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ABSTRACT: 

Land cover change information plays an indispensable role in environmental monitoring, climate change research, agricultural planning, 
urban development, biodiversity conservation, and natural disaster risk assessment. Recently, the free access of Landsat imagery and 
improvement of computation capacity especially supported by Google Earth Engine platform provides great chance in time-series 
land-cover change monitoring. We used the stratified land-cover monitoring strategy and time-series Landsat imagery to develop a 
novel global 30 m land-cover dynamic product with fine classification system from 1985 to 2022 (GLC_FCS30D). Firstly, we used 
the multitemporal classification to generate the time-series impervious surfaces, wetlands and tidal flat products. Then, we proposed 
to combine the continuous change detection algorithm and local adaptive updating model to capture the land-cover changes, and to 
generate a new global 30 m land-cover dynamic product (impervious surfaces, wetlands and tidal flat types were excluded in this step). 
Next, after overlapping the three multitemporal classification products and the time-series dynamical land-cover dataset, the novel 
GLC_FCS30D was developed, which contained 35 fine land-cover types. Lastly, using the global 84526 validation points in 2020, the 

GLC_FCS30D was validated to show the great performance with an overall accuracy of 80.88%, and had obvious advantages over 

other global land-cover products in diversity of land-cover types and mapping accuracy.  

1. INTRODUCTION 

Land cover and its change information is vital and basic 
information in climate-change analysis, ecological environment 
assessment, food security research and sustainable development 
(Liu et al., 2021; Zhang et al., 2021b; Zhang et al., 2019; Zhang 
et al., 2018). Over the last millennium, approximately 3/4 earth’s 

land surfaces experienced the land-cover changes (Winkler et al., 
2021). As the global population grows and economic 
development demands, this rate of land cover change is 
accelerating (Zhang et al., 2024b), which directly caused a series 
of ecological and environment issues such as: global warming, 
extreme climate, rising sea levels, etc. (Song et al., 2018). Thus, 
understanding and quantifying the global land-cover changes and 
its temporal dynamic is greatly important in pursuing the 

sustainable development goals. 

Remote sensing technique, owning to its large-scale and repeated 
observations, has been widely used to land-cover mapping and 
change monitoring (Chen et al., 2015; Friedl et al., 2010; Wang 
et al., 2023; Zhang et al., 2024b). Overall, the land-cover 
mapping have made great progresses and continually released a 
lot of global land-cover products, ranging from 1km to 10 m, 
which provides important support for understanding the current 
status of land cover (Ban et al., 2015; Grekousis et al., 2015). 

Comparatively, how to accurately capture the land-cover changes 
from the multitemporal satellite observations was more difficult, 
and the corresponding global land-cover dynamic products are 
also sparser. Nowadays, there are two widely used and coarse 
land-cover dynamic datasets (MCD12Q1 (Friedl et al., 2010) and 
CCI_LC (Defourny et al., 2016)), both of them gave global land-
cover change information every year and spanned the period 
more than 20 years. However, the previous work in Song et al. 

(2018) demonstrated that the 60% global land-cover changes 
associated with human activities, and human-induced changes 
were usually fragmented and small. Namely, the coarse global 
land-cover dynamic products cannot fulfil the goal of accurately 
quantifying the global land-cover changes. 

Recently, the improvement of computation capacity and free-
access the medium-resolution satellite imagery (especially for the 

open access of Landsat in 2008 (Woodcock et al., 2008)) gave 
great opportunity in the high-resolution land-cover change 
monitoring. For example, the multitemporal GlobeLand30 
products in 2000, 2010 and 2020 were developed by combining 
time-series Landsat imagery and POK (pixel- and object-based 
methods with knowledge) based method (Chen et al., 2015). 
These sparse temporal global land-cover dynamic products can 
capture land-cover change details but miss the land-cover change 

process and some short-time changes (cropland fallow). So, the 
annual land-cover change monitoring has been pursuing and also 
generate some products (Friedl et al., 2022; Potapov et al., 2022; 
Xian et al., 2022; Yang and Huang, 2021). For example, Friedl et 
al. (2022) used all available Landsat observations to generate 
annual 30 m  maps of global land-cover during 2001-2020 
(named as: GLanCE) and achieved good accuracy of 77.0±2.0%. 
This dataset is an important milestone because it was the first 

global 30 m annual land-cover maps, however, its simple 
classification system (containing seven land-cover types) and 
lacking of land-cover change information before 2000 might 
affect its widespread use. 

In this study, we present a novel global 30 m land-cover dynamic 
product with fine classification system (named as: 
GLC_FCS30D), which contains 35 fine land-cover types, covers 
the long periods from 1985 to 2022 with 26 time-steps (1985, 
1990, 1995, 2000, 2001, 2002, …, 2021, 2022). The 5-years 

updating cycle before 2000 is because the sparse availability of 
Landsat imagery (Roy et al., 2014). The goal of the study is to 
describe the basic principle of the methods, the performance of 
data products and the land-cover change analysis of 
GLC_FCS30D, while the specific details can be followed at 
corresponding data description articles. 

