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ABSTRACT: Road inspections are essential for assessing pavement conditions and planning maintenance to extend infrastructure
lifespan. Cracks are key indicators of distress, and their timely detection can reduce repair costs. While manual inspections are costly
and subjective, automated crack detection using vehicle-mounted cameras and digital image processing has improved efficiency but
still requires extensive manual review. Crack detection research typically focuses on improving the accuracy of the detection and
feature extraction, neglecting the geospatial mapping part which is essential in pavement inspection. This paper presents an end-to-end
pipeline that combines V-SLAM, deep learning (DL) and 2D-3D mapping to detect and map pavement cracks using vehicle-mounted
cameras footage and provide georeferenced results interpretable inside a Geospatial Information System (GIS). Results significantly
reduce inspection time by providing preliminary detections for rapid verification by expert operators in GIS environments. This
enhances data management, efficient validation, advanced spatial analysis and time-based tracking of crack progression, ensuring

informed decision-making and optimized maintenance planning, ultimately extending infrastructure lifespan and reducing costs.

1. INTRODUCTION

Urban mapping, inspection and monitoring normally involve
high-cost mobile mapping vehicles - equipped with LiDAR,
cameras and positioning sensors - driving through the built
environment. Due to the high costs and limited vehicle fleets,
single camera sequences are often used for collecting up-to-date
information of semantic landmarks and change detection
(Zhanabatyrova et al., 2023; Zhang et al., 2023; Lin et al., 2025).
In particular, road inspection and monitoring are periodically
conducted to assess pavement conditions and plan reconditioning
and maintenance actions (Barbieri and Lou, 2024). Cracks are
key indicators of early pavement distress and can accelerate
deterioration, affecting driving comfort, user safety and reducing
the lifespan of the infrastructure. The timely detection and
monitoring of cracks are crucial steps in lowering maintenance
costs. Automatic systems which can reliably quantify and
classify cracks are desired since conventional manual field
inspections are subjective, time-consuming — as they may require
traffic interruption or diversion- and costly (Hsieh and Tsai,
2020). A first degree of automation in road inspections comes
with the adoption of vehicle-mounted camera footage coupled
with digital image processing techniques. Regardless, video-
based monitoring still requires extensive manual evaluation and
must be backed by an effective data management system to store
cracks information. Generally, existing management systems do
not fully leverage spatial information for visualization in a
Geospatial Information System (GIS) environment. To further
automate the process, research has focused on developing
automated crack detection methods using 2D/3D data and
machine (ML) or deep learning (DL) algorithms (Zhang et al.,
2018; Jung et al., 2019; Jing et al., 2023) although a data
management system which can allow an intuitive visualization
by leveraging the spatial information is still needed.

1.1 Paper’s aim

This contribution proposes an end-to-end pipeline which
leverages Visual-SLAM, DL methods and a 2D-3D mapping
process to detect and map pavement cracks from vehicle-
mounted camera footage. A user-friendly and geospatially

accurate representation of road cracks inside a GIS is delivered
for a faster, cheaper and more effective road condition
assessment. Mapping of the damaged roads inside a GIS
environment allows the operator to perform further visual
analysis, evaluations and measurements of the damages. In
contrast to available solutions that either rely on expensive
pavement inspection systems, work on a single image level, or
require expert data acquisition, the pipeline can be implemented
with cheap off-the-shelf instrumentation, automatically extracts
cracks from video frames and maps them in GIS, facilitating
efficient inspection by experienced operators.

