish a KD tree for the feature points and retrieve only the
most recent adjacent points for each feature point. In the tri-
angle construction process, we consider a feature point, pi, as
one point of the triangle and select any two points from the adja-
cent points to form potential triangles. However, if the selected
three points are collinear, the triangle condition is not satisfied
and the triangle is disregarded. Figure 2 shows the triangle con-
struction method with pi as the search point when the number
of domain points is 4.

After constructing the triangles, the order of the vertices
(structure level key points) recorded in each triangle set is irreg-
ular, which undoubtedly increases the difficulty of subsequent
matching. Based on this, this article takes the vertex corres-
ponding to the longest side of the triangle as the first determ-
ined point in the set of triangle vertices, and then rearranges
the order of the remaining two vertices in the triangle through
geometric space constraints.
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Figure 2. Triangle Construction Based on K-Nearest Neighbors.

3.3.2 Triangle matching We were inspired by refer-
ence(Yang et al., 2016) to introduce semantic information
and geometric constraints in feature description and matching.
Then, based on the characteristics of cross-source point clouds,
we proposed a robust triangle matching method. Firstly, based
on the semantic type of vertices and the direction of the support-
ing plane, vertex descriptors are constructed. Then, triangles
are mapped to the feature space according to the size of their
interior angles. Next, KD trees are used to match candidate
corresponding triangles. Finally, the vertex descriptors of each
vertex are compared in the corresponding triangle pairs to de-
termine the correspondence between the triangles. Next, we
will introduce the establishment of vertex descriptors and tri-
angle matching.

Establishment of vertex feature descriptor Each triangle
vertex is associated with specific attributes, comprising the
point coordinate, pi = (x, y, z) , semantic label, LLabel,
and unit normal vectors of the support planes, n1 =
(nx1, ny1, nz1) and n2 = (nx2, ny2, nz2), denoted as
Γi = pi, Llabel, n1, n2. The semantic labels encompass two
categories: the intersection of adjacent vertical planes and the
boundary lines of vertical planes. In the case of a vertex origin-
ating from the intersection of adjacent vertical planes, Llabel is
set to 0, and both n1 and n2 are valid. Conversely, when a ver-
tex arises from a vertical plane boundary line, Llabel is set to
1, signifying that the boundary line is determined by only one
plane, rendering n1 valid while n2 is deemed invalid.

As the normal vector of the vertical plane is nearly par-
allel to the XOY plane, it is projected onto the XOY plane,
resulting in a projected normal vector that shares the same ho-
rizontal coordinate system with the vector formed by the tri-
angle vertices. This projected normal vector maintains the same
minimum angle with the vector formed by the two vertices of
the triangle both before and after the similarity transformation.
Hence, this angle can serve as a condition for the corresponding
vertices. We assume A is the intersection point between adja-
cent vertical planes and the ground, where ΠA

1 and ΠA
2 are two

support planes. nA
1 and nA

2 are projection vectors of the plane
normal vectors onto the XOY plane respectively. The angles γ1
and γ2 between the vector BC, and the vectors nA

1 and nA
2 are

calculated respectively. The construction method of γ1 and γ2
is illustrated in Figure 3. The feature descriptors for each vertex
are:[

Llabel = 0 β1 = min (γ1, γ2) β2 = max (γ1, γ2)
]

(1)

When vertex A corresponds to the intersection of ver-
tical boundary lines with only one valid plane, the descriptor
is defined as follows:[

Llabel = 1 β1 = γ1
]

(2)

Figure 3. Construction of normal vector angle for plane
projection.

Matching of triangles The process of triangle matching
method is as follows:

1. Initially, based on the three inner angles of the tri-
angle, each triangle constructed from the source and target point
clouds is mapped to the three-dimensional feature space, with
one mapping point for each triangle ∆pi. The coordinate of
∆pi is denoted as (θ∆A, θ∆B, θ∆C), where (θ∆A, (θ∆B, and
(θ∆C represent the inner angle values of the three vertices of a
triangle, with the vertices arranged clockwise.

2. A KD tree for the triangle mapping points of the source
point cloud is established, and radius neighborhood search is
employed to locate the corresponding triangle in the target point
cloud. Set the search radius to d∆. For the triangle map-
ping points in the target triangle ∆ps

i , the neighborhood points
within d∆ are

{
∆pt

i, j = 1, ..,K
}

. Traverse all triangle map-
ping points in the target triangle to obtain all candidate match-
ing triangles. Subsequently, perform vertex consistency checks
on each pair of candidate matching triangles to further confirm
their correspondence.

