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Abstract
This study introduces a novel data-driven approach for classifying and estimating the number of vehicles crossing a bridge solely 
on non-invasive ground-based radar time series data (GBR data). GBR is used to measure the bridge displacement remotely. It has 
recently been investigated for remote bridge weigh-in-motion (BWIM). BWIM mainly focuses on single-vehicle events. However, 
events with several vehicles should be exploited to increase the amount of data. Therefore, extracting the number of involved 
vehicles in the first step would be beneficial. Acquiring such information from global bridge responses such as displacement can 
be challenging. This study indicates that a data-driven machine learning approach can extract the vehicle count from GBR time 
series data. When classifying events according to the number of vehicles, we achieve a balanced accuracy of up to 80 % on an 
imbalanced dataset. We also try to estimate the number of cars and trucks separately via regression and acquire a R2 of 0.8. 
Finally, we show the impact of the data augmentation methods we apply to the GBR data to tackle the skew in the dataset using 
the feature importance of Random Forests.

1. Introduction

Structural Health Monitoring (SHM) in bridge maintenance con-
sists of numerous aspects. Its primary focus is monitoring the
bridge’s structural integrity, e.g., by detecting deterioration. Be-
sides, it is vital to observe the load inflicted on the bridge.
Heavy and significantly overweight traffic can cause permanent
damage to infrastructures. With this in mind, vehicle weighting
systems have been developed and applied for a long time. These
systems range from simple static weighing scales to bridge weigh-
in-motion (BWIM) approaches. While static weighing has a
high accuracy, it interferes with the traffic flow and can easily be
bypassed by vehicles. By implementing conventional accelera-
tion or strain sensors in the road, traffic can flow uninterrupted;
however, weighting is more complex. Additionally, the sensors
are exposed to heavy loads, and maintenance can be challen-
ging. BWIM systems use the bridge itself as a scale to determ-
ine the weight of a vehicle. Therefore, sensors are attached to
the lower side of the bridge. The attachment inflicts damage to
the bridge. Furthermore, BWIMs still often use sensors on the
pavement to extract vehicle information such as axle count and
speed. Nothing-on-road (NOR) solutions try to eliminate all
pavement components to minimize the impact of traffic on the
system, increasing durability and accessibility. Therefore, the
traffic situation on the bridge has to be monitored differently.
One possibility is to exploit cameras. Ojio et al. (2016) use
two cameras for bridge monitoring; one camera is aimed at the
road for traffic monitoring and the other for remote bridge dis-
placement measurements. Their approach is purely contactless,
avoiding any damage through sensor attachment.

Another approach for remote and non-invasive bridge monitor-
ing applies ground-based radars (GBR) Gentile and Bernardini
(2010); Michel and Keller (2021b, 2022, 2024). GBR meas-
ures the bridge deflection or displacement, which is relevant in
SHM Zhao et al. (2015); Pieraccini et al. (2019); Döring et al.

(2021). They can be easily set up and require little maintenance.
Thus, measurement campaigns can be performed without much
effort. Furthermore, they can be operated under difficult natural
conditions like fog. Such foggy conditions challenge visual sur-
veillance systems. However, relying solely on the GBR time
series displacement data for bridge monitoring requires soph-
isticated algorithms.

Arnold and Keller (2020) and Arnold et al. (2021) exploit ma-
chine learning (ML) approaches, such as shallow learning and
deep learning (DL), to detect bridge vehicle crossings in GBR
displacement time series data. Arnold and Keller (2024a) in-
vestigate several approaches to extract vehicle properties such
as speed and axle spacing from detected events. They only in-
vestigate single events, meaning that only one vehicle is present
on the bridge during an event. It is possible to distinguish
between single and multi-events during which several vehicles
cross the bridge simultaneously with different ML approaches,
as stated by Arnold and Keller (2024b). Although this reduces
the complexity of their algorithms, they also forgo a lot of data
points when neglecting multi-events. The parallel passing of
two overweight trucks would, thus, be ignored despite its im-
mense impact on the bridge. Finally, not all bridges are short
or rarely frequented enough to generate sufficient single- pres-
ence data points for bridge behavior analysis. Therefore, multi-
presence events should also be taken into consideration. A more
detailed first-hand analysis of the traffic situation is crucial to do
so. Thus, as a first step, we propose a novel approach to extract
the vehicle count of bridge crossing events purely data-driven
from displacement data. We use measurements of two bridges
in Germany to collect ground-truth data on crossing vehicles us-
ing an unmanned aerial vehicle (UAV). Overall, the main con-
tributions of this paper are:

• a concise introduction to GBR measurements,
• a profound description of the dataset extracted from GBR
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and UAV data,
• an appropriate ML framework with three models to extract

vehicle counts via (1) classification and (2) regression,
• a comprehensive investigation regarding the application of

data augmentation for both tasks,
• and an in-depth analysis of the feature importance of our

applied models.