2. METHODS

We used the stratified land-cover monitoring strategy and time-
series Landsat imagery to develop a novel global 30 m land-cover 
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dynamic product with fine classification system from 1985 to 

2022 (GLC_FCS30D). Figure 1 illustrates the main flow of how 
to generate the GLC_FCS30D land-cover change monitoring 
datasets. It can be found that three multi-temporal thematic 
products (including, impervious surfaces, wetlands and tidal flats) 
are indepdentently developed (the land covers were independtly 
classified for each epoch). Then, we used the continuous change-
detection algorithm and full time-series Landsat observations to 
generate the long time-series land-cover dynamic dataset for othe 

land cover types. Finally, we combined the three multi-temporal 
thematic products and the long time-series land-cover dynamic 
dataset to create the comprehensive GLC_FCS30D.  

 

Figure 1. The main flow of how to generate the GLC_FCS30D 

dataset. 

2.1 GISD30: the global 30 m impervious surface dynamic 

products 

The impervious surface is independently developed because it is 

a human-induced land-cover type and spatial fragmented and 
spectral heterogeneity (Zhang et al., 2021a; Zhang et al., 2020). 
Although a lot of works have been paid to capture impervious 
surface expansion, most works concentrated on the urban areas, 
that is, the small and fragmented rural areas usually suffered the 
obvious omission and commission errors (Wang et al., 2022). To 
accurately capture global impervious surface dynamics and solve 
the problem of collecting training samples, we proposed a novel 

automated monitoring strategy for capturing impervious surface 
dynamics.  

Specifically, we assumed that the land-cover conversion from 
natural surfaces to impervious surface is irreversible, and then 
derived the pervious surfaces and impervious surfaces training 
samples in 2020 from several existing impervious surface 
products (GAIA (Gong et al., 2020), GHSL (Florczyk et al., 
2019), GlobeLand30 (Chen et al., 2015) and GLC_FCS30 
(Zhang et al., 2021b)) after applying the refinement rules. 

Afterwards, we directly migrated the pervious surfaces training 
samples according to the irreversible assumption and 
simultaneously spectrally generalized impervious surface 
reflectance spectra in 2020 to other periods after radiometric 
normalization. Next, combining the generalized reflectance 
spectra of impervious surfaces and migrated pervious surface 
samples, the local adaptive random forest classification models 
were trained and the spatiotemporal consistency optimization 

algorithm was applied to develop the time-series impervious 
surface products (Zhang et al., 2022a).  

In terms of the quality of GISD30, it was validated in the previous 
work in Zhang et al. (2022a) using 23322 globally distributed 
ground-truths samples with an overall accuracy of 90.1% and a 
kappa coefficient of 0.865, which were higher than other global 
30 m impervious surface products. Meanwhile, the qualitative 
comparisons with other datasets also explained the superiority of 

the GISD30 in capturing the spatiotemporal dynamic of 

impervious surfaces in complex landscapes such as: rural areas, 

cloud-contamination tropical areas. 

2.2 GWL_FCS30D: the global 30 m wetland dynamic 

products  

Due to the serious spectral heterogeneity and quick temporal 

variations, there was great uncertainty in wetland mapping and 
dynamic monitoring (Pekel et al., 2016; Zhang et al., 2023b). 
More attentions were paid on the single wetland analysis (water 
body, mangrove forest, tidal flats) (Hu et al., 2017), and still 
lacking the comprehensive global 30 m wetland maps. Several 
open-access coarse wetland products still have significant 
differences in global wetland area (Guo et al., 2017), that is, the 
estimation of global wetlands is still challenging and necessary. 
To quantify the spatial distribution of global 30 m wetlands, we 

also develop a novel global 30 m wetland dynamic products 
(named as: GWL_FCS30D). 

Table 1. The description of fine wetland classification system 
came from work of Zhang et al. (2023b). 

 

Table 1 gave the description of the fine wetland classification 

system in the GWL_FCS30D, which contained two level-1 
groups (inland wetland and coastal wetland), and further divided 
into 5 inland subcategories (swamp, marsh, flooded flat, saline 
and permanent water) and 3 coastal subcategories (mangrove, 
salt marsh and tidal flat) (Zhang et al., 2023b). 

One of the biggest challenge in wetland mapping is how to collect 
the globally distributed training samples. To solve the problem, 
we proposed to make full use of these open-access global wetland 

products, and combine the visual interpretation, expert prior 
knowledge and some refinement rules to generate high-
confidence training samples. Then, we generate the highest and 
lowest water-levels and phenological features from time-series 
Landsat and Sentinel-1 observations, and further adopted the 
stratified classification strategy and local adaptive classifications 
to develop the coastal wetland and inland wetland maps.  

