
Image-based Deep Learning for the time-dependent prediction of fresh concrete properties

Max Meyer1, Amadeus Langer1, Max Mehltretter1, Dries Beyer2, Max Coenen2, Tobias Schack2, Michael Haist2, Christian Heipke1

1Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany
(meyer, langer, mehltretter, heipke)@ipi.uni-hannover.de

2Institute of Building Materials Science, Leibniz University Hannover, Germany
(d.beyer, m.coenen, t.schack, haist)@baustoff.uni-hannover.de

Keywords: Fresh concrete properties, Building materials, Stereoscopy, Deep learning, Time dependency.

Abstract

Increasing the degree of digitisation and automation in the concrete production process can play a crucial role in reducing the CO2

emissions that are associated with the production of concrete. In this paper, a method is presented that makes it possible to predict
the properties of fresh concrete during the mixing process based on stereoscopic image sequences of the concretes flow behaviour.
A Convolutional Neural Network (CNN) is used for the prediction, which receives the images supported by information on the mix
design as input. In addition, the network receives temporal information in the form of the time difference between the time at which
the images are taken and the time at which the reference values of the concretes are carried out. With this temporal information, the
network implicitly learns the time-dependent behaviour of the concretes properties. The network predicts the slump flow diameter,
the yield stress and the plastic viscosity. The time-dependent prediction potentially opens up the pathway to determine the temporal
development of the fresh concrete properties already during mixing. This provides a huge advantage for the concrete industry. As
a result, countermeasures can be taken in a timely manner. It is shown that an approach based on depth and optical flow images,
supported by information of the mix design, achieves the best results.

1. Introduction

Reducing CO2 emissions poses a major challenge for the con-
struction industry. Concrete production in particular plays a
decisive role here. Concrete is one of the most widely used
building materials in the world, and the production of its con-
stituent cement is in itself responsible for approx. 6.7 % of
global anthropogenic CO2 emissions (IEA, 2022). Many ap-
proaches are therefore focusing on reducing the cement content
by using substitute materials. As a consequence there is an in-
creasing trend for concrete to no longer consist of just three
materials (cement, aggregate and water), as was originally the
case, but of several additional materials in order to reduce the
amount of cement needed. In turn, this also leads to increas-
ingly complex mix designs, which causes a potentially less ro-
bust concrete (González-Taboada et al., 2018). Consequently,
the control of concrete properties becomes more difficult, espe-
cially the fresh concrete properties.

Existing quality assurance measurements are not well suited to
overcome this new challenge. These measurements are usually
carried out manually and only for batch samples, both of which
increases the uncertainty associated to the measured properties.
Since the properties during concrete placement are decisive for
the quality of the resulting building component, the measure-
ments are carried out directly before placement on the construc-
tion site, where there is no longer any possibility of significantly
adjusting the fresh concrete properties. Deviations of the actual
concrete quality from the target properties may lead to a rejec-
tion of the batch, resulting in an inefficient production which
wastes a lot of resources. In the opinion of the authors, a key
change to increase the sustainability of concrete production is to
digitize and automate the production process including quality
control (Haist et al., 2022). Since in comparison to other indus-
tries, the construction industry is one of the least digitized and
automated industries in the world (Green, 2016), we see huge

potential for improvement, however requiring sensor based in-
sight into the material properties.

The ReCyCONtrol1 research project addresses this lack of di-
gitization and automation in the concrete sector. One part of the
project focusses on the prediction of the fresh concrete proper-
ties. Since the moment of production, i.e. during the mixing
process, offers the most opportunities of adjusting the concrete
properties in case of quality deviations, the prediction of these
properties should be done during the mixing process. Also, as
the properties of the concrete may further change between the
mixing process and its placement, due to the cements chemical
hydration process, the behaviour of the properties after mixing
must be modeled over time. We therefore formulate the goal of
predicting the future properties of the concrete, e.g. for the time
of placement, already during the production step. If deviations
to the target properties at the time of placement are estimated
in this way, countermeasures in the form of chemical additives
can be used to change the properties to reach the desired values.