First, we introduce relevant work concerning traffic classifica-
tion in Section 2. Then, we describe the measurement setup and
the dataset in Section 3. In Section 4, our approach is detailed.
Afterward, the results are stated and discussed in Section 5. Fi-
nally, Section 6 summarizes our findings.

2. Related Work

In this section, we give an overview of relevant studies. First,
we will deal with time series classification, focusing on unequal
length time series data. Subsequently, we cover approaches for
data-driven traffic identification with a focus on vehicle count
determination.

Since most ML approaches are developed with images as in-
put in mind, only a few are compatible with input of varying
lengths. However, as Arnold and Keller (2024b) have shown,
unequal time series are present in bridge monitoring due to
varying speeds and vehicle lengths. Furthermore, the length
correlates with class affiliation so that padding might skew
the results. Therefore, they apply MiniRocket, among others,
to handle variable-length datasets. MiniRocket was designed
by Dempster et al. (2021) and is currently among the state-
of-the-art methods on public time series datasets, such as the
UCR dataset (Dau et al., 2019). The developers also provide
source code, which can handle variable-length input (Löning
et al., 2019). Another approach is to extract features manually
using expert knowledge (Arnold and Keller, 2024b) or automat-
ically via methods such as the auto-regressive integrated mov-
ing average model (ARIMA) (Wang and Tang, 2020). Dynamic
time warping (DTW) is often used as a baseline with a 1-nearest
neighbor classifier (Ruiz et al., 2021). DTW aligns two-time
series along their temporal axis, minimizing the Euclidean dis-
tance between both. It is particularly suitable for sequences that
vary in speed, e.g., speech or movement recognition (Tan et al.,
2019). A disadvantage of DTW is its extensive computation
time, especially for relatively long time series. DL can be ap-
plied for feature extraction when many data points are available.
Hertel et al. (2016) use convolutional neural networks (CNN)
combined with masking and padding. They also implement a
global pooling layer, which can handle the filtered sequences of
different sizes for acoustic scene classification.

Many approaches for vehicle counting systems also apply
CNNs, but they use images from surveillance systems as input
data (Fachrie and others, 2020; Gomaa et al., 2022). However,
visual techniques require an unobstructed view and might fail,
e.g., in the event of snowfall or fog. Therefore, other meth-
ods are researched. Taghvaeeyan and Rajamani (2014) exploit
four magnet sensors at the roadside for vehicle counting and
classification. Passing vehicles induce peaks in the measured
time series data and with a simple threshold 186 of 188 vehicles
could be detected. Arnold and Keller (2024b) use MiniRocket
and manually crafted features for Shallow Learners to classify
single and multi-events. MiniRocket achieves a balanced ac-
curacy (BA) of 87% on a single bridge dataset. They also
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Figure 1. Schematic illustration of a GBR measurement. The
GBR (yellow box) measures the LOS distance for each reflector

(colored rectangles). From consecutive measurements of the
phase difference ∆ϕ, the displacement difference ∆R can be
calculated. With a known height difference h between bridge

and GBR ∆R can be projected to the vertical displacement ∆z.

find that data augmentation can improve the BA to 90%. Fi-
nally, they apply their models to a completely unknown dataset,
where MiniRocket achieves a BA of 93%. While distinguish-
ing between single and multi-presence events, they make no
statement on the vehicle count.

3. GBR Measurements and Dataset

In this section, we will shortly explain the working principle of
GBRs and show some real-world measurements. For example,
a more detailed explanation can be found in Michel and Keller
(2021a). Then, we will describe the data basis for this study.

GBR uses frequency modulation to measure the displacement
in the line of sight (LOS). They utilize a bandwidth of B =
200MHz resulting in a range resolution of

∆r =
c

2 ·B = 0.75m, (1)

with the speed of light c = 3 × 108 ms−1. Thus, the displace-
ment is measured for every 0.75m. For this, GBR exploits
interferometry. Figure 1 gives a schematic illustration of this
measurement principle. The final vertical displacement ∆z can
be calculated according to

∆z =
R

h
· λ

4π
·∆ϕ. (2)

∆z is sampled with 200Hz for each measurement point along
LOS. The driving direction corresponds to the x-axis. Often, re-
flectors are spread along the y-axis to acquire information about
the lateral vehicle position.

