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Abstract

Robust and automated point cloud registration methods are required in many geoscience applications using multi-temporal and
multi-modal 3D point clouds. Therefore, a 3D keypoint-based coarse registration workflow has been implemented, utilizing the ISS
keypoint detector and 3DSmoothNet descriptor. This paper contributes to keypoint-based registration research through variations
of the standard workflow proposed in the literature, applying a two-staged strategy of global and local keypoint matching as well
as prototypical keypoint projection and fine registration based on ICP. Further, by testing the utilized detector and descriptor on
unstructured, multi-temporal and multi-source point clouds with variations in point cloud density, generalization ability is tested
outside benchmark data. Therefore, data of the Bøverbreen glacier in Jotunheimen, Norway has been acquired in 2022 and 2023,
deploying UAV-based image matching and terrestrial laser scanning. The results show good performance of the implemented ro-
bust matching algorithm PROSAC, requiring fewer iterations than the well-known RANSAC approach, but solving the rigid body
transformation with TEASER++ is faster and more robust to outliers without demanding pre-knowledge of the data. Further, the
results identify the keypoint detection as most limiting factor in speed and accuracy. Summarizing, keypoint-based coarse registra-
tion on low density point clouds, applying a global and local matching strategy and transformation estimation using TEASER++
is recommended. Keypoint projection shows potential, increasing number and precision in low density clouds, but has to be more
robust. Further research needs to be carried out, focusing on identifying a fast and robust keypoint detector.

1. Introduction

3D Point clouds are used for spatio-temporal high-resolution
change detection and deformation analysis in various applic-
ations such as in urban areas (Stilla and Xu, 2023), landslide
monitoring (Esposito et al., 2017; Mayr et al., 2018) and glacier
monitoring (Ulrich et al., 2021; Zahs et al., 2019; Schwalbe et
al., 2008), making use of various techniques like image match-
ing on the basis of unmanned aerial vehicles (UAVs) and ter-
restrial laser scanning (TLS). This requires the co-registration
of multi-temporal point clouds in a shared coordinate reference
system (CRS). This task is usually solved by georeferencing all
epochs either directly by additional sensors like GNSS or indir-
ectly by usage of measured ground control points (GCP).

3D point cloud registration without GCPs is in general defined
as an optimization problem to find rigid transformation para-
meters minimizing the projection error between a pair of point
clouds. In multi-temporal point clouds, robust transforma-
tion based on stable areas is required due to changes between
both epochs. An overview on registration approaches and cat-
egorizations is given in several papers, e.g. by Stilla and Xu
(2023), Dong et al. (2020), Zhang et al. (2020), Wujanz et al.
(2016) and Pomerleau et al. (2015). According to the categor-
ization by Stilla and Xu (2023), one registration approach is
the feature-correspondence-based registration. It promises 3D
point cloud registration without prior knowledge in any orienta-
tion. The basic idea is the calculation of corresponding features,
followed by a transformation estimation based on those feature
correspondences. While features can be embedded in global-
information-based and end-to-end registration pipelines, this
paper focuses on local-information-based registration. Hand-
crafted local feature detectors such as the intrinsic shape signa-
ture (ISS) (Zhong, 2009) and descriptors like FPFH (Rusu et al.,

2009) have been around for many years, using information in a
local neighborhood of points. Local learning-based detectors
like USIP (Li and Lee, 2019) and descriptors like 3DSmooth-
Net (Gojcic et al., 2019), implemented in this paper, have more
recently been developed.

Common to all learning-based methods is the dependency on
sufficient training data, which is especially relevant for regis-
tration methods based on global information and end-to-end
learning (Stilla and Xu, 2023; Zhang et al., 2020). Many of the
methods developed originate from the field of computer vis-
ion and use indoor data sets for training and evaluation like
3DMatch (Zeng et al., 2017) or data sets designed for object
recognition like Random Views set (Tombari et al., 2013). Fre-
quently used outdoor data sets are ETH (ETH Zürich, n.d.),
which is a TLS benchmark data set for viewpoint registration,
and the KITTI odometry (Geiger et al., 2012) data set. How-
ever, there is a gap between algorithm development on bench-
mark data and testing the generalization ability on real out-
door applications with variations in data and sensors. Probably
best investigated are hand-crafted local feature detectors and
descriptors, e.g. Guo et al. (2016) and Hänsch et al. (2014). But,
besides an evaluation on outdoor data by Pirotti et al. (2023),
there is a lack on testing those methods on unstructured data
captured in outdoor environments, as with the learning-based
methods.