To reach this goal of predicting the fresh concrete properties
at the time of placement during the mixing process, we use
optical sensors coupled with a corresponding photogrammetric
processing chain: We use a stereo camera system to observe the
concretes flow behaviour during the mixing process. The stereo
images then serve as input for a deep learning method, which
predicts the properties of the concrete as a function of time. To
describe the properties, we use one parameter for the consist-
ency and two for the flow behaviour. The slump flow diameter
δ, which is measured by the slump test (EN 12350-5, 2019),
represents the consistency of the concrete. The flow behaviour
of the concrete, e.g. during the mixing process, is defined by
its rheological parameters. In more detail, concrete, as a non-
Newtonian fluid, can be described by the Bingham fluid with

1 https://www.recycontrol.uni-hannover.de/en/
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the rheological parameters yield stress τ0 and plastic viscosity
µ (Yahia et al., 2016). The values of these parameters can be
derived from the flow curve, which can be measured in batch
experiments by a rheometer. The yield stress is a measure of
how much stress has to be applied to set a liquid in motion.
The plastic viscosity describes the viscosity of a liquid at high
shear rate. The slump flow diameter depends on the rheological
parameters. In particular the yield stress and the slump flow
diameter are assumed to be correlated (Wallevik, 2006).

In this paper a novel method for the prediction of the slump flow
diameter, the yield stress and the plastic viscosity is proposed.
The prediction is carried out by a convolutional neural network
(CNN), which receives stereo camera observations of the con-
cretes flow at a certain sample age as input. Furthermore, we
add temporal information and information from the mix design
to the input. For the prediction of the temporal evolvement of
the fresh concrete properties, the temporal information is cru-
cial. Using this information, the CNN learns implicitly to model
the time-dependent behaviour of the properties. This enables
the possibility of predicting the fresh concrete properties for ar-
bitrary points in time, e.g. the time of placement.

The paper is structured as follows: We first give an overview
of the current research in the field of digitizing and automating
the concrete sector. Our methodology is then described in sec-
tion 3. The data set and how it is generated are presented in
section 4. Section 5 shows the experiments and contains a dis-
cussion of the results. Section 6 concludes the paper and gives
an outlook for possible future work.

2. Related work

In recent years, the automation of concrete quality assurance
has received increasing attention. In Song et al. (2020), image
segmentation is used to determine properties of the hardened
concrete. Coenen et al. (2021) used image segmentation to
determine the particle size of the aggregates in the hardened
concrete. Although these methods have the potential to
automate the current quality assurance measurements, at this
stage no countermeasures can be applied if deviations to the
target properties are detected.

To ensure the quality of the fresh concrete, traditional
quality assurance measurements like the slump test (EN 12350-
5, 2019) and rheometer measurements are typically employed.
However, these methods are labor intensive and are associated
with relatively high uncertainties. In Tuan et al. (2021) a
method is proposed to automate the slump test: Instead of
measuring the diameter of the spread concrete manually, a
stereo camera system records images of the spreading concrete
and the diameter is determined using image processing. The
authors argue that replacing the manual measurement with
an imaging system improves the accuracy of the result and
reduces the workload. Yoon et al. (2023) propose a method
for analysing cement paste with a similar set up. Instead of a
stereo camera, a depth camera is used to record a point cloud of
the cement paste after the slump test. The point cloud is used
to extract the diameter, spread height and curvature. These
parameters are used as input for a deep learning algorithm
to predict yield stress, plastic viscosity, adsorption ratio of
superplasticizer and bleeding. Schack et al. (2023a,b,c) take
this work one step further and use images taken from the
spread flow of the concrete and are not only able to derive the

spread flow diameter of the concrete but also information on
the concrete composition. Therefore the surface roughness
of the spread flow cake is analysed in order to derive e.g. the
content of the coarse particle contained in the concrete. In
Coenen et al. (2024), a method is presented, in which a camera
observes the channel flow of the fresh concrete at the outlet
of a mixing truck. Spatio-temporal flow fields are generated
from the recorded images, which contain information about
the flow behaviour of the concrete. A CNN predicts the fresh
concrete properties on the basis of the spatio-temporal flow
fields. The disadvantage of these methods is, that they are
applied post-production, meaning that the concrete still has
to be discharged and new concrete has to be produced, if
significant deviations to the target properties are detected.