3. For each initial corresponding triangle pair matched in
step 2, the descriptors of each corresponding vertex in the tri-
angle are compared to determine their correspondence. The
matching method involves comparing each item in the vertex
descriptors. Firstly, the label type, L, of the vertex is checked
for consistency. Inconsistent labels result in matching failure,
while consistent labels lead to the determination of the vertex
type. If the vertex is of the type of the intersection of adjacent
vertical planes, equation (1) is used to verify the consistency
of β1 and β2. If the difference between corresponding β1 and
β2 is less than the angle threshold θ∆th, the vertex is represented
as corresponding. Similarly, for vertices of the vertical plane
boundary line type, equation (2) is employed to verify the con-
sistency of β1. If the difference of corresponding β1 is less than
the angle threshold θ∆th, the vertex is represented as correspond-
ing. Only when all three vertices of a triangle correspond, is it
considered a corresponding triangle.

3.4 Estimation of transformation matrix

For a set of three-dimensional corresponding point sets
C =

{(
ps
i , p

t
i

)
, i = 1, 2, ..., Nc

}
, where psi represents the

source point cloud, pti represents from the target point cloud,
Nc is the number of corresponding points. The similarity trans-
formation relationship between psi and pti can be expressed as:

pt
i = sRps

i + t (3)

where s > 0 is the scale factor, R is a 3×3 orthogonal rotation
matrix, t is a 3×1 translation vector. Due to measurement errors
between corresponding points, the objective function can be
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defined as the sum of squared residuals of the distances between
point pairs. The point cloud registration model based on point
correspondence can be represented by the following equation:

(s∗,R∗, t∗) = argmin
s,R,t

Nc∑
i=1

∥∥pt
i − (sRps

i + t)
∥∥2 (4)

This paper calculates the transformation matrix based on
three corresponding vertices in a matched triangle pair. In the
calculation of the transformation matrix, we decompose the cal-
culation of the scale factor, rotation matrix, and translation vec-
tor into three sub problems.

Estimation of scale factor. The transformation scale between
point clouds is equal to the ratio of the distance

s∗ =
1

3

(∥∥pt
1 − pt

2

∥∥
∥ps

1 − ps
2∥

+

∥∥pt
2 − pt

3

∥∥
∥ps

2 − ps
3∥

+

∥∥pt
1 − pt

3

∥∥
∥ps

1 − ps
3∥

)
(5)

between any two corresponding pairs of vertices.

Estimation of rotation matrix. We use Singular Value De-
composition (SVD) to calculate the rotation matrix R.

Calculate the centroids of the source and target triangles:

µs =
1

3
(ps

1 + ps
2 + ps

3) , µ
t =

1

3

(
pt
1 + pt

2 + pt
3

)
(6)

Subtract centroid from each vertex:

∼
p
s

i = ps
i − µs,

∼
p
t

i = pt
i − µt (7)

Calculate the covariance matrix H:

H =

3∑
i=1

∼
p
s

i

(
∼
p
t

i

)T

(8)

Decompose H to obtain:

H = U
∑

VT (9)

R∗ = VUT (10)

Estimation of translation vector. We use the obtained s∗ and
R∗ to calculate the translation vector t∗:

t∗ = µt − s∗R∗µs (11)

The transformation matrix T can be represented as fol-
lows:

T =
[
s∗R∗ t∗0T 1

]
(12)

After calculating the transformation matrix based on all
matching triangles, obtain the set of transformation matrices
Ψ = T1,T2, . . . ,Tn.

3.5 Verification of the transformation matrix

To ensure the success of point cloud coarse registration,
we propose a two-level verification method for evaluating trans-
formation matrices. Firstly, a quick verification method for
transformation matrices based on bidirectional KD trees is per-
formed, followed by a fine verification method for transforma-
tion matrices based on octree.

(1) Quick Verification

During the quick verification stage, the confidence of the
transformation matrix is assessed by counting the number of
corresponding pairs between the transformed source and target
keypoints. To mitigate one-to-many errors during correspond-
ence searches, we employ a bidirectional KD tree approach
based on Euclidean distance to identify corresponding pairs,
subsequently ranking the transformation matrices by the num-
ber of matched pairs. Only the top Nqf matrices with the most
corresponding pairs are selected for fine verification in sub-
sequent stages.