Measurements have been conducted at two short-span bridges
in Germany. Bridge A has two loosely coupled fields, from
which one has been monitored, whereas Bridge B only has one.
One lane for each driving direction is present for both bridges.
As a road runs beneath Bridge B, disturbances occur caused by
passing vehicles. Both have been equipped with corner reflect-
ors to achieve low-noise measurements. The monitored field of
Bridge A has five reflectors attached; Bridge B has three reflect-
ors. During the GBR measurements, a UAV was deployed to
record the bridge deck as ground-truth data. Figure 2 shows ex-
ample events for each bridge. All crossing vehicles are shown
above the corresponding time series data. Only the displace-
ments for two reflectors are shown since we only use these
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Bridge A Bridge B

Figure 2. For each bridge, a multi-event is shown. In the time series plot, the respective time of each vehicle on the monitored field is
highlighted and attributed to the corresponding vehicle images.

for our datasets. This enables transferability, assuming at least
two measurement points per bridge are available. The reflectors
are selected such that the driving side of a vehicle is apparent
from the relative maximum displacement, and the overall signal
curvature for both bridges is similar.

The Bridge A event in Figure 2 depicts two cars and a truck.
The first car overtakes the truck. The second car drives in the
direction opposite to them. Visually, this event could pass as
a single event. Arnold and Keller (2024b) indicate that it is
possible to classify this event as a multi-event using ML. How-
ever, it would be beneficial to know the number of vehicles
included in an event to extract vehicle properties from multi-
event with approaches introduced in, e.g., Arnold and Keller
(2024a). Even more so if the vehicle count would be split into
the number of trucks and cars. As cars usually have two axles,
this information can be helpful to determine the truck proper-
ties more accurately. The example of Bridge B visualizes two
trucks driving in opposite directions (see Figure 2). Although
it can be recognized as a multi-event, the number of vehicles
is not also apparent. The displacement time series data also
contains the bridges’ oscillation in their respective first natural
frequency of approximately 3.66Hz for Bridge A and 3.75Hz
for Bridge B (Arnold et al., 2021).

Figure 2 shows that events can come in a significant variance
regarding vehicle type, count, order, and driving direction. A
superficial analysis of the used dataset is stated in Table 1. As
mentioned, disturbances caused by passing vehicles can occur
at Bridge B. Michel and Keller (2021a) show that they can
be detected; therefore, we only consider undisturbed events.
With 1118 events, the dataset is relatively small overall. Single
events are more frequent than multi-events, and cars form the
majority of registered vehicles overall. The highest number of
vehicles during one event amounts to 5 for Bridge A and 7 for
Bridge B, respectively. However, events with more than five
vehicles rarely occur; therefore, we cluster these events in a 4+

class.

Multi-events often consist of several vehicles in a series. Cars
would, e.g., queue behind a slower truck. Figure 3 illustrates
the skew in the dataset. It depicts the distribution of event dura-
tion grouped into single and multi-events for each bridge. Most
of the time, single events are shorter than multiple events, es-

pecially for Bridge B. Thus, the duration can indicate the num-
ber of vehicles on the bridge. Yet, both distributions overlap,
so additional features need to be found. Furthermore, Figure 3
highlights the dataset imbalance, as there are many more single-
vehicle events than multi-events.

4. Methodology

This section will describe our methodological approach as de-
picted in Figure 4. First, we will describe preprocessing and
data augmentation. Afterwards, the feature extraction step is
explained. Finally, our ML models concerning our classifica-
tion and regression tasks are introduced. For reasons of com-
parison, we orient us at the methodology of Arnold and Keller
(2024b).

4.1 Preprocessing and Data Augmentation

We reduce the time series data preprocessing to a minimum.
The only step we apply is to remove the offset for each se-
quence. This is necessary as a long-term drift occurs during
GBR measurement campaigns (Arnold and Keller, 2020). We
also do not remove bridge oscillations as they often correlate
with the presence of heavy vehicles.

