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Abstract

Deep neural networks have shown exceptional performance in various tasks, but their lack of robustness, reliability, and tendency to
be overconfident pose challenges for their deployment in safety-critical applications like autonomous driving. In this regard, quan-
tifying the uncertainty inherent to a model’s prediction is a promising endeavour to address these shortcomings. In this work, we
present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that incorporates dynamic predictive uncertainties into the training
process by pixel-wise weighting of the well-known cross-entropy loss (CE). Through extensive experimentation, we demonstrate
the superiority of U-CE over regular CE training on two benchmark datasets, Cityscapes and ACDC, using two common backbone
architectures, ResNet-18 and ResNet-101. With U-CE, we manage to train models that not only improve their segmentation per-
formance but also provide meaningful uncertainties after training. Consequently, we contribute to the development of more robust
and reliable segmentation models, ultimately advancing the state-of-the-art in safety-critical applications and beyond.⋄

1. Introduction

Humans often make poor decisions and reach erroneous con-
clusions while overestimating their abilities, a phenomenon
known as the Dunning-Kruger effect (Kruger and Dunning,
1999). Although deep neural networks are highly effective at
solving semantic segmentation problems (Minaee et al., 2022),
they also suffer from overconfidence (Guo et al., 2017). Ad-
ditionally, neural networks lack interpretability (Gawlikowski
et al., 2022) and struggle to distinguish between in-domain
and out-of-domain samples (Lee et al., 2018). These flaws
are particularly relevant in safety-critical applications, such as
autonomous driving (McAllister et al., 2017) and medical ima-
ging (Leibig et al., 2017), as well as in computer vision tasks
that have high demands on reliability, like industrial inspection
(Steger et al., 2018, Heizmann et al., 2022) and automation
(Landgraf et al., 2023a, Ulrich and Hillemann, 2021), where
robust predictions are crucial. Misclassifying pixels in these
contexts can lead to severe consequences, emphasizing the need
for robust and trustworthy segmentation models.

Previous work suggests that quantifying the uncertainty inher-
ent to a model’s prediction is a promising endeavour to en-
hance the safety and reliability of such applications (Landgraf
et al., 2023b, Leibig et al., 2017, Lee et al., 2018, Mukhoti and
Gal, 2018, Mukhoti et al., 2023). These uncertainties provide
additional insights beyond the common softmax probabilities,
revealing regions where the model is indecisive and likely to
make errors. Surprisingly, the utilization of these uncertainties
during the training of segmentation models has not been thor-
oughly explored.

In this work, we present a novel Uncertainty-aware Cross-
Entropy loss, referred to as U-CE, that addresses this gap by
incorporating dynamic uncertainty estimates into the training
process as shown in Figure 1. Through pixel-wise uncertainty
weighting of the well-known cross-entropy loss (CE), we har-
ness the valuable insights provided by the uncertainties for more
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Figure 1. U-CE introduces an uncertainty-aware cross-entropy
loss that dynamically incorporates the predictive uncertainties

provided by Monte Carlo Dropout (MC-Dropout) into the
training process.

effective training. With U-CE, we manage to train models
that are naturally capable of predicting meaningful uncertainties
after training while simultaneously improving their segmenta-
tion performance.

Our contributions can be summarized as follows: Firstly, we
propose the U-CE loss function, which utilizes uncertainty es-
timates to guide the optimization process, emphasizing regions
with high uncertainties. Secondly, we conduct extensive ex-
periments on two benchmark datasets, Cityscapes (Cordts et
al., 2016) and ACDC (Sakaridis et al., 2021), using two com-
mon backbones, ResNet-18 and ResNet-101 (He et al., 2016),
demonstrating the superiority of U-CE over regular CE training.
Lastly, we present additional insights, limitations, and potential
improvements for U-CE through multiple ablation studies and
a thorough discussion.