2. RELATED WORKS

Many crack detection and mapping methods in the road
inspection domain start from image sequences acquired by
pavement inspection systems (Li et al., 2017; Stricker et al.,
2021; Opara et al., 2021; Wu et al., 2025) which provide an
optimal view of the road and high-resolution images. In some
cases, these systems are also equipped with LiDAR for enhanced
surface analysis (Malone Geary and Tsai, 2021). Common
working principle for these systems is the synchronized
acquisition from vehicle-mounted sensors (camera or stereo
system, GNSS receiver, IMU, LiDAR) to create a georeferenced
3D reconstruction of the road and perform analysis of its defects
based on predefined metrics. These systems are equipped with
instrumentation to generate a mapping of the road surface but do
not focus on automating the detection of cracks. Automated crack
detection has shifted from methods like laser and thermal testing
to image-based methods due to their acquisition and processing
efficiency (Munawar et al., 2021). Available image-based
detection methods include image processing techniques, digital
image correlation (DIC), ML and DL methods. Image processing
techniques like thresholding and edge detection are usually used
as preprocessing steps to reduce unnecessary information and
enhance crack features before ML (Golding et al., 2022). DIC is
less accurate than DL even with optimal thresholding, and
requires multi-temporal images (Rezaie et al., 2020). ML
algorithms need pre-defined features, and their performance
deteriorates in images with complex backgrounds (pavements
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with illumination changes), whereas DL algorithms automate
feature extraction and offer higher accuracy (Alipour et al.,
2019). The adoption of DL for image-based road inspection can
further automate and speed-up detection, classification and
severity assessment (Ha et al., 2022). The rise of highly efficient
and highly accurate semantic segmentation and object detection
algorithms - such as the YOLO family (Wu et al., 2024; Choi et
al., 2024; Wang et al., 2023; Wu et al., 2023) - has made Al a
leading approach in this field. With DL, cracks can be detected
and classified at the image, patch or pixel level. Patches allow for
more data generation in comparison to full images, whilst also
providing approximate localization of the cracks. Pixel level
classification allows the contour of the crack to be extracted,
instead of its bounding box, enabling more accurate classification
of the pavement area occupied by the crack. This approach
requires meticulous annotation for training data generation and
results can be used for crack features (width, length, occupied
area) calculation (Hsieh and Tsai, 2020).

Few low-cost end-to-end solutions exist for crack detection and
mapping, particularly for road damage, as most research
prioritizes detection accuracy. However, some studies have
proposed solutions that also address crack mapping. For instance,
Chun et al. (2021) developed a highly accurate crack detection
model, in which cracks are detected on a patch-level and the
damage is mapped as pins in GIS. This approach limits further
visual and quantitative analysis as pin-based mapping lacks the
visual detail provided by orthophotos, furthermore, the end-user
cannot easily extract crack features from the patches. Ranyal et
al. (2024) used geotagged image sequences captured by a
vehicle-mounted GoPro camera to detect and classify cracks
through a combination of DL and image processing techniques.
The severity of damage at each location was determined based on
the maximum crack width and visualized using a heatmap.
Heatmaps can be a good initial result, but similarly to (Chun et
al. 2021), without the orthophotos, the end-user would need to go
back to the damage location for visual analysis. Baduge et al.,
(2023) used a vehicle-mounted smartphone to capture geotagged
image sequences and applied two deep learning models for crack
detection and segmentation. The detected cracks were mapped as
pins in Google Earth with a positioning accuracy of 10 meters.
However, compared to GIS, Google Earth offers limited
geospatial analysis capabilities, map production, and data storage
for long-term change detection. GIS offers more advanced
capabilities for further spatial analysis, enabling users to track
changes over time, integrate multiple data sources, and generate
detailed reports and visualizations.

Compared to other approaches, the proposed pipeline streamlines
data acquisition while reducing costs, and significantly
minimizes the manual effort required from the end users.
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Figure 1: The proposed pipeline for road crack detection and
mapping.