We test all our approaches on two event types. First, we use
all available events as long as an event is in a not disturbed
mode. In a second step, we build on the results of Arnold and
Keller (2024b). Assuming we can distinguish between single
and multi-events, as they indicate, it would be enough only to
consider multi-events for our tasks. Even though using only
multi-events instead of all events drastically reduces the size of
the dataset, it also reduces its imbalance.

For data augmentation, we use a combination of x- and y-
scaling (xyScale) and no augmentation at all (None). Apart
from increasing our dataset, we try to tackle its skew as de-
scribed in Section 3 with data augmentation. x-Scaling corres-
ponds to down- and oversampling along the temporal axis. For
events with one vehicle, we oversample each event by factors
two and three, as single events are often shorter. Conversely,
we downsample events with more than one vehicle by the same
amount. y-Scaling is done afterward for all sequences by res-
caling them to a range of 0.1mm to 4.0mm (Arnold and Keller,
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Bridge A Bridge B

Figure 3. Distribution of event duration for both bridges grouped by single and multi-events. A more detailed breakdown of
multi-event into vehicle count classes has been omitted for presentation reasons.

Table 1. Overview of used dataset.

Structure Number of cars Number of trucks 1 vehicle 2 vehicles 3 vehicles 4+ vehicles

Bridge A 112 769 849 84 24 5
Bridge B 337 114 271 35 22 15

2024b). From each sequence, five new sequences are generated
through y-scaling.

4.2 Feature Extraction

Three different approaches for feature extraction are evaluated.
First, we use manually developed features listed in Table 2.
They are extracted for each reflector time series. Thus, with
14 features and two used reflectors, we generate 28 features per
event. We also apply scaling and principal component analysis
(PCA) as a second approach to reduce the dimensionality. We
transform our 28 features onto eight components since they ex-
plain over 95% of the variance for the Bridge A dataset without
data augmentation (Arnold and Keller, 2024b).

Finally, we use MiniRocket for automatic feature extraction.
MiniRocket applies 9996 convolutional kernels to the time
series and, from the results of the convolution, then calculates
the proportion of positive values (PPV) with

PPV(Z) =
1

n

n−1∑
i=0

[zi > 0]. (3)

More details can be found in Dempster et al. (2021). We use
the implementation of Löning et al. (2019) since it can handle
variable-length input.

4.3 Machine Learning Models

We investigate two different tasks in this study: Task (1), the
classification of events according to the number of vehicles
within, and Task (2), the prediction of cars and trucks within an
event. The first task is treated as a multi-class classification task
with the classes 1 vehicle, 2 vehicles, 3 vehicles, and 4+
vehicles. We implement the second task as a multi-output re-
gression by predicting a value for both car and truck. Since
regression can produce floating numbers, but vehicles only oc-
cur in natural numbers, we round the prediction to the nearest
integer.

The manually crafted features are inputted to a Random Forest
(RF). Concerning MiniRocket and Task 1, we follow the sug-
gestion of Dempster et al. (2021) to use a logistic regression
model for xyScale augmentation as there are more than 10 000
samples in the training set and a ridge model otherwise, mean-
ing for None augmentation. However, in the case of the regres-
sion task, we will always utilize a ridge regression model.

We apply grid-search with 5-fold cross-validation for hyper-
parameter optimization during training. We split our dataset
in a 80 : 20 manner for training and testing. Due to class
imbalance in Task (1), we apply class weights and use “bal-
anced accuracy” as the score for a grid search. The mean abso-
lute error (MAE) is the scoring metric for the regression task.
We do not optimize the hyperparameters for our MiniRocket
approach. Instead, we follow the suggestions of Dempster et al.
(2021) and use default parameters otherwise.

5. Results and Discussion

This study aims to investigate the potential of ML to count
vehicles in GBR bridge crossing events. In this section, we
will state and discuss the results of all approaches. The classi-
fication task models are evaluated based on balanced accuracy
(BA), overall accuracy (OA), precision (P), and recall (RC). Re-
gression performance is expressed by the coefficient of determ-
ination (R2), mean squared error (MSE), and mean absolute
error (MAE). The results for both tasks have been combined
in Table 3.

Regarding Task 1, the classification of events according to their
number of contained vehicles, RF with no data augmentation
outperforms the other models with a BA of 80.4%. Its confu-
sion matrix can be seen in Figure 5. MiniRocket comes second
with a BA 70.2%. Regarding all events, OA, P, and RC are
very high for all models independent of the data augmentation
method. This is mainly due to the imbalance of the dataset.
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Figure 4. Schema of our methodological approach.