Using the globally distributed and confident training samples, 

multisourced and time-series satellite imagery, and stratified 
classification strategy, we characterize the 1985-2022 wetland 
dynamics at 30 m resolution (Zhang et al., 2024a). To ensure the 
spatiotemporal consistency of the GWL_FCS30D, the temporal 
consistency optimization algorithm, benefiting from the 
spatiotemporal pixels, to remove the ‘salt and pepper’ noise 
caused by the pixel-based classification in each wetland map. 

In terms of the accuracy metrics of the GWL_FCS30D wetland 

maps, we firstly collected a total of 25708 validation points 
(including 15151 wetland points and 10558 non-wetland points) 
by integrating high-resolution imagery, time-series Landsat 
observations (auxiliary dataset) and visual interpretation. Then, 
the GWL_FCS30D was validated, giving an overall accuracy of 
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86.95±0.44% and a kappa coefficient of 0.822. Meanwhile, using 

the third-party time-series validation datasets (LCMAP(Stehman 
et al., 2012) and LUCAS (d'Andrimont et al., 2020)), our 
GWL_FCS30D also showed great stability in the producer’s and 
user’s accuracies (P.A. and U.A.), with an U.A. of 88.98%–90.52% 
in LCMAP dataset and 84.67%–85.71% in LUCAS dataset. 
(Zhang et al., 2024a). 

2.3 GTF30D: the global 30 m tidal flat products  

Tidal flat, as a special coastal wetland subcategory, was defined 
as the tidal flooding zones during the high and low tides of a 
coastal spring tide (Dyer et al., 2000). The tidal flats affected the 
daily tide variations, thus, how to accurately capture tidal flats’ 
distribution and dynamic is also difficult. Although Murray et al. 
(2019) and Murray et al. (2022) proposed the classification-based 

method to generate the global 30 m tidal flat products, however, 
they cannot cover the high latitude areas in the Northern 
Hemisphere (>60° N) and were analyzed to suffer commission 
error (Jia et al., 2021; Zhang et al., 2022b). To characterize the 
global tidal flats (also covering the >60° N areas), we proposed 
an automated tidal flat mapping method by combining the lowest 
and highest tide information (Zhang et al., 2023a).  

Specifically, we analyzed the spectra sensitivity of water body, 

tidal flats and inlands, and proposed a novel low tide index (name 
as: LTideI), which was demonstrated to be more robust and 
accurate in capturing the low tides from time-series satellite 
imagery. Then, we composited the lowest and highest tide 
information using the proposed LTideI index and time-series 
Landsat imagery to generate the potential tidal flat areas after 
using the Ostu algorithm (Otsu, 1979), and further import the 
prior tidal flat products and refinement rules to generate a 

globally distributed tidal flat training sample pool. Afterwards, 

the local adaptive random forest classifier at each 5°× 5° 

geographical tile (global coast was split into 588 tiles) was 
independently trained using the regional training samples and 

multi-temporal tide-level features. Finally, the time-series global 
30 m tidal flat maps were generated, and the temporal changes of 
tidal flats were also captured (Zhang et al., 2023a). 

In order to analyse the performance of GTF30D, a globally 
distributed validation dataset including 6,828 tidal flat points and 
7,166 non-tidal flat points were collected. The overall accuracy 
and kappa coefficient metrics were calculated from the confusion 
matrix, and reached 90.34% and 0.807, respectively. Meanwhile, 

the cross-comparisons with other national and global tidal flat 
products also indicated that the GTF30D can be more accurate in 
capturing the tidal flats and supressing the commission error 
(Zhang et al., 2023a). 

2.4 Monitoring global land-cover changes from continuous 

Landsat observations  

In terms of the remaining land-cover changes, we proposed to use 
the continuous change detection (CCD, (Zhu and Woodcock, 
2014; Zhu et al., 2012) to capture the time-points of land-cover 
changes. The key-point of CCD is to fit the time-series 
observations into two components: trend term, seasonal term as 
following equation:  

𝜌(𝑖, 𝑡) = 𝑎0,𝑖 + 𝑐1,𝑖 × 𝑡 + ∑ (𝑎𝑘,𝑖 × 𝑐𝑜𝑠 (
2𝑘𝜋

𝑇
𝑡) + 𝑏𝑘,𝑖 × 𝑠𝑖𝑛 (

2𝑘𝜋

𝑇
𝑡))𝑛

𝑘=1   

Where the harmonic terms represented the seasonal variations, 
and the order of 𝑛  was determined by the number of valid 
Landsat observations, and usually selected as 3 (Xian et al., 2022). 