3. METHODOLOGY

The pipeline involves capturing images using vehicle-mounted
cameras, estimating the trajectory with SLAM, segmenting the
road and cracks in the input images, creating a bird’s eye view of
the road by generating and texturing a parametric mesh based on
the estimated trajectory and the segmentation results, and
producing a georeferenced orthomosaic of the cracks for use in a
GIS environment. Figure 1 provides an overview of the pipeline.
Acquisition system. Sub-cm GSD images were acquired using
the in-house GuPho system (Torresani et al., 2021; Padkan et al.,
2023), a handheld mobile mapping stereo-vision system capable
of recovering system trajectory and sparse 3D of the surveyed
scene in real-time with a SLAM algorithm. The system was
mounted on the front of a van, with the camera axis
approximately parallel to the road axis. This configuration was
chosen to ensure optimal coverage of the road surface while also
providing a favorable viewing angle of the surrounding
environment, which is beneficial for the automatic orientation of
the images. Although stereo sequences were acquired, the
presented pipeline can also be applied to monocular videos.
Trajectory estimation. The proposed workflow requires the
georeferenced trajectory of the vehicle-mounted camera(s),
including both position and orientation. This trajectory can be
obtained through various methods, including commercial
positioning solutions. In our study, camera poses are estimated
with COLMAP-SLAM (Morelli et al., 2023), a tool that provides
camera trajectory from a monocular or multi-camera system
based on handcrafted or learning-based tie points. The keyframe
selection is performed by analyzing the optical flow within the
image stream and only frames exhibiting an optical flow above a
predefined threshold are designated as new keyframes. The
trajectory can be georeferenced by a synchronized vehicle-
mounted GNSS receiver or by using ground control points.
Road segmentation. The road is segmented using the YOLOvS8-
world model and SAM2 (Ravi et. al, 2024) to prevent the
detection of cracks outside of the road and to remove moving
objects (e.g. cars) that would hamper SLAM performances. The
result of the segmentation process is a binary mask of the road
for each keyframe.

Cracks detection. Three deep learning models are utilized to
segment road cracks in one of the two streams acquired with
GuPho: U-net (Ronneberger et al., 2015), DeepLabV3 (Chen et
al., 2017), and YOLOv8m (Jocher, Chaurasia, & Qiu, 2023). For
training, 385 annotated images (resolutions of 1024x768 px and
1280x1024 px) from vehicle-mounted camera footage recorded
around Trento, Italy were supplemented with 125 images from
an existing crack dataset, recorded by handheld GuPho (Padkan
et al., 2023). Both sets were annotated on the Roboflow web
platform (Dwyer et al., 2024). To enhance training performance,
data augmentation techniques such as random rotations, exposure
adjustments and random noise addition were utilized. The trained
models are tested on 87 manually annotated images of roads
around Trento.

Bird’s eye view generation. The estimated trajectory is used to
parametrically generate a mesh of the road. The motivation for
using a parametric mesh instead of a traditional meshing
approach - which relies on sparse point clouds or depth maps -
stems from the need for a smooth surface. Traditional meshing
methods tend to incorporate tie point noise, resulting in a rough
surface that is unsuitable for further processing. Moreover,
generating a mesh from such input data typically demands
significant processing time. Generating a mesh from the dense
point cloud is equally difficult due to the poor texture of the road
surface. For each camera pose in the trajectory, two collinear
vertices are created at a fixed width from the camera in the
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perpendicular direction to the tangent of the trajectory. The
camera-to-ground height is used as vertical offset to place the
vertices at the correct height on ground level. By using the
camera rotation parameters, the vertices are adjusted to account
for the longitudinal and transverse slopes of the road. Two
triangular faces are created by connecting pairs of vertices for
two consecutive camera poses, resulting in a 3D surface
modelling the road. Next, a UV mapping (3D to 2D) is computed
by automatically unwrapping the mesh onto a plane and
assigning each mesh vertex a coordinate in the UV space. The
texture for the mesh is created by projecting each detected crack
mask onto the corresponding faces of the mesh with a perspective
transform (homography). No RGB blending between consecutive
faces is utilized. The texture is applied to the mesh with the
computed UV mapping and, finally, a 1cm/px orthomosaic of the
cracks is created by orthorectifying the textured mesh.
Additionally, a basemap of the road can be created by repeating
the texture creation and orthomosaic generation with the original,
undistorted frames. The generated bird’s eye view offers a nadiral
view of the road, enabling the mapping of the reconstructed 3D
road surface onto a 2D plane and its use in GIS.

Cracks size estimation in GIS. The georeferenced orthomosaic
is imported into a GIS environment. The image is split into
smaller tiles to optimize memory usage. Detected cracks are
vectorized into polygons and standard topology algorithms are
applied to the polygons to fix invalid geometries. Cracks across
different tiles are merged. In literature, various definitions of
cracks sizes exist. For example, crack length may be determined
by measuring the total perimeter, including branches, the longest
continuous segment or the projected length along the longitudinal
and transverse axes. Operators can apply their own definition and
measure length directly in GIS using available tools. For the sake
of following tests, length is estimated as the height of the oriented
minimum bounding box around the crack.