To overcome this drawback, the properties of the fresh
concrete have to be predicted before or during the mixing
process. There are two main procedures to achieve this goal.
One approach is to perform the prediction on the basis of
the mix design information of the concrete. The concrete
mix design contains the exact content (in kilograms) of the
individual materials used to produce the concrete. The type
and concentration of the materials have a major impact on the
properties of the concrete. Chidiac and Mahmoodzadeh (2009)
summarize the most common models to determine the plastic
viscosity based on the mix design. It is shown that the results
vary between different models. The most recent methods based
on the mix design use machine learning, and in particular deep
learning algorithms. Methods like least squares support vector
machines (LSSVM) and particle swarm optimization (PSO)
(Nguyen et al., 2020), extreme learning machines (Kina et
al., 2021), random forests and XGBoost (Zhang et al., 2022;
Hosseinzadeh et al., 2023) as well as multi layer perceptrons
(MLP) (Navarrete et al., 2023) are used for this purpose. In
Nguyen et al. (2020) and Navarrete et al. (2023) the input
information from the mix design is extended with temporal
information, representing the time difference between the
mixing process and the time at which the properties are to
be determined, to take into account the change of properties
over time. The mix design contains valuable information for
the time-dependent change of the properties (e.g. the additive
content). Although these methods achieve promising results,
they omit essential information as e.g. possible variations in
the properties of the employed constituents, even though there
has been progress in this field in recent years, e.g. Coenen et al.
(2023); Lux et al. (2023).

The second main procedure is to predict the fresh con-
crete properties based on images of the fresh concrete acquired
during the mixing process. Li and An (2014) showed that it
is possible to estimate the slump flow and the V-funnel flow
time from images recorded during the mixing process by using
classical image analysis methods, namely frame difference
and watershed segmentation. Ding and An (2018) show that
also deep learning methods, here a combination of a CNN
and a long short-term memory network (LSTM) based on
image sequences, are applicable. Yang et al. (2021) and Guo
et al. (2022) employ another combination of CNN and LSTM
with image sequences to predict the slump value and slump
flow value respectively the plastic viscosity, while (Gao and
Yan, 2023) use semantic segmentation in combination with a
residual neural network for single images for the prediction
of the slump class. In Ponick et al. (2022), a stereo camera
set up is used to observe the mixing process of ultra sonic gel,
a often employed surrogate for concrete. The stereo camera
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observations are used as input for a CNN. The results show that
the 3D information derived from the stereo images is valuable
for the prediction of the flow curves. Although, these methods
show promising results and are not prone to uncertainties in the
mix design, they do not take into account the time dependency
of the fresh concrete properties.

To the best of the authors’ knowledge, there is no method to
date that uses both images and information from the mix design
to perform a time-dependent prediction of fresh concrete
properties.

3. Deep Learning for fresh concrete properties prediction

3.1 Overview

We aim to predict fresh concrete properties based on image
observations. Stereo cameras record synchronized RGB
image pairs of the concretes flow during the mixing process.
Each image pair is used to generate an orthophoto O and a
depth map in the form of a digital elevation model (DEM)
D, which contains 3D information about the surface of the
fresh concrete. The photogrammetric process to generate O
and D is carried out using a commercial software, namely
Agisoft Metashape2. To reduce the computational time during
training, O is transformed into a panchromatic image. O and
D are extended by an optical flow image OF , which contains
the displacement of each pixel between the current and the
subsequent orthophoto. This allows to additionally include
explicit motion information representing the flow behaviour
of the concrete into the network. To generate the optical flow
images OF , for each Oi, where i represents the time step,
the optical flow OFi,i+1 between Oi and Oi+1 is computed.
For this purpose the method presented in (Farnebäck, 2003)
is used. The input images are stacked to obtain the input
set [Oi, Di, OFi,i+1]. The input set is treated as an image
with four channels, one channel each for Oi and Di, and two
channels for the optical flow image OFi,i+1 (one channel each
for the displacements of the pixels in the x and y direction,
respectively).