2. Related Work

Hereinafter, we briefly review the related work on uncertainty
quantification and uncertainty-aware segmentation.
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2.1 Uncertainty Quantification

Deep neural networks, with their millions of model paramet-
ers and non-linearities, have proven effective in solving com-
plex tasks in natural language processing (Otter et al., 2020)
and computer vision, like semantic segmentation (Minaee et
al., 2022). Unfortunately, due to their complexity, the com-
putation of the exact posterior probability distribution of the
network’s output is infeasible (Blundell et al., 2015, Loquer-
cio et al., 2020). Consequently, approximate uncertainty quan-
tification methods are employed to offer a practical solution to
tackle the intractability of the exact posterior distribution. The
most prominent methods include Bayesian Neural Networks
(MacKay, 1992), Monte Carlo Dropout (Gal and Ghahramani,
2016), and Deep Ensembles (Lakshminarayanan et al., 2017).
We will refer to these methods as traditional uncertainty quan-
tification techniques throughout the following.

A mathematically grounded, though computationally complex,
approach to uncertainty quantification is provided by Bayesian
Neural Networks, which transform a deterministic network into
a stochastic one using probabilistic distributions placed over the
activations or the weights (Jospin et al., 2022). For instance,
Bayes by Backprob (Blundell et al., 2015) employs variational
inference to learn approximate distributions over the weights.
These can be used to create an ensemble of models with differ-
ently sampled weights to approximate the posterior distribution
of the predictions.

Gal and Ghahramani simplify this approximation process by
using Monte Carlo Dropout (Gal and Ghahramani, 2016).
While dropout is usually applied as a regularization technique
(Srivastava et al., 2014), Monte Carlo Dropout uses this concept
to sample from the posterior distribution of a network’s predic-
tion at test time. In its original form, Monte Carlo Dropout
only captures the epistemic uncertainty inherent to the model.
To obtain a more comprehensive measure of uncertainty that in-
cludes the aleatoric uncertainty, which captures the noise inher-
ent in the observations, Monte Carlo Dropout can be combined
with learned uncertainty predictions and assumed density filter-
ing (Gast and Roth, 2018, Kendall and Gal, 2017, Loquercio et
al., 2020).

The current state-of-the-art uncertainty quantification method
are Deep Ensembles, which consist of an ensemble of trained
models that generate diverse predictions at test time (Laksh-
minarayanan et al., 2017). Due to the introduction of ran-
domness through random weight initialization or different data
augmentations across ensemble members (Fort et al., 2020),
Deep Ensembles are well-calibrated (Lakshminarayanan et al.,
2017). Multiple studies demonstrated that Deep Ensembles
generally outperform other uncertainty quantification methods
across varying tasks (Ovadia et al., 2019, Wursthorn et al.,
2022, Gustafsson et al., 2020). However, this performance gain
is associated with high computational cost.

In addition to the aforementioned approximate uncertainty
quantification methods, there has been a growing interest in
deterministic single forward-pass approaches, which offer ad-
vantages in terms of memory usage and inference time. For
example, Van Amersfoort et al. (Van Amersfoort et al., 2020)
and Liu et al. (Liu et al., 2020) explore the concept of distance-
aware output layers. While these methods demonstrate good
performance, they are not competitive with the current state-
of-the-art and require significant modifications to the training
process (Mukhoti et al., 2023). Another approach, proposed by

Mukhoti et al. (Mukhoti et al., 2023), simplifies the two previ-
ous methods by employing Gaussian Discriminant Analysis for
feature-space density estimation after training. Although they
perform on par with Deep Ensembles in some settings, their ap-
proach still necessitates a more sophisticated training approach.
Additionally, fitting the feature-space density estimator is only
possible after training, which is not suitable for U-CE where
meaningful uncertainties are required during training.

Overall, uncertainty quantification remains an active and
evolving field of research, with various approaches offering
their own advantages and disadvantages. For our specific case,
Monte Carlo Dropout emerges as the preferred option due to its
ease of use, minimal impact on the training process, and com-
putational efficiency compared to Deep Ensembles. Through
Monte Carlo Dropout sampling, we can compute the predictive
uncertainty to apply pixel-wise weighting of the well-known
cross-entropy loss. With predictive uncertainties, we refer to
the standard deviation of the softmax probabilities of the pre-
dicted class provided by Monte Carlo Dropout sampling.

2.2 Uncertainty-aware Segmentation

In the domain of uncertainty-aware segmentation, researchers
have explored various techniques to incorporate uncertainty
measures into the training process. While traditional uncer-
tainty quantification methods have successfully been employed
in tasks such as visual bias mitigation in classification (Stone
et al., 2022), these techniques have been largely overlooked or
underutilized in the field of semantic segmentation. We provide
an overview of notable works that leverage uncertainty-aware
techniques for segmentation tasks in various domains. Addi-
tionally, we discuss how U-CE addresses the gap towards full
utilization of traditional uncertainty quantification methods dur-
ing training.