(2) Fine Verification

The fine verification of the transformation matrix involves
evaluating the global similarity between two sets of point clouds
using the current transformation matrix. However, computing
the global similarity necessitates processing the entire original
point cloud, which can be challenging due to the large num-
ber of point clouds typically found in urban scenes, leading
to potential efficiency issues. To address this, it is crucial to
employ suitable methods for organizing large-scale point cloud
data. Octree, a highly efficient data structure, offers superior
time efficiency compared to KD tree in voxel search. Build-
ing upon this idea, this paper adopts the confidence calculation
method based on octree, proposed in reference(Li et al., 2022),
to estimate the similarity between the transformed source point
cloud and the target point cloud. This approach effectively veri-
fies the transformation matrix with high accuracy.

4. EXPERIMENTS

4.1 Dataset and evaluation metrics

(1) Dataset

In this paper, we employ a self-built cross-source point
cloud dataset to validate the proposed cross-source point cloud
registration method. The dataset is collected in a university
campus. The dataset comprises three distinct sets of data, de-
noted as Campus pair1, Campus pair2, and Campus pair3. Each
set comprises a collection of LiDAR point clouds and photo-
grammetric point clouds, obtained from different sources. The
LiDAR point clouds are derived from two sources: one obtained
through the Leica BLK 360 ground laser scanner and the other
captured using the FAST-LIO2(Xu et al., 2022) SLAM system.
The image data was acquired using a DJI Mini3 drone, and
the photogrammetric point clouds were generated using Con-
text Capture, two different 3D reconstruction software.

Detailed information for each data group in the dataset is
presented in Table 1, while the visualization of point clouds is
illustrated in Figure 4. The dataset reveals significant disparit-
ies in data size, bounding box size, and coverage range among
point clouds obtained through diverse LiDAR and photogram-
metric techniques.

The accurate transformation matrix values between each
LiDAR point cloud and photogrammetric point cloud group
were obtained through meticulous manual point selection and
registration optimization.

The algorithm developed in this study is implemented us-
ing C++ language and Visual Studio 2017. The implementation
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scene Data source Data source Point number Bounding box size/m Number of images/stations

Campus pair1
LiDAR FAST-LIO2 SLAM 22757296 314.2×273.2×100.6 -
Image Pix4d Mapper 6674566 320.7×333.4×133.5 1538

Campus pair2
LiDAR FAST-LIO2 SLAM 16686380 127.1×122.6×56.1 -
Image Context Capture 87947530 94.3×92.7×29.9 1575

Campus pair3
LiDAR BLK360 133813207 153.5×152.6×38.9 12
Image Context Capture 85610231 58.5×54.4×13 1436

Table 1. Self built cross-source point cloud dataset

Figure 4. Self built cross-source point cloud dataset.

process involved the application of open-source libraries such
as PCL and Ceres. The computer environment is Windows 11,
with an Intel i5-11400h CPU and 16GB of memory.

(2) Evaluation

In this paper, the proposed cross-source point cloud regis-
tration algorithm is comprehensively evaluated using both qual-
itative and quantitative analyses. The qualitative evaluation in-
volves visual inspection of the registered point clouds to assess
the quality of the registration results. The quantitative evalu-
ation focuses on two main aspects: registration accuracy and
computational efficiency.

To assess registration accuracy, the algorithm is evaluated
in terms of transformation matrix errors and the root mean
square error (RMSE). The transformation matrix errors consist
of scale error (Es), rotation error (ER), and translation error
(Et), which are calculated as shown in equations (5.1):

Es = |sg − se|

ER = arccos

(
trace(Rg(Re)−1)−1

2

)
Et = ∥tg − te∥

(13)

where trace() denotes the trace of a matrix, and se, Re, and te

represent the estimated scale, rotation matrix, and translation
vector obtained from the proposed algorithm. Correspondingly,

sg , Rg , and tg denote the ground truth scale, rotation matrix,
and translation vector.

The calculation formula for RMSE is as follows:

RMSE =

√√√√ 1

Ns

Ns∑
i=1

∥seRepi + te − (sgRgpi + tg)∥22

(14)
where Ns represents the number of points in the source point
cloud, pi represents the position of ith point in the source point
cloud.