4. RESULTS AND DISCUSSION

The pipeline is tested on a ~3km long sequence over a secondary
road open to traffic in Trento, Italy. The sequence includes turns,
hairpins, roundabouts and straight sections. The vehicle is kept at
a constant speed of ~50km/h and at an adequate distance from
preceding vehicles to have a clear view of the road. Images are
acquired at 4 frames per second. A total of 8 natural points
(pedestrian crossings, corners, manholes) well distributed along
the sequence were acquired by means of a Real Time Kinematics
(RTK) enabled GNSS receiver, with estimated accuracies in the
centimetres range. These points are used as bundle adjustment
constraints, e.g. Ground Control Points (GCPs) for recovering a
georeferenced trajectory (UTM 32N coordinate reference
system). Incoming traffic is successfully masked out by the road
masks (Figure 2).

Figure 2: Road segmentation results (purple mask) to exclude
incoming traffic and objects outside the road.

The use of masks prevents the mapping of cracks detected on
objects outside of the road. The resulting parametric mesh of the
road, computed from the estimated vehicle trajectory, is shown
in Figure 3. The mesh aligns with the camera positions and
rotations, ensuring that the normal vector of each corresponding

face remains perpendicular to the camera's forward axis
throughout the trajectory. As a result, errors can occur during the
orthorectification of the mesh. Inaccurate camera pose
estimations, particularly in orientation, may lead to incorrect
projections of detected cracks and potential distortions in their
shapes.

Figure 3: SLAM-based sparse point cloud and camera trajectory
of the surveyed road (a). Parametric mesh (grey) and trajectory
(yellow) (b) with a zoom-in to show faces with wireframe
visualization (c). The mesh is shown in grey while the trajectory
is in yellow. Highlight of the bird’s eye view created by
texturizing the mesh (c). Notice that no blending is utilized
between frames.

In case of sharp turns (90 degrees or U turns) the faces of the
mesh may overlap, rendering the projection of the cracks
discontinuous. A geometry verification and fixing algorithm
which approximates the turn with the osculating circle is
implemented to unravel the mesh when this happens.

To evaluate the accuracy of the proposed procedure, ground truth
data were collected through on-site measurements of identifiable
features such as manholes, pedestrian crossings and crack
lengths. While known features are relatively straightforward to
identify and measure, it is important to note that on-site
measurement of crack sizes is inherently subjective due to
unclear crack boundaries. These measurements are also
replicated in GIS, using the orthomosaic of the road for known
features and vector shapes for cracks. Some examples are
reported in Figure 4. Results show that the mapping process
achieves accuracies in the centimeter range, which is acceptable
given the measurement uncertainties, including systematic and
random errors on field and pixel localization inaccuracies on the
orthomosaics. The measurement depends on the estimated
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camera-to-ground height used in the mesh creation step: a slight
variation from the actual value would cause the pixels of the
images to be projected on a closer or further away plane, hence
shortening or lengthening the size of objects.

Ground = Measurement

Known features and cracks

truth (m) = on map (m)
0.75 0.72
2.50 2.40

X X
0.50 0.48
2.14 2.12
2.54 2.47

Figure 4: Comparisons of measurements of known features
and cracks between ground truth and on the resulting
orthomosaics. The mapping process is scaled in the
centimeters range.

Percentage of 8m? grid cell occupied by cracks

W 1-2% [13-4% [15-6% []7-8% M 9-10%
Wo-1% [J2-3% [14-5% [16-7% [08-9% M10-11%

=== Road boundaries
mmm Crack outlines

Ground truth Detection

meters
Figure 5: Percentage area of each cell of the grid occupied by
cracks in three parts of the study area. Comparison between
manually annotated cracks (ground truth) and YOLOv8m
detected cracks. The detection achieves comparable results to the
ground truth, although under detection is sometimes visible.