Some of the earlier work on more effective training has origin-
ally been designed for object detection. For example, Lin et al.
(Lin et al., 2017) introduced the Focal Loss (FL) that down-
weights the contribution of easy examples to shift the focus
more towards hard examples. Another closely related technique
is online hard example mining by Shrivastava et al. (Shrivast-
ava et al., 2016). They propose to automatically select hard
examples to only learn from them and completely ignore the
easy examples. By now, both methods have been successfully
adapted for semantic segmentation (Jadon, 2020, Wang et al.,
2022).

Another line of work focuses on the identification and compens-
ation of ambiguities and label noise. Kaiser et al. (Kaiser et al.,
2023) propose adding a learned bias to a network’s logits and
introducing a novel uncertainty branch to induce the compensa-
tion bias only to relevant regions. However, unlike U-CE, their
approach does not utilize uncertainties to make training more
robust, rather they aim to avoid new noise during data annota-
tion.

More closely related to our work, Bischke et al. (Bischke et
al., 2018) and Bressan et al. (Bressan et al., 2022) propose to
leverage uncertainties to improve training on imbalanced aer-
ial image datasets. The former use the per-class uncertainty of
the model together with the median frequency to balance train-
ing (Bischke et al., 2018). We argue that dynamically weight-
ing each pixel individually during training, which is what U-
CE does, is even more valuable. The latter utilize pixel-wise
weights, but only consider the class and labeling uncertainty
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Figure 2. A schematic overview of the training process of U-CE. U-CE integrates the predictive uncertainties of a Monte Carlo
Dropout (MC-Dropout) model into the training process to enhance segmentation performance. In comparison to most applications of

Monte Carlo Dropout, U-CE utilizes the uncertainties not only at test time but also dynamically during training by applying pixel-wise
weighting to the regular cross-entropy loss.

(Bressan et al., 2022) instead of the predictive uncertainties like
U-CE.

In addition to these methods, Chen et al. (Chen et al., 2022)
propose to transform the embeddings of the last layer from
Euclidean space into Hyperbolic space to dynamically weight
pixels based on the hyperbolic distance, which they interpret
as uncertainty. Similarly, Bian et al. (Bian et al., 2020) pro-
pose an uncertainty estimation and segmentation module to es-
timate uncertainties that they use to improve the segmentation
performance. Unlike U-CE, however, these two works do not
incorporate traditional uncertainty quantification methods into
training.

In contrast to existing literature on uncertainty-aware segment-
ation, U-CE fully utilizes predictive uncertainties dynamically
during training. By pixel-wise uncertainty weighting of the
cross-entropy loss, U-CE harnesses valuable insights from the
uncertainties to guide the optimization process. This approach
enables more effective training, resulting in models that are
naturally capable of predicting meaningful uncertainties after
training while also improving their segmentation performance.

3. Methodology

In the following, we provide an overview of U-CE, explain our
novel uncertainty-aware cross-entropy loss and outline the im-
plementation details.

3.1 Overview

The central idea of U-CE is to incorporate predictive uncertain-
ties into the training process to enhance segmentation perform-
ance. As depicted in Figure 2, we propose two simple yet highly
effective adaptions to the regular training process:

1. During training, we sample from the posterior distribution
with Monte Carlo Dropout to obtain predictive uncertain-
ties alongside the regular segmentation prediction.

2. We apply pixel-wise weighting to the regular cross-
entropy loss based on the collected uncertainties.

To compute predictive uncertainties during training, we choose
Monte Carlo Dropout. It is straightforward to implement, re-
quires minimal tuning, and is computationally more efficient

than Deep Ensembles. However, it is worth noting that other
uncertainty quantification methods could also be utilized for U-
CE. Exploring these alternatives is an interesting avenue for fu-
ture work, which we will discuss in Section 5.