Table 2. These 14 features have been extracted from the GBR time series data x. The Python packages numpy and scipy have been
used for calculation. All non-default values are stated. They correspond to the features used in Arnold and Keller (2024b).

Feature No. Name of Feature Basis of calculation

1 Maximum max(x)
2 Minimum min(x)
3 Mean min(x)
4 Standard Dev. mean(x2)
5 Skewness mean(x3)
6 Kurtosis mean(x4)
7 Median median(x)
8 Length len(x)
9 Quantile25 quantile(x, 0.25)
10 Quantile75 quantile(x, 0.75)
11 NbrPeaks len(find peaks(x, distance = 4,width = 5, rel height = 0.5))
12 xMinPosRatio argmin(x)/len(x)
13 Power sum(x2)/len(x)
14 MAD median abs deviation(x)

Table 3. Test results for all Task 1: Classification and Task 2: Regression. The best results concerning BA respectively R2 for each
event type are highlighted.

Event Type Data Augmentation Model
Task 1 Task 2

OA P RC BA R2 MSE MAE
in % in % in % in %

All events
None

RF 95.1 94.7 95.0 80.4 0.74 0.14 0.10
PCA RF 92.7 92.0 92.7 66.4 0.75 0.14 0.11
MiniRocket 93.5 93.0 93.4 70.2 0.80 0.11 0.08

xyScale
RF 92.3 92.1 92.3 63.8 0.35 0.25 0.22
PCA RF 88.5 90.2 88.5 67.9 0.50 0.20 0.18
MiniRocket 90.8 90.1 90.8 62.3 0.48 0.21 0.19

Multi-events
None

RF 81.1 81.1 81.1 67.1 0.64 0.65 0.30
PCA RF 70.2 70.9 70.2 50.0 0.66 0.54 0.30
MiniRocket 72.9 78.4 72.9 58.3 0.53 0.69 0.36

xyScale
RF 70.3 70.0 70.3 66.2 0.31 0.68 0.46
PCA RF 70.2 68.7 70.2 56.9 0.21 0.73 0.54
MiniRocket 78.4 78.9 78.4 72.7 0.25 0.77 0.55

Models tend to predict single events because the dataset is heav-
ily skewed towards this class. While both RF and MiniRocket
decrease in BA for xyScale compared to None, PCA RF per-
forms similarly in both cases. This indicates that scaling adds
no new information that linear transformation methods can ex-
tract, but also, the PCA makes this pipeline more robust. Over-
all, the PCA RF BA improves slightly when data augmentation
is applied. Conversely, RF decreases in BA for xyScale.

Using only multi-events in Task 1 leads to considerably worse
results, especially OA, P, and RC. Since no single events
are present in the dataset, it is much more balanced than
all events. Therefore, the models cannot simply predict one
vehicle. MiniRocket outperforms all other models for this event

type and xyScale with a BA of 72.7%. It even improves its BA
compared to all events. Figure 6 shows its confusion matrix.

PCA RF always has the worst BA except for all events
xyScale. Arnold and Keller (2024b) state that when only train-
ing on one bridge and predicting on another one, PCA RF
achieved the best results for single- vs multi-presence classi-
fication. However, with two bridges in the training dataset,
PCA RF seems to have issues extracting helpful features. One
reason could be that in the Bridge B dataset, events with several
vehicles take considerably longer than single events (see Fig-
ure 3), making it difficult to generalize. Data-driven models, in
general, might learn to rely mainly on the signal length (Feature
8 in Table 2).
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For a more detailed analysis of our extracted features and the
impact of data augmentation, we show the feature importances
for Task 1 of selected features in Figure 7. RF trained without
data augmentation rate the length (see Length 1 and Length 2)
of a signal highly. A single length feature would have sufficed
since the length is the same for both reflector time series of one
event. However, since a PCA does not considerably improve
an RF’s performance, we have refrained from doing so. Both
length features have a high importance. The overall length rat-
ing can be understood as the combination of those two. This
coincides with our observations from Section 3 regarding the
duration skew of the dataset. ML approaches trained using
xyScale place less value on the length. This suggests that our
intention of balancing the duration skew through scaling was
successful. Overall, their importance is spread more homogen-
eously over several features. They value, e.g., skewness and
kurtosis more highly. Also, “xMinPoRatio” has a high feature
importance. It describes the position of the global minimum
within an event relative to the signal length. For example, a
small “xMinPoRatio” means that the highest deflection hap-
pens early in an event, as it might be caused by a truck followed
by several cars. Interestingly, the feature importance of “Min-
imum” is less than 0.02 for all models. Intuitively, a high min-
imum is caused by heavy vehicles, which are often involved in
multi-presence events due to their speed. This feature seems to
be of less importance, though, when determining vehicle count.