For the purpose of modeling the time-dependent beha-
viour of the fresh concrete properties, temporal information ∆t

is introduced. In this context, ∆t represents the time difference
between the age of the sample at which the image pair for
generating Oi and Di is acquired and the age for which the
fresh concrete properties are to be predicted. Besides the
temporal information ∆t, information from the mix design m
is added as additional input. m contains information about the
water-cement (mass) ratio, the grading curve of the aggregate
particles, the paste content, the admixture content and the
time difference between starting the mixing process and the
image acquisition. To take into consideration the influence of
different mixing velocities (i.e. the speed of the mixing tools)
and frame rates of the imaging sensors, these parameters are
both added to m. For numerical reasons, the inputs and the
reference values are normalized. Consequently, the outputs of
the CNN are the predicted normalized values for the slump
flow diameter δ∆t and the rheological parameters yield stress
τ0,∆t as well as plastic viscosity µ∆t at the age of the sample
defined by ∆t. These parameters are summarised in the target
state vector C = [δ∆t , τ0,∆t , µ∆t ].

2 https://www.agisoft.com/

3.2 Network architecture

We make use of a CNN for the prediction of the state vector
C, consisting of seven convolutional layers which are followed
by three fully connected layers (FC layers). The architecture
of the CNN is based on the CNN presented in Ponick et al.
(2022). As the problem is less complex than usual classification
and segmentation tasks and we only have a relatively small
amount of training data, we limit the number of unknowns by
using comparatively few layers. The results in Ponick et al.
(2022) support this approach. A high-level overview of the
architecture is shown in Fig. 1. The convolutional layers have
a kernel size of 5x5 and a stride of 2 each, and are followed
by batch normalisation and a Rectified Linear Unit (ReLU)
activation function. The number of neurons in the FC layers
decreases linearly from 660 down to the three output neurons
in the output layer. Each FC layer has a leaky ReLU activation
function using a slope of 0.2. No batch normalization is used
between the FC layers.

The input set [Oi, Di, OFi,i+1] is fed to the convolutional
layers. The layers extract features to produce the flattened
feature embedding z with a length of 640 elements. ∆t and m
are added in a late-fusion manner to z. By concatenating z, ∆t

and m, we obtain the feature vector f which is passed to the
FC layers as input. The FC layers map f to the time-dependent
output parameters δ∆t ,τ0,∆t , and µ∆t of the target state vector
C. This approach was chosen because the FC layers form a
MLP and MLPs are suitable for a time-dependent prediction
of the static yield stress of cement paste based on the mix
design information, temporal information and information on
properties of the raw materials (Navarrete et al., 2023).

Figure 1. CNN architecture of developed method.

3.3 Training

For the optimisation of the network weights ω the Mean
Squared Error (MSE) is used as loss function during training.
The weights ω are iteratively adjusted during training in order
to minimize the resulting loss. The loss is computed for a mini-
batch consisting of N samples, each associated with the state
vector C containing the k = 1...K target parameters yk, where
K = 3 in this paper. To calculate the loss, the squared differ-
ences between the reference values yk and the predicted val-
ues ŷk are determined and averaged over all parameters and
samples in a batch, such that

LMSE(ω) =
1

N ·K

K∑
k=1

N∑
n=1

(yk
n − ŷk

n)
2. (1)

Weight decay is used during training to reduce over-fitting and
to encourage better regularisation. This method adds a penalty
for large weights, multiplied by a factor λ. This leads to an
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(a) Schematic overview of the experimental set up. (b) Set up during the experiment.

Figure 2. Experimental set up for generating the data set.

additional term in the final loss function

L(ω) = LMSE(ω) + λ ·
∑

ω2. (2)

Since the reference values of the slump flow diameter, the yield
stress and the plastic viscosity are normalized to the same range
the loss of each output does not have to be weighted to ensure
an equal influence on the training.