3.2 Uncertainty-aware Cross-Entropy

Segmentation Sampling. In contrast to typical usage of Monte
Carlo Dropout, U-CE incorporates the sampling process from
the posterior distribution not only at test time but also dur-
ing training. To compute the necessary uncertainties for our
uncertainty-aware cross-entropy loss, we perform β sampling
iterations at each training step. This generates β segmentation
samples in addition to the regular segmentation prediction. Not-
ably, gradient computation is disabled during the sampling pro-
cess as it is unnecessary for backward propagation, which re-
lies solely on the regular segmentation prediction. By disabling
gradient computation during sampling, we reduce the additional
computational overhead of U-CE in terms of training time and
GPU memory usage.

Uncertainty-aware Cross-Entropy Loss. The final objective
function of U-CE builds upon the well-known categorical cross-
entropy loss and can be defined as:

Lu-ce = − 1

N

N∑
n=1

wn

C∑
c=1

yn,c · log(pn,c), (1)

where Lu-ce is the uncertainty-aware cross-entropy loss for a
single image, N is the number of pixels in the image, C is the
number of classes, yn,c is the respective ground truth label, pn,c

is the respective predicted softmax probability, and wn repres-
ents the pixel-wise uncertainty weight. It is worth noting that
Equation 1 simplifies to the regular cross-entropy loss by setting
wn to one for all pixels.

Pixel-wise Uncertainty Weight. The pixel-wise uncertainty
weight wn can be formulated as:

wn = (1 + σn)
α, (2)

where σn denotes the predictive uncertainty, and α controls the
influence of the uncertainties in an exponential manner. The
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predictive uncertainty σ represents the standard deviation of the
softmax probabilities of the predicted class of the segmentation
samples.

4. Experiments

In this section, we conduct an extensive range of experiments
to demonstrate the value of incorporating predictive uncertain-
ties into the training process. Firstly, we provide quantitative
results comparing regular CE to U-CE under diverse settings.
Secondly, we analyze qualitative examples. Lastly, we provide
multiple ablation studies.

4.1 Setup

Architecture. For all of our experiments, we employ Dee-
pLabv3+ (Chen et al., 2018) as the decoder and either a ResNet-
18 or ResNet-101 (He et al., 2016) as the encoder. Both back-
bones are commonly used for semantic segmentation (Minaee
et al., 2022, Zhang et al., 2020), making our work highly com-
parable and serving as an excellent baseline for future research.

Monte Carlo Dropout. In order to convert our architectures
into Monte Carlo Dropout models, we add a dropout layer after
each of the four residual block layers of the ResNets, inspired
by Kendall et al. (Kendall et al., 2015) and Gustafsson et al.
(Gustafsson et al., 2020).

Training. For all training processes, we use a Stochastic Gradi-
ent Descent (SGD) optimizer (Robbins and Monro, 1951) with
a base learning rate of 0.01, momentum of 0.9, and weight de-
cay of 0.0001. Additionally, we multiply the learning rate of
the decoder and segmentation head by ten. Finally, we employ
polynomial learning rate scheduling to decay the initial learning
rate during the training process, following the formula:

lr = lrbase · (1−
iteration

total iterations
)0.9, (3)

where lr is the current learning rate, and lrbase is the initial base
learning rate. In all training processes, we use a batch size of 16
and train on four NVIDIA A100 GPUs with 40 GB of memory
using mixed precision (Micikevicius et al., 2017).

Datasets. All of our experiments are based on either the
Cityscapes dataset (Cordts et al., 2016) or the ACDC dataset
(Sakaridis et al., 2021). Both datasets are publicly available
street scene datasets aimed at advancing the current state-of-
the-art in autonomous driving. The former consists of 2975
training images, 500 validation images, and 1525 test images.
The latter contains 1600 training images, 406 validation im-
ages, and 2000 test images. Although both datasets share the
same 19 evaluation classes and a void class, the ACDC data-
set exclusively focuses four adverse conditions: fog, nighttime,
rain, and snow.

Data Augmentations. To prevent overfitting, we apply a com-
mon data augmentation strategy for all training procedures, re-
gardless of the dataset or architecture used. The strategy in-
cludes the following steps:

1. Random scaling with a factor between 0.5 and 2.0.

2. Random cropping with a crop size of 768× 768 pixels.

3. Random horizontal flipping with a flip chance of 50%.

Encoder 200 Epochs 500 Epochs
FL (Lin et al., 2017) CE U-CEα=1 U-CEα=10 FL (Lin et al., 2017) CE U-CEα=1 U-CEα=10