This paper investigates robust and automated registration meth-
ods for 4D glacier monitoring using multi-temporal and multi-
source point clouds based on a 3D keypoint coarse registration
approach described in, e.g., Gojcic et al. (2019). The influ-
ence of data source and point cloud density is analyzed and
performance limiting influencing factors are identified. Further,
a two-staged matching strategy is tested, as well as a prototyp-
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Figure 1. Implemented keypoint based registration workflow consisting of three major steps: keypoint detection using ISS, keypoint description using
3DSmoothNet and matching in feature space and transformation estimation using SVD/TEASER++.

ical keypoint projection and fine registration approach. Section
2 describes the implemented workflow divided in 3D keypoint
detection, description, transformation estimation and workflow
modifications. Section 3 describes the data sets used to evaluate
the workflow, results are presented and discussed in section 4.
Section 5 summarizes the key findings.

2. Workflow

Figure 1 illustrates the major workflow steps of keypoint detec-
tion, description and transformation estimation.

2.1 Keypoint Detection

In the detection step, for both point clouds P and Q a subset
of keypoints p ∈ P and q ∈ Q is subsampled. Since corres-
ponding keypoints are to be found between p and q, the detec-
ted keypoints should match as closely as possible in terms of
the represented terrain point for a number of reasons: First, the
description of a pair of best corresponding keypoints will vary
if the detected points don’t represent identical terrain, making
matching by descriptors more difficult. Second, the achiev-
able transformation accuracy is lower, if the two points are
not identical. Third, as the computation time depends on the
number of keypoints, detection of a small number of high qual-
ity keypoints is preferred to reduce computational costs. But
since the sensor and the chosen viewpoints influence the spatial
sampling and occlusions, as well as the quality of the measured
3D points, 3D keypoint detection is limited in its capability to
detect best possible matching points.

A simple and fast approach is to randomly filter a fixed num-
ber n of points from both point clouds, like applied by Goj-
cic et al. (2019), without the need for point features like nor-
mals or eigenvalues. But since a random subsampling is lim-
ited to a random chance of identical point detection, keypoint
detector algorithms have been developed. Algorithms such as
Harris3D (Sipiran and Bustos, 2011), SIFT-3D (Rusu and Cous-
ins, 2011) and ISS (Zhong, 2009) sample points with high sali-
ency and rich geometry, making them good to describe and to
find correspondences. In this paper, the ISS algorithm is used.
It has shown good repeatability in studies by Guo et al. (2016).
Points with locally maximal and sufficiently varying eigenval-
ues are defined as keypoints. The eigenvalues are calculated
from the scatter matrix of the surrounding points in a local ra-
dius. For comparison, a random keypoint subsampling scheme
is tested as well.

2.2 Keypoint Description and Matching

The second workflow step is keypoint description. For each de-
tected keypoint pi ∈ p and qi ∈ q, a feature vector fpi ∈ Fp

and fqi ∈ Fq is calculated, where Fp and Fq denotes the global
n-dimensional feature spaces for both sets of keypoints. Such
a feature vector should be invariant to 3D affine transforma-
tions and should describe the point as uniquely as possible to
enable high matching rates and thus enable fast transformation
estimation. Handcrafted feature vectors such as FPFH (Rusu et
al., 2009), USC (Tombari et al., 2010) and SHOT (Salti et al.,
2014) first estimate a local reference frame to reach rotation in-
variance. Depending on the algorithm, feature vectors describe
variations of point density or normal vector orientations in a
local neighborhood. Since learning-based descriptors outper-
form those handcrafted descriptors in tests on benchmark data,
only the learning-based descriptor 3DSmoothNet (Gojcic et al.,
2019) is used. It is rotation invariant and although trained on
3DMatch RGB-D indoor data, it showed good generalization
across sensors and scenes on ETH outdoor data. In this paper,
the 32-dimensional feature vector is used.

Matching is done by a nearest neighbor (NN) search in global
feature space using an octree structure, resulting in a set of key-
point correspondences C. Since there are mismatches, a fil-
ter is applied to consider high quality matches in the following
transformation estimation. Following Gojcic et al. (2019), only
mutual correspondences defined as

C = {{pi ∈ p, qj ∈ q} | fqj = nn(fpi , Fq)∧
fpi = nn(fqj , Fp)}

(1)

are retained, where nn() denotes the nearest neighbor search
applying the L2 norm.