Using the CCD continuous land-cover change detection method, 
we can identify the temporal stable areas and the time-points of 

changed areas. As previous studies have demonstrated that the 

spatiotemporal stable areas usually achieved the higher 
accuracies (Radoux et al., 2014; Zhang and Roy, 2017), we 
further generate the spatiotemporal stable training samples from 
the temporal stable areas. Afterwards, we combined the 
phenological and texture features to train the random forest 

models at each 5°×5°(global land surfaces was split into 961 

tiles) and then combine the changed information (deriving from 
CCD algorithm) to update their land-cover information (Zhang et 
al., 2024b). 

To improve rationality of time-series land-cover changes, the 
spatiotemporal optimization algorithm was still necessary to 
supress the ‘salt-and pepper’ noisy caused by the pixel-based 

classifications. In the GLC_FCS30D products, the 
spatiotemporal homogeneity was calculated for each changed 

pixel in the local window of 3×3×3 (Zhang et al., 2024b). It 

should be noted that the GLC_FCS30D, only applying the change 

detection and dynamic updating, didn’t contain impervious 
surface, wetland and tidal flat, thus, we needed to further overlay 
the GISD30, GWL_FCS30D and GTF30D into the 
GLC_FCS30D according to their definitions.  

2.5 The validation of GLC_FCS30D dynamic products 

Quantifying the performance of GLC_FCS30D was also an 
indispensable step, we collected a globally distributed validation 
datasets (name as: SRS_Val) (Zhao et al., 2023). It used the 
stratified random sampling strategy to increase the sample size in 
the heterogeneity areas and rare land-cover types, and collected 
by combining the visual interpretation, quality-controlling and 
multisourced auxiliary datasets based on the Google Earth 
Engine platform (https://eliza-

ting.users.earthengine.app/view/crd-vit). It contained 84526 
validation points at 17 fine land-cover types for the basic year of 
2020.  

 

Figure 2. The spatial distribution of SRS_Val validation dataset 

in 2020, which came from our previous work in Zhao et al. (2023). 

In terms of the accuracy metrics, four classical metrics, came 
from the confusion matrix, were calculated including: overall 
accuracy and kappa coefficient (measuring the comprehensive 
performance between the map and reference data), user’s 
accuracy (measuring the omission error of each land-cover type) 
and producer’s accuracy (measuring the commission error of 
each land-cover type) (Olofsson et al., 2014).  
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3. RESULTS 

3.1 The overview of GLC_FCS30D land-cover dynamic 

maps 

Figure 3 illustrates the schematic diagram of the GLC_FCS30D 
during 1985-2022, and two enlargements gave the land-cover 
changes in two typical areas, in which experienced obvious 
deforestation (Amazon rainforest area) and urban expansion 
(China’s Yangtze River Delta). Overall, the GLC_FCS30D 
accurately captured the global land-cover distributions (left 

figure), that is, the dominated land-cover types were forest, 
cropland, bare land and grassland, and the permanent snow and 
ice mainly distributed on the Greenland and high altitude 
mountains. In terms of capturing land-cover changes, the obvious 
deforestations in the Amazon rainforest were clearly captured in 
the GLC_FCS30D, especially during 2000-2010 (right figure). 
Similarly, the rapid urban expansion during 2000-2010 in the 
Yangtze River Delta was also revealed in our GLC_FCS30D 
dataset.  

 
Figure 3. The schematic diagram of the GLC_FCS30D from 
1985-2022. 

3.2 Quantifying the accuracy of GLC_FCS30D products 

Table 2 gives the quantitative accuracy metrics of GLC_FCS30D 
using the SRS_Val dataset in 2020. Overall, the GLC_FCS30D 
reached the overall accuracy of 80.88±0.27%. In terms of the 

specific land-cover type, the GLC_FCS30D achieved the higher 
accuracy in the cropland, forest, water body, permanent snow and 
ice and impervious surface and because 1) the former four types 
owned the obvious unique spectra characteristics or were the 
dominated land-cover types over the globe; 2) impervious 
surfaces were independently developed in the work of Zhang et 
al. (2022a). Comparatively, the grassland, shrubland and bare 
land had lower accuracies because they usually distributed on the 

semi-arid or arid areas, and there were confusions between them 
due to their similar spectra or the co-existence relationships 
(Zhang et al., 2024b). 

Using the SRS_Val validation datset, we further calculated the 
accuracy metrics of six widely used global land-cover products 
(GlobeLand30 (Chen et al., 2015), FROM_GLC30 (Gong et al., 
2013), GLC_FCS30 (Zhang et al., 2021b), FROM_GLC10 
(Gong et al., 2019), ESA World Cover (Zanaga et al., 2021) and 

ESRI Land Cover (Karra et al., 2021)) in Figure 4. Overall, the 
GLC_FCS30 reached the highest overall accuracy, followed by 
the ESA World Cover, GlobeLand30, FROM_GLC10, 
FROM_GLC30 and ESRI Land Cover (Zhao et al., 2023). In 
terms of the producer’s and user’s accuracy, six products 
performed similar accuracies in most land-cover types, that is, 
performing better in forest, water body, snow and ice, while 
suffering poor porformance in wetland, shrubland and grassland. 
It should be note that the ESRI Land Cover product performed 

the worst in six products because it overestimated the grassland 
and bare land into the shrubland, so the producer’s accuracuy of 
grassland and bare land in ESRI LC was obviously lower than 

other products. It should be noted that the Dynamic World 

(Brown et al., 2022) was excluded in the comparison because it 
was a near real-time dataset, that is, its performance was affected 
by the compositing method (synthesizing real-time dataset into 
the intra-annual products). 