Dropout (0%) RN18 66.0 70.0 - - 70.0 72.0 - -
Dropout (10%) RN18 66.1 69.4 69.6 71.6 69.9 72.3 72.3 74.2
Dropout (20%) RN18 65.4 69.0 69.5 71.8 69.4 71.9 72.6 73.5
Dropout (30%) RN18 64.3 68.2 69.0 71.0 69.1 71.9 72.4 74.1
Dropout (40%) RN18 62.2 66.6 67.7 70.5 68.1 71.1 71.1 73.7
Dropout (50%) RN18 58.2 64.3 65.3 69.6 65.5 69.0 69.4 72.6
Dropout (0%) RN101 73.1 74.6 - - 75.6 76.1 - -
Dropout (10%) RN101 72.8 74.8 75.1 76.1 75.3 76.3 76.6 77.5
Dropout (20%) RN101 72.6 74.6 74.8 76.6 75.3 76.3 77.0 77.7
Dropout (30%) RN101 71.8 74.5 74.7 76.1 75.5 76.4 76.6 77.5
Dropout (40%) RN101 71.2 74.7 74.0 75.8 75.0 76.1 76.5 78.2
Dropout (50%) RN101 70.3 74.1 73.7 75.9 74.4 76.6 76.6 77.3

Table 1. Quantitative comparison on the Cityscapes dataset
(Cordts et al., 2016) for different dropout ratios. The provided
numbers represent the mIoU ↑ in %. Best respective results are

marked in bold.

Encoder 200 Epochs 500 Epochs
FL (Lin et al., 2017) CE U-CEα=1 U-CEα=10 FL (Lin et al., 2017) CE U-CEα=1 U-CEα=10

Dropout (0%) RN18 50.1 56.3 - - 57.6 62.2 - -
Dropout (10%) RN18 50.2 55.5 56.4 60.0 57.4 62.1 62.8 65.0
Dropout (20%) RN18 49.0 54.6 56.1 60.5 56.9 61.5 62.0 65.0
Dropout (30%) RN18 46.6 52.2 54.3 59.2 54.9 59.6 61.6 64.3
Dropout (40%) RN18 42.6 48.9 50.8 58.2 51.1 56.8 58.8 63.9
Dropout (50%) RN18 39.9 47.7 49.3 56.3 48.2 53.3 56.0 62.4
Dropout (0%) RN101 60.4 65.0 - - 66.3 68.8 - -
Dropout (10%) RN101 58.9 64.5 65.3 67.0 65.8 68.4 69.3 69.9
Dropout (20%) RN101 58.8 64.1 65.0 65.8 65.2 68.5 68.7 70.2
Dropout (30%) RN101 57.3 62.7 64.3 65.3 65.1 68.4 68.5 69.9
Dropout (40%) RN101 54.7 61.1 63.1 65.4 63.1 67.8 67.8 70.0
Dropout (50%) RN101 52.3 58.0 60.2 63.7 61.1 66.0 67.4 70.2

Table 2. Quantitative comparison on the ACDC dataset
(Sakaridis et al., 2021) for different dropout ratios. The provided
numbers represent the mIoU ↑ in %. Best respective results are

marked in bold.

Encoder 200 Epochs 500 Epochs
mIoU ↑ ECE ↓ mUnc mIoU ↑ ECE ↓ mUnc

CE RN18 69.0 0.035 0.088 71.9 0.025 0.088
U-CEα=1 RN18 69.5 0.036 0.089 72.6 0.027 0.088
U-CEα=10 RN18 71.8 0.029 0.085 73.5 0.018 0.084
CE RN101 74.6 0.026 0.080 76.3 0.041 0.076
U-CEα=1 RN101 74.8 0.024 0.079 77.0 0.041 0.076
U-CEα=10 RN101 76.6 0.022 0.073 77.7 0.040 0.073

Table 3. A more detailed quantitative comparison between
regular CE and U-CE on the Cityscapes dataset (Cordts et al.,

2016) using a dropout ratio of 20%.

Evaluation. Since both test splits are withheld for benchmark-
ing purposes, we utilize the validation images for testing in all
our experiments. Unless otherwise specified, we only report
single forward pass results based on the original validation im-
ages without resizing or sampling for a fair comparison between
all of the models. Also, we set the number of segmentation
samples β to ten by default.