Besides the best match, the second nearest match is considered
for each pair of corresponding keypoints, in the following de-
noted as NN1st and NN2nd. For simplification, searching is
only done in one direction. Calculating the distance ratio R
between the first and second match as

R = 1− NN1st

NN2nd
{0 ≤ R ≤ 1} (2)

provides a quality estimation for each pair of matched keypo-
ints, used in the following transformation estimation algorithm.

2.3 Transformation Estimation

The resulting set of keypoint pairs is used in a transformation
estimation pipeline making use of the Progressive Sample Con-
sensus (PROSAC) algorithm (Chum and Matas, 2005) and sin-
gular value decomposition (SVD) (Umeyama, 1991). Since
the matches are expected to have a high amount of outliers,
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Figure 2. Workflow modifications after coarse registration: Improving keypoint identity by keypoint projection (light green), followed by a local
matching strategy and a patch based ICP.

either by changed topography, false detections or false matches,
a fast and robust algorithm has to be used. In contrast to the
Random Sample Consensus (RANSAC) algorithm, where each
pair of correspondences is selected with equal probability, the
PROSAC algorithm sort the pairs according to a quality func-
tion, in this case the distance ratio R. Starting from a minimum
subset of three pairs to solve the transformation, the set from
which the points are drawn is extended by the next best pair
of points. This continues until all pairs of points have been
used and the PROSAC algorithm continues like the RANSAC
algorithm. In consequence, high quality pairs are more likely
to be selected, solving the transformation with a smaller num-
ber of iterations. Its success depends on the quality function
used. As with the RANSAC algorithm, the number of inliers is
estimated in each iteration by checking the distances of the key-
point pairs for exceeding a threshold value τ in Euclidean space.
Like RANSAC, the PROSAC algorithm terminates when a pre-
defined number of inliers is reached or a predefined number of
iterations has been tested, so it requires prior knowledge of the
data. As an alternative, TEASER++ (Yang et al., 2021) can be
applied for rigid body transformation estimation. It promises
a very fast and robust transformation estimation without prior
knowledge and is tested for comparison.

2.4 Modifications

Assuming a coarse registration is possible through the proposed
workflow, suggestions are made in the following to increase the
number and accuracy of valid keypoint matches (see figure 2).

2.4.1 Local Matching. To improve the descriptor matching
with a given coarse registration, the global feature matching
task in Fp and Fq (see eq. 1) can be reduced to a feature match-
ing task in a local feature space. For a pair of correspondences
{pi ∈ p, qj ∈ q}, the subsets of local features in Fp and Fq are
defined as:

Fq(local) = {f ∈ Fq |L2Norm(qf , pi) ≤ r}
Fp(local) = {f ∈ Fp |L2Norm(pf , qj) ≤ r}

(3)

where pf and qf denote the keypoints corresponding to a fea-
ture f .

2.4.2 Keypoint Projection. To overcome the problem of
missing keypoint identity between two point clouds, for a pair
of corresponding keypoints {pi ∈ p, qj ∈ q}, keypoint pi shall
be projected in point cloud Q. Therefore, in both point clouds
a patch of k points is selected in a local sphere with radius r
around the keypoints.

PatchP = {k ∈ P |L2Norm(k, pi) ≤ r}
PatchQ = {k ∈ Q |L2Norm(k, qj) ≤ r}

(4)

Since both clouds are already roughly registered, ICP should
be applicable in case of a correct correspondence. Thus, both
patches are registered by a point-to-point ICP algorithm, where
the Euclidean distance between both corresponding keypoints
{pi, qj} is used as initial transformation estimation of both
patches. By applying the resulting transformation T to the first
keypoint, it is projected to the second cloud, where a new, ori-
ginally not measured point is created with a better correspond-
ence than the first matched keypoint. The list of corresponding
keypoints is also updated. To reduce the computational costs,
the keypoint projection is applied only to correspondences with
a high estimated quality.

2.4.3 Fine Registration. Despite the optimizations, the
keypoint registration is still based on point pairs which don’t
correspond in identity. So, a fine registration algorithm is
needed, making use of the rich point cloud geometry. There-
fore, all points in a local sphere of radius r around all final inlier
keypoints {pfinal, qfinal} are searched. Practically, these sets
are local patches (LP) in the point clouds.