4. Data generation

4.1 Image acquisition

In order to train and test the proposed method we generate
an extensive data set: Similar to Ponick et al. (2022) we first
design a surrogate-mixing system, which consists of a channel,
in which fresh concrete is filled, and a paddle shaped mixing
tool, which moves through the fresh concrete in direction of the
channel. The paddle moves on a linear trajectory to simulate
the mixing process in an industrial mixer. The fresh concrete
is mixed shortly before filling it into the channel. While the
paddle is moving, the camera set up (2 grasshopper 3 USB
RGB cameras with a focal length of 8 mm) records images of
the paddle moving through the concrete. The acquired images
have a size of 1920 x 1200 px. In Fig. 2, the schematic set up
and the set up during one experiment are shown. In total, 45
different concretes are prepared during the experiments, 5 of
which contained recycled aggregates. The mix designs of the
concretes all differ due to variations of the water-cement ratio,
paste content, grading curve, cement type, sand-lime powder
and additive content. Per experiment, we acquire images in
14 so called runs. In each run the paddle moves six times
back and forth in the channel, while the cameras record 1300
images. Before each run, the fresh concrete is first briefly
mixed manually and then the surface is smoothed. In runs 1-7,
the frame rate of the cameras is set to 30 frames per second
(fps), and the paddle moves with a velocity of 0.2 m

s
. In runs

8-14 the frame rate is increased to 60 fps and the velocity of
the paddle is set to 0.45 m

s
.

In order to maximize the information about the flow be-
haviour, we only use images which show the concrete directly
after the paddle has moved through the material. As a con-
sequence, the paddle is visible in the images. To eliminate
effects stemming from the paddle itself we correct D after
matching and only use heights below a certain threshold to
generate O. For generating O and D it is necessary that both

images are taken at exactly the same time. To ensure this
requirement, a panel with 20 LEDs is installed on the edge of
the channel. The LED panel is visible in both images and the
LEDs are systematically switched on and off in millisecond
intervals. Through the changing constellations over time, a
time stamp is generated for each image, which is used to verify
that both images of an image pair are synchronized.

Regarding the fresh concrete properties it is assumed that
these remain constant during the short time (approx. 44 and
22 sec) of one run. Therefore, every image pair of a run is
associated with the same time stamp, namely that of the central
image pair of that run. Consequently, ∆t represents the time
difference between the associated time stamp of the image pair
and the point in time at which the fresh concrete properties are
to be predicted.

4.2 Reference values

The reference values for the training and testing are measured
in parallel to the acquisition of the images. The slump flow
diameter δ is measured with the slump test (EN 12350-5, 2019)
and the yield stress τ0 and plastic viscosity µ are measured with
a rheometer. For this measurement a eBT-V rheometer from
Schleibinger3 is used. The rheological parameters can then be
derived from the resulting flow curves. The rheological para-
meters are determined according to the method presented in
(Feys et al., 2013). To consider the change of the fresh con-
crete properties over time induced by the chemical hydration of
the cement contained in the concretes, the slump test and the
rheometer measurement are repeated in intervals of about 30
minutes. The first slump test is always carried out directly after
the end of the mixing process of approx. 9 minutes after water
addition. Since the slump test and the rheometer measurement
are independent from each other, the two measurements have
different time stamps. Consequently, ∆t consists of two time
differences: The first is the time difference between image ac-
quisition and the time at which the slump test is carried out, the
second is the time difference between image acquisition and the
time at which the rheometer measurement is carried out. The
wide range of the reference values and time differences of the
data set is shown in Tab. 1. As some reference measurements
are carried out before images are taken, there are also negative
values for time differences.

3 http://www.schleibinger.com/
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Table 1. Range of reference values and time differences.