Table 2. The confusion matrix of GLC_FCS30D products 
against the SRS_Val validation dataset in 2020. The unit of the 
values in the table is percentage. 

 
Note: CRP: cropland, FST: forest, GRS: grassland, SHR: 
shrubland, WET: wetland, WTR: water body, TUD: tundra, IMP: 
impervious surface, BAL: bare land, PSI: permanent ice and 
snow, P.A.: producer’s accuracy, U.A.: user’s accuracy, SE: 
standard error. 

 

Figure 4. The accuracy metrics of six global 10 m/30 m land-
cover products using the SRS_Val dataset. 

 

Figure 5. The time-series accuracy variations (producer’s 
accuracy and user’s accuracy) of GLC_FCS30D based on the 
LUCAS validation datasets. 

±
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Figure 5 illustrates the time-series accuracy variations using the 

LUCAS validation datasets, which was open-access and the 
largest validation dataset (containing 1090863 points) over the 
European Union during the period of 2006-2018 (d'Andrimont et 
al., 2020; Gao et al., 2020). Overall, the GLC_FCS30D achieved 
the stable performance on the temporal variations, and performed 
better over the forest, cropland and water-body (dominated land-
cover types in the European Union), and suffered the lower P.A. 
or U.A. in some sparse land-cover types including: shrubland, 

grassland and bare land because of their complicated spectral 
characteristics and small size of validation point in the LUCAS. 
Similarly, our previous studies in Gao et al. (2020) also 
emphasized that the GLC_FCS30, FROM_GLC and 
GlobeLand30 (three widely used global land-cover products) 
achieved the higher accuracy in the dominated land-cover types, 
while suffered the commission or omission errors in the sparse 
land-cover types. 

3.3 Analysis of global land-cover changes from the 

GLC_FCS30D products 

Figure 6 presents the net area change of 10 major land-cover 
types in the GLC_FCS30D during 1985-2022. Intuitively, the 
most obvious characteristics of global land-cover change was the 

loss of forest and gain of cropland. The total loss of forest area 
reached 2.5 million km2, while the gain of cropland area was 1.3 
million km2, which was consistent with the actual land-cover 
condition. Namely, a large amount of tropical rainforests were 
deforested to the cropland for fulfilling the growing demand for 
food (Potapov et al., 2021). Meanwhile, part of deforested forest 
was converted into the shrubland with increasement of 0.4 
million km2. 

 
Figure 6. The gain and loss of 10 major land-cover types in 
GLC_FCS30D during 1985-2022, details were also given in 

Zhang et al. (2024b). 

4. CONCLUSION AND PERSPECTIVE 

Quantifying global land-cover changes at 30 m is important and 
necessary to analyse how human activities affect the global land 

surfaces. In this study, we proposed to stratify land surfaces into 
three thematic types (impervious surface, wetland and tidal flat) 
and other land-cover types, and then used the automated 
multitemporal classification methods to generate the time-series 
GISD30, GWL_FCS30D and GTF30D thematic products. 
Meanwhile, we combined the continuous change detection 
algorithm and local adaptive updating method to capture and 
update these land-cover changed areas. Next, after integrating the 

thematic products and the continuous change monitoring 
products, the novel GLC_FCS30D land-cover dynamic dataset 
was generated, which contained 35 fine land-cover types and 
spanned the period of 1985-2022. The accuracy assessment 
indicated that the GLC_FCS30D reached the overall accuracy of 
80.88%, which meant that the developed GLC_FCS30D products 
can provide important data support in global climate change, 
biodiversity protection, and sustainable development goals. It 

should be noted that the GLC_FCS30D is also open access via: 

https://doi.org/10.5281/zenodo.8239305.  

Combining stratified land-cover monitoring strategy and 
continuous change detection algorithm, we generate the first 
global 30 m fine land-cover dynamic products (GLC_FCS30D). 
It should be noted that a series of measures have been taken to 
guarantee the high quality of GLC_FCS30D, including 
continuous change detection, local adaptive modelling and 
spatiotemporal optimization. However, there were still several 

uncertainties: 1) the confidence of continuous change detection 
algorithm was affected the number of clear-sky Landsat imagery, 
that is, the land-cover changed accuracy before 2000 was lower 
than that after 2000. 2) The errors in the continuous change 
detection models might transform into the latter land-cover 
updating. We used the spatiotemporal optimization algorithm to 
minimize these transformed errors, but the residual effects still 
should be taken seriously. 3) The uncertainties in thematic land-
cover change products (impervious surfaces, wetlands and tidal 

flats) also affected the accuracy of GLC_FCS30D because we 
overlap them into the GLC_FCS30D.  