LPP = {k ∈ P | ∃ p ∈ pfinal, L2Norm(k, p) ≤ r}
LPQ = {k ∈ Q | ∃ q ∈ qfinal, L2Norm(k, q) ≤ r}

(5)

Based on those local patches around the keypoint pairs, an ICP
fine registration is performed. This simple approach follows
the assumption of stable areas in a local neighborhood of inlier
keypoints.

3. Evaluation Data

For evaluation, a multi-temporal and multi-sensor measurement
of the front area of the Bøverbreen glacier in Jotunheimen, Nor-
way has been carried out in mid September 2022 and late Au-
gust 2023 with UAV imaging and TLS in both epochs. Figure 3
shows the study area with an illustration of the glacier outlines
and targets used for georeferencing.

UAV Image Data. In total, 385 aerial images were taken in
2022 and 881 images in 2023 by nadir cross-grid flights with a
few additional 45° off-nadir (oblique) images applying the UAV
DJI Phantom 4 RTK. Four GCPs measured with RTK-GNSS as
well as the UAV RTK-GNSS were used for integrated geore-
ferencing in WGS84/UTM32N and ellipsoidal heights. Some
remaining signalized ground points were used as check points.
Image data processing was done by Structure-from-Motion
(SfM) and Multi-View Stereo (MVS) with Agisoft Metashape
version 2.0.2, resulting in two 3D point clouds for 2022 and
2023. More detail on the data is provided in Elias et al. (2024).
Using Metashape, both point clouds were slightly filtered by a
minimum of three images used for 3D point reconstruction and
subsampled to four clouds with a pointspacing of 2 cm, 5 cm,
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Figure 3. Study area: Bøverbreen glacier in Jotunheimen, Norway. Four
UAV GCPs were used for georeferencing, others as check points.

Cylinder targets were used for TLS georeferencing. Map:
WGS84/UTM32N.

10 cm (see figure 4) and 50 cm for performance reasons as well
as workflow evaluation on varying densities. Ground truth point
cloud registration of both epochs was done using the georefer-
encing as basis, followed by a fine registration applying an ICP
in manually selected stable areas.

TLS. The TLS data was collected with a RIEGL VZ-400i
using 21 scan positions in 2022 and 12 in 2023, distributed
in the glacier’s front area. Georeferencing was done using
13 respectively 12 temporary cylindrical targets in 2022 and
2023, measured with RTK-GNSS in WGS84/UTM32N and el-
lipsoidal heights. Registration of single scan positions and
both epochs was done using RiSCAN PRO version 2.8. First,
all scan positions from 2022 were registered using RiSCAN’s
automatic registration algorithm and multi station adjustment.
Second, all scan positions from 2023 were aligned to the 2022
point cloud with fixed registered scan positions, again using
the automatic registration workflow and the multi station ad-
justment. For the registration of scan positions, the maximum
residuals at the cylinders are 1.7 cm for the scan positions in
2022 and 1.5 cm for the scan positions in 2023. Both are con-
sidered within the expectable accuracy range. In 2022, the max-
imum uncertainty in plane features and cylinders is in the south-
eastern area, because of a scan position arrangement without
loop closure. In 2023, most uncertainty is in the glacier front
area from north to south, since there are rather large changes in
topography. But no systematic error due to changes between the
two epochs can be identified. Finally, the project was georefer-
enced using the cylindrical targets from both epochs. Besides
some manual outlier filtering, point clouds from both epochs
have been downsampled applying a voxel filtering with a res-
olution of 2 cm, 10 cm and 50 cm, reducing the original size
from about 200 M/130 M points to 20 M/15 M, 4 M/4 M and
0.4 M/0.4 M for 2022/2023, respectively. Figure 5 shows the
resulting point cloud for 2022. The laser scans are limited in
terms of completeness on the sheer ice of the glacier, due to
the scanner’s wavelength in near infrared. Cross-source ground
truth registration between UAV and TLS point clouds was done
like UAV point cloud registration, using the georeferencing as
basis, followed by a fine registration applying an ICP in manu-
ally selected stable areas.

The proposed keypoint based pairwise registration workflow
has been tested on nine pairs of source and target clouds,
using inter-source (TLS:TLS, UAV:UAV) and cross-source

Figure 4. UAV point cloud from 2023, subsampled with a voxel filter of
10 cm to approx. 16 M points. Scale in meters.

Figure 5. TLS point cloud from 2022, subsampled with a voxel filter of
2 cm to approx. 20 M points. Scale in meters.