This explains the variation in measurement between the length
and the width of the pedestrian crossing in Figure 4, as the width
is not affected by the inaccuracy of the camera-to-ground height
parameter. This systematic error is present in other pedestrian

crossing lengths measured on the orthomosaic, while the error on
the width was consistent with the 1cm GSD of the orthomosaic.
We evaluate the performance of the DL detection models by
looking at the completeness of the detection over different short
sub-sequences of 3 to 5 frames which are not utilized as training
data. The chosen sequences are spread out along the surveyed
road and exhibit different characteristics. Cracks may be
distributed on the incoming lane only, over the entire surface of
the road or in the centre line or may be missing at all. We
manually annotate cracks in the sub-sequences and use the
resulting masks to map them. Then, we subdivide the mapped
road surface with a grid of 8m? hexagonal cells. For a 5 to 6m
wide road as in the case of our dataset, 3 grid cells cover the
whole width of the road. An overlap analysis is carried out by
overlaying the grid cells and the vectors of the cracks, and by
computing the percentage of the area of each cell occupied by
cracks. We motivate the choice of this metric by noticing that the
detection models fail to isolate single cracks when multiple
cracks are present, merging the result in a single. Individual crack
parameters such as length and width, which may have practical
implications for maintenance, hence lose significance. The
process is repeated by inputting the masks of the detected cracks.
The results of the comparison for the YOLOvV8 model are shown
in Figure 5, while Table 1 reports statistics about the occupancy
rates of grid cells for all models across the three sub-sequences.
Generally, the models achieve lower occupancy percentages than
the ground truth because of under-detection, especially for multi-
branch, widespread cracks, as visible in the last row of Figure 5.
U-net, on the other hand, tends to overdetect cracks, resulting in
higher maximum and average occupancy rates. Although none of
the models are fully robust in identifying all cracks, their
detection results occupy a similar number of cells as the ground
truth, indicating that the road surface is well represented.

A new point layer is created by assigning each cell centroid the
area occupancy value. An interpolation is done on the points to
create the heatmaps reported in Figure 6. These maps are useful
tools to quickly evaluate which areas of the road are undergoing
the highest deterioration and would require intervention.

Subsequence #1 -17 cells

Ground YOLO DeepLab U-net
truth v8m V3
Min % 0.1 0.9 0.1 1.1
Max % 6.2 5.9 53 11.1
Average % 2.7 3.5 3.1 5.7
Numb. of 8 7 8 7
occupied cells
Subsequence #2 -18 cells
Ground YOLO DeepLab U-net
truth v8m V3
Min % 0.3 1.2 0.1 1.0
Max % 7.4 6.8 6.7 11.5
Average % 3.7 3.0 1.9 43
Numb. of 7 7 6 7
occupied cells
Subsequence #3 - 17 cells
Ground YOLO DeepLab U-net
truth v8m V3
Min % 0.3 0.1 0.1 0.1
Max % 10.2 6.3 6.0 8.8
Average % 3.6 3.0 3.1 33
Numb. of 10 10 9 12

occupied cells

Table 1: Statistics about the occupancy rates for grid cells
occupied by detected cracks in three subsequences of the
surveyed area between ground truth annotations and the results
of the detection models.
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Figure 6: Survey trajectory (dark red) and orthomosaic tiles boundaries (light blue/black) overlayed onto OpenStreetMap - OSM (a).
Cracks detected with YOLOv8m overlayed onto OSM as vector shapes (bl, c1) and onto a 20cm orthophoto (b2, c2). The surface

of the road is divided into a grid of 8m? hexagonal cells and the percentage of the area occupied by cracks is computed for each cell
(d). Interpolation of the occupancy rate in a radius of 5m at two different scales (e, f).
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4.1 Model Evaluation

The performances of the three models, evaluated using
Precision(P), Recall (R), F1-score (F1), and inference time, are
reported in Table 2. High Recall means a high number of actual
crack pixels detected, high Precision indicates higher certainty in
the detections whereas the Fl-score combines Precision and
Recall into a single metric, balancing the trade-off between
detecting all cracks and ensuring the detections are accurate.
Inference time is an important metric in case of large datasets or
for real time capabilities. All models were tested for 250 epochs
on an NVIDIA GeForce RTX 4070 with 16GB VRAM.