To further improve quality of the GLC_FCS30D, our further 
works would concentrate on: 1) integrating multisourced remote 
sensing data to achieve the annul land-cover change before 2000; 
2) breaking through the land-cover change detection method for 
capturing the gradient-change processes (such as: forest 
degradation (Chen et al., 2023; Matricardi et al., 2020), 

afforestation or recovery); 3) clarifying the driver factors of land-
cover changes for suppressing some natural-driven multiply 
changes, for example, the mutual transformation of grass, bare 
land and sparse vegetation in the semiarid/arid areas because of 
the differences in annual precipitation; 4) generating a time-series 
global validation dataset for comprehensively quantifying the 
accuracy metrics of GLC_FCS30D in capturing the land-cover 
changes. 

ACKNOWLEDGEMENTS  

The research works have been financial supported by the 
National Key Research and Development Program of China 
(Grant No. 2023YFB3907403) and the National Natural Science 

Foundation of China (42425001). 

REFERENCES 

Ban, Y., Gong, P., Giri, C., 2015. Global land cover mapping 
using Earth observation satellite data: Recent progresses and 

challenges. ISPRS Journal of Photogrammetry and Remote 
Sensing 103, 1-6. 
Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., 
Hyde, S.B., Mazzariello, J., Czerwinski, W., Pasquarella, V.J., 
Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, 
F., Hanson, C., Guinan, O., Moore, R., Tait, A.M., 2022. 
Dynamic World, Near real-time global 10 m land use land cover 
mapping. Scientific Data 9. 
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., 

Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., Mills, J., 2015. 
Global land cover mapping at 30m resolution: A POK-based 
operational approach. ISPRS Journal of Photogrammetry and 
Remote Sensing 103, 7-27. 
Chen, S., Woodcock, C., Dong, L., Tarrio, K., Mohammadi, D., 
Olofsson, P., 2023. Review of drivers of forest degradation and 
deforestation in Southeast Asia. Remote Sensing Applications: 
Society and Environment, 101129. 

d'Andrimont, R., Verhegghen, A., Meroni, M., Lemoine, G., 
Strobl, P., Eiselt, B., Yordanov, M., Martinez-Sanchez, L., van 
der Velde, M., 2020. LUCAS Copernicus 2018: Earth 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024 | © Author(s) 2024. CC BY 4.0 License.

 
141

https://doi.org/10.5281/zenodo.8239305


 

Observation relevant in-situ data on land cover throughout the 

European Union. 
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, 
M., Bontemps, S., Lamarche, C., Schlerf, M., M., S., 2016. Land 
Cover CCI: Product User Guide Version 2. 
Dyer, K., Christie, M., Wright, E., 2000. The classification of 
intertidal mudflats. Continental Shelf Research 20, 1039-1060. 
Florczyk, A., Corbane, C., Ehrlich, D., Freire, S., Kemper, T., 
Maffenini, L., Melchiorri, M., Pesaresi, M., Politis, P., Schiavina, 

M., 2019. GHSL Data Package 2019. Luxembourg. EUR 29788. 
Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., 
Ramankutty, N., Sibley, A., Huang, X., 2010. MODIS Collection 
5 global land cover: Algorithm refinements and characterization 
of new datasets. Remote Sensing of Environment 114, 168-182. 
Friedl, M.A., Woodcock, C.E., Olofsson, P., Zhu, Z., Loveland, 
T., Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, 
Y., Turlej, K., Tarrio, K., McAvoy, K., Gorelick, N., Wang, J.A., 
Barber, C.P., Souza, C., 2022. Medium Spatial Resolution 

Mapping of Global Land Cover and Land Cover Change Across 
Multiple Decades From Landsat. Frontiers in Remote Sensing 3. 
Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., Xie, S., 2020. 
Consistency Analysis and Accuracy Assessment of Three Global 
30-m Land-Cover Products over the European Union using the 
LUCAS Dataset. Remote Sensing 12, 3479. 
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, 
B., Yang, J., Zhang, W., Zhou, Y., 2020. Annual maps of global 

artificial impervious area (GAIA) between 1985 and 2018. 
Remote Sensing of Environment 236, 111510. 
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, 
N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., 
Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, 
C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, 
X., Xiao, F., Liu, Q., Song, L., 2019. Stable classification with 
limited sample: transferring a 30-m resolution sample set 

collected in 2015 to mapping 10-m resolution global land cover 
in 2017. Science Bulletin 64, 370-373. 
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, 
Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, 
Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., 
Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, 
A., Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., 
Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z., Chen, 

J., Chen, J., 2013. Finer resolution observation and monitoring of 
global land cover: first mapping results with Landsat TM and 
ETM+ data. International Journal of Remote Sensing 34, 2607-
2654. 
Grekousis, G., Mountrakis, G., Kavouras, M., 2015. An overview 
of 21 global and 43 regional land-cover mapping products. 
International Journal of Remote Sensing 36, 5309-5335. 
Guo, M., Li, J., Sheng, C., Xu, J., Wu, L., 2017. A Review of 
Wetland Remote Sensing. Sensors 17. 