(TLS:UAV) clouds with varying point densities of 2 cm, 10 cm
and 50 cm. Please note that due to the large amount of data, the
UAV:UAV registration could only be calculated after a voxel
filtering of 5 cm. Since both point clouds are initially correctly
registered, the source cloud is transformed using an arbitrary
transformation matrix T . Thus, the transformation searched for
is its inverse T−1.

4. Results and Discussion

For comparability, results will be discussed grouped by sub-
tasks and not fully consistent with the workflow sequence
presented.

Keypoint Detection. Keypoints were detected using ISS with
a radius of 1.0 m for 2 cm (5 cm) and 10 cm point spacing and
2.0 m for 50 cm point spacing, controlling the local neighbor-
hood. Local roughness parameters (λ1, λ2) were set to 0.9. Fig-
ure 9 shows example results for ISS keypoint detection in the
UAV point cloud from 2023. For comparison, a similar num-
ber of random keypoints has been sampled. It is in the nature
of the detection method, that results for randomly detected key-
points may vary with each iteration, but tests confirmed that
they remain quite stable in their illustrated magnitudes. Apply-
ing the ground truth transformation, detected keypoints were
matched by a mutual NN search in Euclidean space, providing
information about theoretically possible true matches. Figure 6
summarizes the results at certain distance thresholds. First of
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Figure 6. Repeatability of keypoint detection between two epochs as number of mutual nearest neighbor (NN) matches between the source and target
point clouds in relation to the smaller total number of detected keypoints (%). Thresholds on x-axes denote to the maximum NN distance under ground

truth transformation. Left: Tested on total point clouds, Right: non-glacial parts of the clouds. Subplot title: Tested source to target (src : tar)
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all, it can be stated that the random detection of keypoints (ex-
pectably) has a worse repeatability of about 80 % lower in av-
erage than the detection of keypoints with a dedicated detection
algorithm. Further, repeatability in TLS:TLS and UAV:TLS re-
gistration increases with a lower point density and remains quite
stable in UAV:UAV registration. Probably, filtering the TLS
data has the effect of a low-pass filter and reduces the com-
plexity to the essential geometry, which is even detectable in
lower densities or with gaps in data. Overall, the repeatability
is rated as too low. This depends in particular on the desired ac-
curacy and therefore the threshold value. However, considering
the high information density and quality of the point clouds, a
higher repeatability should be aimed for. Even with a threshold
value of 50 cm, about 60 % of the detected keypoints are still
not repeatable, which considerably limits the efficiency of the
entire workflow. The lack of repeatability is not essentially
caused by the deformations between the two epochs. Detec-
tion in only non-glacial areas, which can be regarded as largely
stable in the context of the applied threshold values, brought
only minor improvements. In the following analysis, the ISS
keypoints were used for matching and transformation estima-
tion, since they show the better results compared to randomly
chosen ones.

Keypoint Description and Matching. Feature description
has been done in a local radius of 3.0 m in high and medium
densities and 6.0 m in low densities. Global and local match-
ing results are shown in figure 7, categorized according to a
distance threshold under ground truth transformation and in re-
lation to the respective possible matches from the NN search.

Matching results show, that in general, global feature matching
delivers higher success rates in lower point densities. Second,
the matching can be significantly improved by a regional match-
ing strategy applying a coarse registration, even with a conser-

vative radius of 5 m set in this investigation. However, the abso-
lute number of valid matches is quite low in relation to the abso-
lute number of detected keypoints. For example 205 keypoints
have been globally matched below 10 cm in TLS:TLS with a
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Figure 7. Recall of global and local mutual NN-based keypoint matching
in feature space as percentage of possible mutual nearest neighbors in

Euclidean space under ground truth transformation and different
thresholds. Features computed using 3DSmoothNet.
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medium density, which is 35.1 % of possible valid matches, but
just about 2 % of the total number of keypoints. The problem
is particularly evident in global cross-source registration, where
the total number of possible matches is already low. In addition,
the performance of the descriptor is significantly worse here. As
a result, only a few individual points are matched correctly.

Keypoint Projection. After applying the coarse transforma-
tion estimated from the global matches, local matches with a
quality indicating feature distance ratio of 0.6 and higher were
projected in patches with a local radius of 0.5 m in high and me-
dium densities and 2.0 m in low densities from the source cloud
to the target cloud. Figure 8 shows the results as an increase
or decrease in the number of valid keypoint matches. In most
registrations, the number of valid matches could be increased
slightly, especially in UAV:UAV registrations. The largest in-
crease can be seen in the low density TLS:TLS registration.
However, in some cases the number of valid matches was lower.
This is likely due to the influence of point density on the ICP,
which is particularly relevant for TLS:TLS and mixed registra-
tion and requires further investigation. As a standard point-to-
point ICP algorithm is used, the computational time for projec-
tion is high, especially in high-density clouds. However, at low
densities it may have the potential to significantly increase the
accuracy of matched keypoint pairs.
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Figure 8. Increase or decrease of true keypoint matches after keypoint
projection under coarse transformation.