Max Min Mean St. deviation

δ [cm] 63.50 30.00 43.97 7.47

τ0 [Pa] 585.40 65.84 223.97 109.25

µ [Pa · s] 121.91 19.76 49.10 17.74

∆t [min] 87.16 -49.88 15.18 27.82

5. Experiments

In the experiments, the influence of different inputs on the per-
formance of the CNN is investigated. Different input combin-
ations are assembled to train the CNN and the resulting per-
formance metrics are compared. In particular, the influence of
O, D, OF and m are investigated. Moreover, it is shown, how
the accuracy of the predictions changes if the predictions from
different input sets for the same reference values are averaged
beforehand. At the end, examples of the time-dependent pre-
diction of the behaviour of the slump flow diameter are shown.

5.1 Training configuration

The CNN predicts the three parameters δ∆t , τ0,∆t , and µ∆t

in a multi-task learning manner. Since two independent meas-
urements (slump test and rheometer measurement) are used to
generate the reference values, the inputs O, D and OF have to
be assigned to one reference combination of δ∆t respectively
τ0,∆t and µ∆t . For each concrete, all possible reference
combinations are generated, and each input set (Oi, Di and
OFi,i+1) is assigned to one reference combination. m always
remains the same for the input sets of a concrete, except for the
information about paddle velocity and recording frequency of
the cameras. Subsequently, the two time differences of ∆t are
calculated for each input set based on the assigned reference
combination. Sometimes Oi+1 is missing because the paddle
is not visible for several time steps, the end of the run is
reached or a framedrop occurs. An input set is only generated
if for Oi also Oi+1 is present, otherwise OFi,i+1 could not be
calculated. The first 20 input sets of each run are not used, as
the paddle had not yet driven far enough through the concrete
to significantly change its surface. In total, the data set consists
of 313,615 input sets.
Training is performed with a five-fold cross-validation. The
45 concretes are divided into 5 sets with 9 concretes (i.e.
concrete compositions) each. For this purpose, the concretes
are first sorted by the length of the first slump flow diameter δ1,
which is determined for each concrete directly after the mixing
process. Then, the sorted concretes are divided in three groups,
one of each containing the data of the 15 concretes with the
largest, the intermediate, and the smallest δ1, respectively.
From each group three concretes are randomly assigned to
one of the 5 sets to guarantee a balanced distribution. As
there are a total of 5 concretes with recycled aggregate, we
make sure that each set has to contain exactly one of these
concretes. In each cross-validation step one set is used as the
test set. The validation set, containing 5 concretes, is randomly
formed by the concretes of the remaining sets, again by taking
δ1 into account and with the condition that it must contain
exactly one concrete with recycled aggregate. The remaining
31 concretes form the training set. For two concretes the yield
stress and the plastic viscosity are not taken into account, as

the corresponding measured reference values are not plausible.
For training, only the loss for the slump flow diameter for these
concretes is used. For the evaluation, which is explained in
the following, the predictions of the yield stress and the plastic
viscosity of these concretes are not considered.

To train the network, Stochastic Gradient Descent (SGD)
with a Nesterov momentum of β = 0.99 based on (Sutskever et
al., 2013) is used. The learning rate is set to a value of 5 · 10−3,
which showed the best results in preliminary experiments.
The weight decay parameter is set to λ = 1 · 10−3. The
network is trained from scratch and the weights are initialised
using the method presented in He et al. (2015), whereby a
uniform distribution is used. For training, data augumentation
is used. The brightness and contrast of O are each changed
with a factor that is randomly determined for each O in each
iteration with a uniform distribution in an interval of 0.85 to
1.15 for the brightness and in an interval of 0.75 to 1.25 for
the contrast. For the data augumentation of D, an offset is
determined randomly. For this purpose, a factor is randomly
determined with a uniform distribution in an interval from
-0.07 to 0.07. The offset is then determined by multiplying the
factor by the standard deviation of D in the training data set.
The procedure for determining the offsets for the two channels
in OF is analogous to that of D. To evaluate the results, the
mean absolute error

ϵabs =
1

A

A∑
a=1

1

J

J∑
j=1

|ya
j − ŷa

j | (3)

and the mean relative error

ϵrel =
1

A

A∑
a=1

1

J

J∑
j=1

|ya
j − ŷa

j |
ya
j

· 100 (4)

for a set of A concretes, each with J input sets for each
output, are computed. This means that every concrete has the
same weight in the evaluation, even if it may have less input
sets. After each training epoch, the network is evaluated on
the validation set. To determine the best weights, the three
ϵrel-values (one for each output) of the validation set are
averaged. The weights with the lowest averaged ϵrel-value
are chosen for testing. Since no significant improvements of
the loss are observed after only a few epochs, the number of
training epochs is restricted to 5.