Metrics. For quantitative evaluations, we primarily report the
mean Intersection over Union (mIoU), also known as the Jac-
card Index, to measure the segmentation performance. In addi-
tion to the mIoU, we also utilize the Expected Calibration Error
(ECE) (Naeini et al., 2015) to evaluate the calibration as well
as the mean class-wise predictive uncertainty (mUnc) to quant-
itatively compare the resulting uncertainties.

4.2 Quantitative Evaluation

Tables 1 and 2 outline a quantitative comparison between FL
(Lin et al., 2017), regular CE, and our proposed U-CE loss us-
ing two different α values for various dropout ratios and train-
ing lengths on the Cityscapes (Cordts et al., 2016) and ACDC
(Sakaridis et al., 2021) datasets. For FL, we followed the ori-
ginal publication and set the focusing parameter γ to 2.0 as this
worked best in their experiments (Lin et al., 2017).

FL (Lin et al., 2017) performed the worst in all our experi-
ments, possibly due to insufficient hyperparameter tuning. Re-
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Figure 3. Example images from the Cityscapes and ACDC validation set (a), corresponding ground truth labels (b), the model’s
segmentation predictions (c), a binary accuracy map (d), and the predictive uncertainty (e). White pixels in the binary accuracy map
are either incorrect predictions or void classes, which appear black in the ground truth label. For the uncertainty prediction, brighter

pixels represent higher predictive uncertainties. The first three rows depict results from models with a ResNet-18 backbone and
dropout ratio of 20%, trained for 200 epochs on Cityscapes (Cordts et al., 2016). The last three rows show examples from models

using a ResNet-101 backbone and a dropout ratio of 20%, trained for 500 epochs on the ACDC dataset (Sakaridis et al., 2021).

markably, U-CEα=10 achieves the highest mIoU across all dro-
pout ratios, even outperforming dropout-free baseline models in
most cases. Notably, U-CEα=10 achieves a maximum improve-
ment of up to 9.3% over regular CE when training on ACDC
(Sakaridis et al., 2021) for 200 epochs using a ResNet-18 with
a dropout ratio of 40%. On average, U-CEα=10 outperforms
CE by 2.0% on Cityscapes (Cordts et al., 2016) and by 4.6%
on ACDC (Sakaridis et al., 2021). Interestingly, U-CEα=1 also
matches or improves upon regular CE training in most cases.
On average, U-CEα=1 outperforms CE by 0.3% on Cityscapes
and by 1.3% on ACDC.

Table 3 provides additional information on the ECE and mUnc
for CE and U-CE using a dropout ratio of 20%. In comparison
to regular CE and U-CEα=1, which exhibit similar results, U-
CEα=10 not only improves segmentation performance but also
yields slightly better calibrated networks, as measured by the
ECE. Moreover, the mUnc is also slightly lower for U-CEα=10.

Overall, Tables 1, 2 and 3 provide strong evidence for the ef-
fectiveness of leveraging predictive uncertainties in the training
process.

4.3 Qualitative Evaluation

In addition to the quantitative evaluation, we also provide qual-
itative examples in Figure 3 showing the original input image,
the corresponding ground truth label, the model’s segmentation

prediction, a binary accuracy map, and the student’s predict-
ive uncertainty. The first three rows depict results from models
with a ResNet-18 backbone and a dropout ratio of 20%, trained
for 200 epochs with CE, U-CEα=1, U-CEα=10 on Cityscapes
(Cordts et al., 2016). The last three rows show examples from
models using a ResNet-101 backbone and a dropout ratio of
20%, trained for 500 epochs on the ACDC dataset (Sakaridis et
al., 2021). The binary accuracy map visualizes incorrectly pre-
dicted pixels and void classes in white, and correctly predicted
pixels in black.

Generally, for large areas and well-represented classes like
road, building, sky, and car, all models perform exceptionally
well with minimal errors. Furthermore, there is a strong cor-
relation between the binary accuracy map and the predictive
uncertainty, indicating that all models provide meaningful un-
certainties.

Nonetheless, there are nuanced differences between the models.
For example, in the first two rows of Figure 3, which represent
models trained CE and U-CEα=1, there are noticeable misclas-
sifications on top of the human standing in front of the truck.
Naturally, this area is also accompanied with high uncertain-
ties. In contrast, the model trained with U-CEα=10 exhibits sig-
nificantly fewer difficulties, resulting in a better segmentation
prediction and lower uncertainties.