Transformation Estimation. For transformation estimation,
PROSAC in combination with SVD and for comparison
TEASER++ is tested in global and local transformation estima-
tion. The PROSAC inlier distance is set to 20 cm in global and
5 cm in local transformation. Figure 10 shows an example of
PROSAC inliers in the UAV point cloud from 2023. Follow-
ing Pomerleau et al. (2015), results are evaluated by comparing
the estimated transformation matrix and the ground truth trans-
formation, considering the errors in translation et and rotation
er:

∆T =

[
∆R ∆t

0 1

]
= TrT

−1
g (6)

Figure 9. ISS detected 31158 keypoints in UAV 2023 point cloud
(10 cm). Scale in meters.

Figure 10. 225 PROSAC inlier keypoints after local matching in UAV
2023 point cloud (10 cm). Scale in meters.

Figure 11. Patches around inlier keypoints used for ICP fine registration.
Scale in meters.

et = ∥∆t∥ =
√

∆x2 +∆y2 +∆z2 (7)

er = arccos

(
trace(∆R)− 1

2

)
(8)

Figure 12 shows the resulting errors for global and local trans-
formation estimation. In general, the registration estimation is
more precise in inter-source registration tasks. While show-
ing precise registration estimations over all point densities in
TLS:TLS registration, the precision is better with higher point
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Figure 12. Global and local transformation estimation with error in rotation (er) and translation (et) with respect to the ground truth transformation
matrix.

densities in UAV:UAV and cross-source registration. A correl-
ation between the repeatability of the keypoint recognition and
the precision of the registration can be recognised, resulting in
more precise registration results with better repeatability and a
higher absolute number of possible matches. Further, the re-
gistration with TEASER++ is more precise in most cases and
shows less outliers while at the same time being significantly
faster than PROSAC and SVD. But, the implemented PROSAC
showed good results in comparison to the standard RANSAC,
solving the transformation in a few iterations, provided a real-
istic amount of inliers. The following ICP registration is based
on local patches around PROSAC inlier keypoints (see figure
11). It improves registration results in most cases, but shows
outliers in low density cross-source registration tasks. In most
inter-source registration tasks, global registration shows com-
patible results to local registration with more outliers applying
PROSAC and SVD. However, this might be due to a lower in-
lier threshold set to PROSAC search in global registration. In
conclusion, precise registration is possible with global registra-
tion at low densities and can be increased if a larger number
of correct matches is available. However, a control mechanism
should be implemented to detect erroneous estimates.

5. Conclusion

The results demonstrate that keypoint-based coarse registration
is possible with an accuracy in the low cm-range. Keypoint
detection is clearly identified as the most limiting factor, re-
stricting accuracy by constraining registration to a relatively
small number of point pairs with precise repeatability. In ad-
dition, it limits the computation time. Since only a small num-
ber of repeatable keypoints is detected, a large number of key-
points must be recognised to ensure enough true pairs in the
final registration, which renders most of the detection and fol-
lowing computation redundant since most keypoints are out-
liers. Therefore, there is a need for an algorithm for keypo-

int detection that is characterized by high repeatability and ro-
bustness against varying point cloud densities, allowing cross
source registration and reducing the total number of keypoints
to be detected. Keypoint description most likely showing a lack
in cross source description. Matching can be significantly im-
proved applying a local matching strategy. Hence, a two-stage
registration pipeline is recommended using global matching in
the first instance, followed by a local matching strategy. Des-
pite the good results of the implemented PROSAC algorithm,
TEASER++ is recommended as it is significantly faster. Work-
ing on low density point clouds seams to be sufficient, espe-
cially when considering the much lower computational costs.
The benefits and robustness of keypoint projection has to be in-
vestigated further, but might improve the precision in low dens-
ities. In future work, besides the influence of different paramet-
erizations, learning-based keypoint detectors and in addition,
other promising approaches such as image-to-geometry regis-
tration (e.g. Elias et al., 2019) based on rendered images of the
3D point clouds shall be tested.
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