The results of Task 2 are also stated in Table 3. This task
aims to estimate the number of cars and trucks in an event sep-
arately using multi-output regression. We have rounded the
regression results to the nearest natural number before evalu-

ation. This might skew our results. However, it is closer to
reality. MiniRocket achieves the best overall results with a R2

of 0.8 using all events without data augmentation. In this setup,
RF and PCA RF have comparable results. Also, MSE and MAE
are close to each other, indicating that the number of prediction
outliers is small. PCA RF achieves the best results after re-
moving single events from the dataset with a R2 of 0.66. RF
performs comparably. However, MiniRocket falls considerably
behind with a R2 of 0.53. It is barely better than predicting the
mean of the dataset, which is the case for an R2 of 0.5. The
decrease in performance of all models between all events and
multi-events indicates that the imbalance of the dataset regard-
ing the overwhelming majority of one-vehicle events leads to
good results for all events. Also, both MSE and MAE increase
due to this aspect.

Regarding the effect of data augmentation, it shows that the per-
formance drops heavily when using the xyScale dataset. For
all events and only multi-events, the R2 for all models is smal-
ler or equal to 0.5. MiniRocket only achieves a R2 of 0.25 for
multi-events with data augmentation. This suggests that the
length of a signal is an essential factor for vehicle count re-
gression. These observations coincide with those from Task 1.
However, the impact seems stronger for Task 2.

Figure 8 shows the feature importances of selected features for
the regression task. Similar to the classification, our data aug-
mentation reduces the relevance of the signal length. How-
ever, there is a more significant difference in the importance of
the length between all events and multi-events with data aug-
mentation than for Task 1. With data augmentation, the same
features are more critical, such as “skewness”, “kurtosis” and
“xMinPosRatio” showing concise behavior. Overall, the ML
approaches use considerably more features compared to task 1.
The similarity in the feature importance and the broader spread
of relevant features indicates that regression is a more complex
challenge despite both tasks being related.

6. Conclusion

In this study, we discuss ML approaches for data-driven de-
termination of vehicle count from GBR bridge displacement
time series data. Two bridges in Germany have been monitored
over several days. Together with UAV data for ground truth, a
database has been built. With this database, we investigate the
potential ML approaches to (1) classify events according to the
number of involved vehicles and (2) extract the exact number of
cars and trucks in an event via regression. To this end, we use
two measurement points per bridge. To simplify the classifica-
tion task, we group all events with four or more vehicles in one
class. We investigate the effect of applying data augmentation
and using only multi-events in the dataset.

Methodologically, we implement three different ML ap-
proaches, which can handle variable-length time series data.
First, we manually craft features extracted from the time series
data and pass it to an RF. Second, we scale those features and
reduce their dimensionality via PCA before passing the result-
ing eight components to an RF. Finally, we exploit MiniRocket,
which extracts features by applying convolutional kernels to the
time series data. It shows that RF achieves the best results for
the classification with a BA of 80.4%. However, this is mainly
due to a data set heavily imbalanced towards events with only
one vehicle. When removing these events, MiniRocket outper-
forms all other models when applying data augmentation. It can
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Figure 7. Feature importances of selected features for Task 1. We only show features if at least one model rates its importance over
0 02. This is done for the sake of clarity. The suffix number of each feature name represents the index of the time series from which it

was extracted.

classify multiple events according to their vehicle count with a
BA of 72.2%. From the feature importance of the RF, we can
also deduce that the event duration heavily impacts the results,
leading to good results for all events. Data augmentation can be
helpful regarding this aspect, as the feature importance of the
signal duration reduces when the xyScale dataset is used.

Similar observations can be drawn from our regression ap-
proach. Using all events and applying no data augmentation,
MiniRocket achieves R2 of 0.80. PCA RF has the best R2 of
0.66with only multi-events. Data augmentation worsens the
results for all events and only multi-events. The RF’s feature
importance shows similar behavior to the classification task.

We showed that a data-driven classification and regression ap-
proach for vehicle count determination is feasible. These
promising results can lead to more sophisticated methods for
GBR-based BWIM as current state-of-the-art focuses on single
events (Arnold and Keller, 2024a).
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