A similar situation is observable in the last three rows, showing
examples from the more challenging ACDC dataset (Sakaridis
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α 1 2 4 6 8 10 12 14 16
RN18 (Cityscapes) 69.5 70.0 70.7 71.2 71.5 71.8 71.0 47.0 70.9
RN101 (Cityscapes) 74.8 75.2 75.6 76.1 76.4 76.6 76.3 75.8 72.6
RN18 (ACDC) 56.1 56.9 57.6 58.8 58.8 60.5 60.3 60.1 37.5
RN101 (ACDC) 65.0 65.0 65.7 65.5 66.0 65.8 66.7 64.5 19.9

Table 4. Ablation study on the impact of α. The provided
numbers represent the mIoU ↑. Best respective results are

marked in bold.

β 0 2 6 10 14 18
CE 69.0 (1:49) - - - - -
U-CEα=10 - 71.1 (1:52) 71.6 (2:01) 71.6 (2:27) 71.6 (2:53) 71.7 (3:17)

Table 5. Ablation study on the number of segmentation samples
β. In addition to the mIoU ↑, we provide the training time in

hours:minutes ↓ in paranthesis.

Random Flipping Random Scaling mIoU ↑
CE × × 66.1

✓ × 67.0
× ✓ 68.6
✓ ✓ 69.0

U-CEα=1 × × 65.8
✓ × 67.8
× ✓ 69.1
✓ ✓ 69.5

U-CEα=10 × × 69.6
✓ × 70.1
× ✓ 71.8
✓ ✓ 71.8

Table 6. Ablation study on the impact of various data
augmentations strategies.

lrbase 10−1 10−2 10−3 10−4 10−5

CE 50.5 69.0 55.9 35.6 18.9
U-CEα=1 56.0 69.5 57.6 36.9 19.3
U-CEα=10 2.0 71.8 65.0 47.6 25.3

Table 7. Ablation study on the base learning rate lrbase. The
provided numbers represent the mIoU ↑. Best results are marked

in bold.

et al., 2021). Here, the model trained with regular CE struggles
to correctly segment the truck on the left as well as differen-
tiate between the sidewalk and the terrain on the right side of
the image. The model trained with U-CEα=1 does slightly bet-
ter in these areas, but is equally uncertain. Only the model
trained with U-CEα=10 successfully classifies the truck and dif-
ferentiates between the sidewalk and the terrain decently. Con-
sequently, the predictive uncertainty is also lower in these areas.

In summary, the qualitative findings presented in Figure 3 con-
cur with our quantitative evaluation, manifesting the efficacy of
U-CE across different datasets and architectures.

4.4 Ablation Studies

In addition to the quantitative and qualitative evaluation, we
also present multiple ablation studies. Unless otherwise noted,
we confined all of the ablation studies to models that use a
ResNet-18 as the backbone, have a dropout ratio of 20%, and
were trained for 200 epochs.

Impact of α. The most influential hyperparameter of U-CE
is α as it exponentially controls the weighting of the CE loss.
Table 4 demonstrates the impact of different α values on the
mIoU for both backbones, ResNet-18 (RN18) and ResNet-101

(RN101), on both Cityscapes and ACDC. Evidently, the seg-
mentation performance consistently improves as α increases
until it reaches ten, which stands as the best value in three out
of four cases across the two datasets and architectures. Thus,
using ten as the default value for α seems to be a fair estimation
to achieve the best results, not only for the mentioned cases but
potentially for other applications as well. Further increasing α
leads to a degradation in mIoU. Additionally, training becomes
more unstable as models overly focus on uncertain pixels, res-
ulting in some models failing to converge properly. Nonethe-
less, U-CE exhibits robustness against changes in α, offering
a wide range of valid hyperparameters that lead to improved
segmentation results compared to regular CE training.

Impact of β. Table 5 exhibits another ablation study on the
number of segmentation samples β. Interestingly, there is
no clear benefit of sampling more often than six times, es-
pecially with regard to the training time. As indicated by
the training times, U-CEβ=6 increases the necessary training
time by approximately 10%, whereas U-CEβ=10 extends it by
roughly 35%. For comparison, Gal and Ghahramani (Gal and
Ghahramani, 2016) recommend sampling ten times to get a
reasonable estimation of the predictive mean and uncertainty.