4.2 Vertical feature line extraction

The extraction results of vertical feature lines and struc-
tural key points are shown in Figure 5, and the number of ex-
tracted features is shown in Table 2. According to the experi-
mental results, the number of adjacent plane intersection lines
extracted in the point cloud of Campus pair 1 is less than the
number of plane boundary lines, while the extraction results in
Campus pair 2 and Campus pair 3 are the opposite. Only 2
adjacent plane intersection lines were extracted from the photo-
grammetric point cloud of Campus pair 1, but 33 plane bound-
ary lines were extracted. Therefore, by combining the inter-
section lines of adjacent vertical planes and the boundary lines
of vertical planes, the types and quantities of features are in-
creased, providing a sufficient number of structural level key
points for the point cloud coarse registration method in this pa-
per.

4.3 Experimental results

Figure 6 shows the results of our point clouds coarse re-
gistration method in three sets of data, with each set of data
presenting results from four perspectives: front view, side view,
top view, and local view. By observing the shape and contour
features in each view of the experimental results, it can be seen
that the landmark objects such as buildings and floors in the
scene have been roughly aligned and there have been no ma-
jor matching errors. From the color boundaries between point
clouds, it can be seen that in areas with deviations, some point
clouds have more prominent colors, indicating that some areas
have not fully matched and there is a slight misalignment. Over-
all, our coarse registration method successfully achieved rough
alignment of three sets of cross-source point cloud data.

We selected four representative point cloud coarse re-
gistration methods as comparison methods, namely FPF-
HSAC(Rusu et al., 2009), K4PCS(Theiler et al., 2014),
FGR(Zhou et al., 2016), and PLADE(Chen et al., 2019). Due
to their inability to handle unknown scale issues in cross-source
point cloud data, the scale of the source point cloud was manu-
ally restored using real scales before conducting point cloud
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scene Data source Number of
Vertical planes

Number of adjacent
plane intersection lines

Number of Vertical
plane boundary lines

Number of structural
level key points

Campus pair1
LiDAR 35 14 31 45
Image 21 2 33 35

Campus pair2
LiDAR 15 17 6 23
Image 21 17 7 24

Campus pair3
LiDAR 23 19 13 32
Image 25 24 8 32

Table 2. Results of Feature Extraction

Figure 5. Extraction Results of Vertical Feature Lines and
Structural Key Points.

Figure 6. Coarse registration results from different perspectives.

registration experiments. The registration results of coarse re-
gistration and other methods in this paper are shown in Figure
7. The registration error and time are shown in Table 3.

From the experimental results, FPFHSAC, K4PCS, and
FGR all failed to register under the three sets of data. There are
two main reasons for the registration failure. Firstly, there are
many similar smooth structures in the urban scene point cloud,
and the extracted point features are highly similar. Secondly,

Figure 7. Results of point cloud coarse registration.

there are significant differences in the local geometric charac-
teristics between cross-source point clouds, resulting in low re-
liability of the extracted point features. In these cases, matching
the points correspondence is very difficult. In summary, tradi-
tional point based registration methods have poor robustness
and are difficult to register cross-source point clouds in urban
scenes with significant differences in density, noise levels, and
other aspects.

PLADE and the coarse registration method proposed in
this article are both based on structured features. PLADE suc-
cessfully registered Campus pair1 and Campus pair2, and ob-
tained good rotation parameters in Campus pair3. However,
the translation error and root mean square error were greater
than 3m, resulting in registration failure. Our coarse registra-
tion method successfully registered three sets of heterogeneous
point cloud data, with an average error of scale error 0.0067,
rotation error 0.29 °, translation error 0.2002m, and root mean
square error 0.4357m. The PLADE algorithm has better accur-
acy than the coarse registration method proposed in this paper
in some scenarios, but it is not as good as the coarse registration
method proposed in this paper in terms of average accuracy and
robustness. In addition, our coarse registration method requires
the least amount of time among all the compared methods. The
superior average accuracy and robustness of our method stem
from its reliance on a minimal number of structural-level key-
points. By utilizing geometric constraints and semantic inform-
ation for corresponding matching, it effectively enhances the
algorithm’s robustness and efficiency.