The models were trained without any modifications to their
original layer structures. U-net and DeepLabv3 were trained and
tested on 256x256 px patches. Different confidence levels were
tested to evaluate the models: 0.25 was used as minimum
threshold instead of the conventional 0.5. This could increase the
number of false positives but maximizes the Recall, leading to
more cracks detected.

Model P R FI Inference time
(%) (%) (%) (s)
U-net 54 86 63 2.6
DeepLabV3 60 83 66 4
YOLOvV8m 63 52 57 0.016

Table 2: Evaluation metrics on 87 manually annotated images of
roads around Trento. Highest values are in bold.

As seen in Table 2, DeeplabV3 generally outperforms other
models achieving the highest F1-score, while U-net returned the
highest recall. U-net and DeeLabv3 achieved comparable
metrics, while YOLOv8m showed lower recall. An explanation
for this is provided in Figure 7 where a complex, multi-branch
‘alligator’ crack is only partially detected by YOLOv8m. This
example is also a clear demonstration of how, as previously
reported, U-net overdetects cracks, enlarging their actual
dimensions. Despite its lower performance, YOLOv8m is the
only model demonstrating real-time capabilities with
milliseconds per image inference time.

Figure 7: An image with a complex alligator crack. Original
image (a), ground truth mask (b), ground truth overlay (c) and
detection results using YOLOv8m (d), DeepLabV3 (e), and U-

net (f).

In general, the models’ performances are imperfect, with
challenges in the detection given by the presence of shadows
which have a similar dark and thin appearance as cracks. The
models suffer specifically in detecting far cracks that appear
blurry, as shown in Figure 8. This problem is partially solved
with the detection in following frames. In addition, cracks are
sometimes undetected or detected partially probably because of

the limited image resolution, the acquisition perspective and the
noise of the compression that greatly influence the detection.
Adding more images to the dataset improved the models’
performance. However, more images increase the chance of
wrong annotations, given the subjective task and the fact that it
is not clear to the human eye where a crack starts and finishes.
This was evident when on-site measurements of cracks were
performed, since cracks features may become visible only under
certain light conditions, scales or perspectives.

Ground truth

Inference results

Figure 8: Examples of YOLOv8m inaccuracies: a distant
crack entirely missed (top) and two vertical cracks partially
detected and incorrectly split into separate cracks (bottom).

5. CONCLUSIONS

The paper introduced an end-to-end pipeline to effectively extract
and map road surface cracks to assess road conditions from
vehicle-mounted camera footage. The pipeline combines SLAM
processing and learning detection to support georeferencing and
metric results visualized in a GIS environment. In general,
Precision and Recall values are greatly affected by the quality of
images and available training data. Although values read lower
than those of human operators, the methodology offers
significant benefits in terms of efficiency. While achieving the
same level of accuracy as an operator may not be feasible, the
pipeline delivers rapid preliminary results, such as crack
locations and distribution. These results can be reviewed by
operators for validation with significantly reduced time, allowing
them to focus on verification rather than the initial detection
process, with considerable time savings and overall operational
efficiency. A key advantage of the proposed pipeline is its
integration with GIS environments, which enhances data
management and provides an intuitive platform for further
analysis. By mapping detected cracks, operators can validate
results more efficiently but also leverage advanced spatial
analysis tools to identify high-risk areas and monitor damage
progression. This approach reduces the subjectivity and labor-
intensive aspects of traditional inspections while enabling more
strategic planning for road maintenance. By utilizing layered
visualizations that incorporate satellite imagery and topographic
details, operators obtain a comprehensive view of pavement
distress, facilitating clear assessments of damage distribution.
Additionally, by conducting repeated surveys and comparing
results over time, operators can track crack progression, assess
deterioration trends, and make informed predictions about future
pavement conditions. The ability to generate professional,
stakeholder-friendly maps further enhances communication,
ensuring that repair priorities and inspection outcomes are
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effectively conveyed, ultimately contributing to cost savings and
a prolonged lifespan for road infrastructure.

Future work includes enhancing the cracks detection with other
approaches, incorporating additional training data or exploiting
Multimodal Large Language Model (MLLM). Moreover, GNSS
data will be acquired synchronously with the camera footage to
directly georeference the results and aid the reconstruction
process.
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