Impact of Data Augmentations. The impact of various data
augmentation strategies on CE and U-CE is demonstrated in
Table 6. The results show that incorporating additional data
augmentations on top of the baseline strategy of random crop-
ping with a crop size of 768 × 768 pixels improves the mIoU
across the board. More importantly, this ablation study con-
firms that U-CE consistently outperforms CE across different
data augmentation strategies, indicating its effectiveness in im-
proving segmentation performance.

Impact of lrbase. Table 7 shows the ablation study on the base
learning rate lrbase. The most notable comparison is between
regular CE and U-CEα=1, which demonstrates that U-CE is not
limited to specific learning rates. U-CEα=1 consistently outper-
forms regular CE for all examined base learning rates, despite
increasing the training loss by approximately 9% as indicated
by the mUnc in Table 3. Moreover, U-CEα=10 exceeds the
results of CE and U-CEα=1 for all base learning rates except
10−1, which caused divergence. Overall, this ablation study
confirms the value of leveraging predictive uncertainties during
training, irrespective of the learning rate, which is arguably the
single most important hyperparameter in deep learning (Ben-
gio, 2012).

5. Discussion

In contrast to previous approaches, U-CE fully leverages pre-
dictive uncertainties obtained by Monte Carlo Dropout during
training. As a result, we manage to train models that not only
improve their segmentation performance but are also naturally
capable of predicting meaningful uncertainties after training as
well.

While U-CE appears to have no apparent shortcomings, except
for a minor increase in training time, we acknowledge the need
for a transparent discussion about its potential limitations. Our
aim is to effectively guide future work in pushing the bound-
aries of state-of-the-art techniques, especially in safety-critical
applications like autonomous driving.

Limitations. One limitation of U-CE arises in the absence of
densely annotated ground truth labels. If most pixels are either
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labeled as background or designated to be ignored while train-
ing, U-CE will likely offer next to no benefit, except for a higher
loss around object boundaries. Additionally, U-CE may not
contribute to improved segmentation performance if the net-
work is already overfitting the training data. Having said that,
the impact of U-CE on generalization needs further examina-
tion.

Future Work. With regards to future work, we have multiple
suggestions that might be worth investigating. Potentially, the
results of U-CE could be further improved if the quality of the
uncertainty estimates would be better. Therefore, it would be
interesting to integrate Deep Ensembles (Lakshminarayanan et
al., 2017), the state-of-the-art uncertainty quantification method
(Ovadia et al., 2019, Wursthorn et al., 2022, Gustafsson et al.,
2020), with U-CE, which we could not realize because of com-
putational restraints. On a similar note, it could be worth em-
ploying warmup epochs, which we omitted to refrain from in-
troducing another hyperparameter. Additionally, we would like
to see α removed from U-CE by incorporating statistical hypo-
thesis testing. This would be beneficial in two ways: Firstly,
it would remove the most influential hyperparameter of U-CE.
Secondly, and maybe more importantly, it would leverage all
of the available uncertainties and not just the predictive uncer-
tainty. Finally, we encourage other researchers to incorporate
U-CE into state-of-the-art semantic segmentation approaches
and to explore its usefulness in other computer vision tasks that
rely on pixel-wise predictions, such as depth estimation.

Overall, we believe that U-CE presents a promising paradigm
in semantic segmentation by dynamically leveraging uncertain-
ties to create more robust and reliable models. Despite a minor
increase in training time and room for further improvement, we
see no reason not to employ U-CE in comparison to regular CE.

6. Conclusion

In this paper, we introduced U-CE, a novel uncertainty-aware
cross-entropy loss for semantic segmentation. U-CE incorpor-
ates predictive uncertainties, based on Monte Carlo Dropout,
into the training process through pixel-wise weighting of the
regular cross-entropy loss. As a result, we manage to train
models that are naturally capable of predicting meaningful un-
certainties after training while simultaneously improving their
segmentation performance. Through extensive experimentation
on the Cityscapes and ACDC datasets using ResNet-18 and
ResNet-101 architectures, we demonstrated the superiority of
U-CE over regular cross-entropy training.

We hope that U-CE and our thorough discussion of potential
limitations and future work contribute to the development of
more robust and trustworthy segmentation models, ultimately
advancing the state-of-the-art in safety-critical applications and
beyond.
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