4.4 Robustness experiment

The coarse registration stage of point cloud registration
covers the most difficult part of the registration process, which
requires the ability to handle issues such as different point dens-
ities, noise, and data loss. The robustness of coarse registration
algorithms is crucial for achieving accurate registration. The
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scene metrics FPFHSAC K4PCS FGR PLADE Ours

Campus pair1

Es Manual Manual Manual Manual 0.0048
ER(◦) 6.204 105.1 154.2 0.4177 0.4064
Et(m) 50.77 40.54 37.85 0.1561 0.1822
RMSE(m) 52.52 160.1 193.4 0.581 0.6089
Time(s) 152.3 49.2 371.5 168.5 5.5

Campus pair2

Es Manual Manual Manual Manual 0.0091
ER(◦) 157.6 22.51 148.5 0.189 0.2222
Et(m) 33.62 44.75 38.06 0.3279 0.3047
RMSE(m) 87.49 47.01 100.4 0.4861 0.4531
Time(s) 129.4 42.2 178.6 24.7 10.6

Campus pair3

Es Manual Manual Manual Manual 0.0063
ER(◦) 142.6 53.54 30.26 0.2969 0.2415
Et(m) 31.81 12.85 19.97 3.184 0.1138
RMSE(m) 117.7 52.68 35.72 3.136 0.2452
Time(s) 185.3 58.7 169.2 192.4 6.3

Table 3. Comparison of coarse registration methods

robustness of the coarse registration algorithm proposed in this
paper is tested on a self built dataset from three dimensions: dif-
ferent data missing, different point densities, and different noise
levels.

(1) Different data missing conditions

Multiple different perspectives were applied to crop the
source point cloud in Campus Pair 3, resulting in a total of ten
shapes. The cropped source point cloud was then registered
with the target point cloud in Campus Pair 3. The cropped
source point cloud and registration result are shown in Figure
8, where yellow represents the source point cloud and blue rep-
resents the target point cloud. The registration error is shown
in Figure 9. According to the experimental results, all ten sets
of data were successfully registered, achieving scale errors of
less than 0.01, rotation errors of less than 0.35 °, translation er-
rors of less than 0.4m, and root mean square errors of less than
0.5m. The experimental results fully demonstrate the robust-
ness of our coarse registration method to different data missing
situations.

Figure 8. Registration results under different data missing
conditions.

(2) Different point cloud densities

Sample the source point cloud points of the three sets of
data to 80%, 60%, 40%, 20%, and 10% of the denoised point
cloud points, respectively. The registration errors at different

Figure 9. Registration results under different data missing
conditions.

point densities are shown in Figure 10. The experimental results
show that as the point cloud density decreases, the coarse regis-
tration error in this paper fluctuates with relatively small numer-
ical changes, achieving scale errors of less than 0.014, rotation
errors of less than 0.7 °, translation errors of less than 0.5m, and
root mean square errors of less than 0.9m. Even at 10% of the
original point density, our coarse registration method can main-
tain good accuracy, indicating its strong robustness to changes
in point density.

Figure 10. Registration errors at different point densities.

(3) Different noise levels
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Add Gaussian noise with five different standard deviations
to the source point clouds of three sets of data, where the stand-
ard deviations are 4cm, 8cm, 12cm, 16cm, and 20cm, respect-
ively. Figure 11 shows the registration errors at different noise
levels. From the experimental results, it can be seen that as the
noise level increases, the registration error changes at an accept-
able level, achieving scale errors less than 0.02, rotation errors
less than 0.6 °, translation errors less than 0.6m, and root mean
square errors less than 0.9m. Therefore, our coarse registration
method has strong robustness under different noise levels.

Figure 11. Registration errors at different noise levels.

5. CONCLUSIONS

We propose a cross-source point cloud coarse registration 
method based on structured features in urban scenes. Firstly, 
based on the vertical plane in the building point cloud, adjacent 
plane intersection lines and vertical plane boundary lines are 
extracted. The combination of these two feature lines enriches 
the number and types of vertical feature lines, providing suffi-
cient feature support for subsequent key point generation and 
registration. Next, the intersection point between the vertical 
feature lines and the ground is used as a structural level key 
point, and triangles are constructed using the geometric spatial 
relationship between the key points. Subsequently, we estab-
lish triangle matching criteria based on geometric constraints 
and semantic information. Finally, we propose a two-level val-
idation method to determine the optimal transformation mat-
rix. The experimental results show that compared with point-
feature-based and same types of point cloud coarse registration 
methods, using structured features as the fundamental elements 
for registration proves to be more robust and faster when pro-
cessing point clouds acquired from different sensors.
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