Hu, S., Niu, Z., Chen, Y., 2017. Global Wetland Datasets: a 
Review. Wetlands 37, 807-817. 
Jia, M., Wang, Z., Mao, D., Ren, C., Wang, C., Wang, Y., 2021. 
Rapid, robust, and automated mapping of tidal flats in China 
using time series Sentinel-2 images and Google Earth Engine. 
Remote Sensing of Environment 255, 112285. 
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., 
Mathis, M., Brumby, S.P., 2021. Global land use / land cover 

with Sentinel 2 and deep learning. 4704-4707. 
Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., Mi, J., 2021. 
Finer-Resolution Mapping of Global Land Cover: Recent 
Developments, Consistency Analysis, and Prospects. Journal of 
Remote Sensing 2021, 1-38. 
Matricardi, E.A.T., Skole, D.L., Costa, O.B., Pedlowski, M.A., 
Samek, J.H., Miguel, E.P., 2020. Long-term forest degradation 

surpasses deforestation in the Brazilian Amazon. Science 369, 

1378-1382. 
Murray, N.J., Phinn, S.R., DeWitt, M., Ferrari, R., Johnston, R., 
Lyons, M.B., Clinton, N., Thau, D., Fuller, R.A., 2019. The 
global distribution and trajectory of tidal flats. Nature 565, 222-
225. 
Murray, N.J., Worthington, T.A., Bunting, P., Duce, S., Hagger, 
V., Lovelock, C.E., Lucas, R., Saunders, M.I., Sheaves, M., 
Spalding, M., 2022. High-resolution mapping of losses and gains 

of Earth’s tidal wetlands. Science 376, 744-749. 
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., 
Woodcock, C.E., Wulder, M.A., 2014. Good practices for 
estimating area and assessing accuracy of land change. Remote 
Sensing of Environment 148, 42-57. 
Otsu, N., 1979. A threshold selection method from gray-level 
histograms. IEEE transactions on systems, man, and cybernetics 
9, 62-66. 
Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-

resolution mapping of global surface water and its long-term 
changes. Nature 540, 418-422. 
Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., 
Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., 
Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., 
Kommareddy, A., 2022. The Global 2000-2020 Land Cover and 
Land Use Change Dataset Derived From the Landsat Archive: 
First Results. Frontiers in Remote Sensing 3. 

Potapov, P., Turubanova, S., Hansen, M.C., Tyukavina, A., 
Zalles, V., Khan, A., Song, X.-P., Pickens, A., Shen, Q., Cortez, 
J., 2021. Global maps of cropland extent and change show 
accelerated cropland expansion in the twenty-first century. 
Nature Food 3, 19-28. 
Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., 
Brockmann, C., Defourny, P., 2014. Automated Training Sample 
Extraction for Global Land Cover Mapping. Remote Sensing 6, 

3965-3987. 
Roy, D.P., Wulder, M.A., Loveland, T.R., C.E, W., Allen, R.G., 
Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, 
R., Scambos, T.A., Schaaf, C.B., Schott, J.R., Sheng, Y., 
Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen, W.B., 
Gao, F., Hipple, J.D., Hostert, P., Huntington, J., Justice, C.O., 
Kilic, A., Kovalskyy, V., Lee, Z.P., Lymburner, L., Masek, J.G., 
McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R.H., 

Zhu, Z., 2014. Landsat-8: Science and product vision for 
terrestrial global change research. Remote Sensing of 
Environment 145, 154-172. 
Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., 
Tyukavina, A., Vermote, E.F., Townshend, J.R., 2018. Global 
land change from 1982 to 2016. Nature 560, 639-643. 
Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, M., Friedl, 
M.A., 2012. A global land-cover validation data set, II: 
augmenting a stratified sampling design to estimate accuracy by 

region and land-cover class. International Journal of Remote 
Sensing 33, 6975-6993. 
Wang, N., Zhang, X., Yao, S., Wu, J., Xia, H., 2022. How Good 
Are Global Layers for Mapping Rural Settlements? Evidence 
from China. Land 11, 1308. 
Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W., Cheng, X., 
2023. A review of regional and Global scale Land Use/Land 
Cover (LULC) mapping products generated from satellite remote 

sensing. ISPRS Journal of Photogrammetry and Remote Sensing 
206, 311-334. 
Winkler, K., Fuchs, R., Rounsevell, M., Herold, M., 2021. Global 
land use changes are four times greater than previously estimated. 
Nat Commun 12, 2501. 
Woodcock, C.E., Allen, R.G., Anderson, M.C., 2008. Free access 
to Landsat imagery. Science 320, 1011. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024 | © Author(s) 2024. CC BY 4.0 License.

 
142



 

Xian, G.Z., Smith, K., Wellington, D., Horton, J., Zhou, Q., Li, 

C., Auch, R., Brown, J.F., Zhu, Z., Reker, R.R., 2022. 
Implementation of the CCDC algorithm to produce the LCMAP 
Collection 1.0 annual land surface change product. Earth Syst. 
Sci. Data 14, 143-162. 
Yang, J., Huang, X., 2021. The 30 m annual land cover dataset 
and its dynamics in China from 1990 to 2019. Earth Syst. Sci. 
Data 13, 3907-3925. 
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., 

Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., 
Paccini, A., Vergnaud, S., 2021. ESA WorldCover 10 m 2020 
v100. Zenodo: Geneve, Switzerland. 
Zhang, H.K., Roy, D.P., 2017. Using the 500 m MODIS land 
cover product to derive a consistent continental scale 30 m 
Landsat land cover classification. Remote Sensing of 
Environment 197, 15-34. 
Zhang, X., Liu, L., Chen, X., Gao, Y., Jiang, M., 2021a. 
Automatically Monitoring Impervious Surfaces Using Spectral 

Generalization and Time Series Landsat Imagery from 1985 to 
2020 in the Yangtze River Delta. Journal of Remote Sensing 
2021, 1-16. 
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., Mi, J., 2021b. 
GLC_FCS30: global land-cover product with fine classification 
system at 30 m using time-series Landsat imagery. Earth Syst. 
Sci. Data 13, 2753-2776. 
Zhang, X., Liu, L., Chen, X., Xie, S., Gao, Y., 2019. Fine Land-

Cover Mapping in China Using Landsat Datacube and an 
Operational SPECLib-Based Approach. Remote Sensing 11, 
1056. 
Zhang, X., Liu, L., Wang, J., Zhao, T., Liu, W., Chen, X., 2023a. 
Automated mapping of global 30 m tidal flats using time-series 
Landsat imagery: algorithm and products. Journal of Remote 
Sensing 3. 
Zhang, X., Liu, L., Wang, Y., Hu, Y., Zhang, B., 2018. A 

SPECLib-based operational classification approach: A 
preliminary test on China land cover mapping at 30 m. 
International Journal of Applied Earth Observation and 
Geoinformation 71, 83-94. 
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., Zhang, B., 
2020. Development of a global 30 m impervious surface map 
using multisource and multitemporal remote sensing datasets 
with the Google Earth Engine platform. Earth Syst. Sci. Data 12, 

1625-1648. 
Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., 
Liu, W., 2023b. GWL_FCS30: a global 30 m wetland map with 
a fine classification system using multi-sourced and time-series 
remote sensing imagery in 2020. Earth Syst. Sci. Data 15, 265-
293. 
Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., Mi, J., 2022a. 
GISD30: global 30 m impervious-surface dynamic dataset from 
1985 to 2020 using time-series Landsat imagery on the Google 

Earth Engine platform. Earth Syst. Sci. Data 14, 1831-1856. 
Zhang, X., Liu, L., Zhao, T., Wang, J., Liu, W., Chen, X., 2024a. 
Mapping global annual wetlands at 30 m with a fine classification 
system from 2000 to 2022. Sci Data, Under Review. 
Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., Liu, L., 
2024b. GLC_FCS30D: The first global 30-m land-cover 
dynamic monitoring product with a fine classification system 
from 1985 to 2022 using dense time-series Landsat imagery and 

continuous change-detection method. Earth Syst. Sci. Data 16, 1-
32. 
Zhang, Z., Xu, N., Li, Y., Li, Y., 2022b. Sub-continental-scale 
mapping of tidal wetland composition for East Asia: A novel 
algorithm integrating satellite tide-level and phenological 
features. Remote Sensing of Environment 269, 112799. 
Zhao, T., Zhang, X., Gao, Y., Mi, J., Liu, W., Wang, J., Jiang, M., 
Liu, L., 2023. Assessing the Accuracy and Consistency of Six 

Fine-Resolution Global Land Cover Products Using a Novel 

Stratified Random Sampling Validation Dataset. Remote Sensing 
15, 2285. 
Zhu, Z., Woodcock, C.E., 2014. Continuous change detection 
and classification of land cover using all available Landsat data. 
Remote Sensing of Environment 144, 152-171. 
Zhu, Z., Woodcock, C.E., Olofsson, P., 2012. Continuous 
monitoring of forest disturbance using all available Landsat 
imagery. Remote Sensing of Environment 122, 75-91. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024 | © Author(s) 2024. CC BY 4.0 License.

 
143