Finally for each input and reference value the data in the
training, validation and test set are normalized to a mean of 0
and a standard deviation of 1. This is described by

ndc =
dc −mt,c

stdt,c
, (5)

where dc represents the data and ndc the normalized data,
each of the data category c (e.g. the input O or the reference
value δ). mt,c and stdt,c represent the mean and standard
deviation of the corresponding training set for the data category
c. The values in m from the mix design are not normalized,
as the values are always between 0 and 2. Note, that for the
determination of the evaluation metrics the reference values
and the corresponding outputs are converted to the original
range of reference values.
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Table 2. Mean relative and absolute error for different input combinations, whereas O represents orthophoto, D depth elevation map,
OF optical flow image and m mix design information (the values in bold show the best performance in the respective category).

O+D+m O+D+m+OF O+D O+m D+m D+m+OF

δ∆t

ϵrel [%] 6.87 6.94 7.07 6.97 7.00 6.86
ϵabs [cm] 3.00 3.03 3.07 3.05 3.04 2.99

τ0,∆t

ϵrel [%] 26.49 26.08 28.29 26.68 26.07 25.30
ϵabs [Pa] 53.90 52.96 55.78 53.65 54.31 52.05

µ∆t

ϵrel [%] 26.45 26.58 29.42 27.84 23.99 24.23
ϵabs [Pa · s] 12.12 12.40 13.28 12.70 11.33 11.52

5.2 Results and discussion

5.2.1 Influence of different input combinations: To
determine the influence of different input combinations the
mean relative error ϵrel and the mean absolute error ϵabs of
the test sets are used. For each input combination the above
described cross validation is carried out and is repeated for two
times. Afterwards the overall mean relative and absolute errors
are computed, by taking the mean of the mean relative and
absolute errors of all test sets, including the test sets from the
repeated cross validations. The results are shown in Tab. 2. In
total, six different combinations are investigated.

It can be seen that the variations of the inputs have only
a very limited influence on the accuracy of the predictions
of δ∆t . The major differences occur in the accuracy of the
predictions of τ0,∆t and µ∆t . In particular the input m seems
to be beneficial for the prediction of these parameters. This
can be seen if one compares the results of the combinations
O+D+m and O+D (note that in the input combination without
m only the information about the used materials are omitted).
By comparing the results of combination O+D+m and O+m it
can be seen that using the input D also increases the accuracy
of the predictions. The input OF has a positive influence on
the predictions of τ0,∆t as can be seen by comparing the results
of O+D+m and O+D+m+OF or D+m and D+m+OF .
However, the results with and without O are counter-intuitive.
The predictions from input combinations with O have a
worse accuracy than the predictions from input combinations
without O. By comparing the results from O+D+m and
D+m or O+D+m+OF and D+m+OF it can be seen that the
predictions for τ0,∆t and especially the predictions for µ∆t

are becoming worse by adding O as input. It is noticeable,
that the training runs with O as input have a significantly
smaller training loss than training runs without O as input.
This indicates that the network is overfitting in training when
O is used as input. Consequently, the best overall results are
achieved if D, m and OF are used as input. To gain a deeper
understanding of this behaviour, further investigations will be
carried out in the future work.

When evaluating the results, it should be noted that the
reference measurements are only carried out for batch samples
(a small part of the concrete) and the slump flow diameter is
determined manually. These circumstances are also reflected in
the average precision of the slump test, which is 2.46 cm (EN
12350-5, 2019). Furthermore, as all concretes have different
mix designs, there is no concrete in the test set that has the
same mix design as a concrete in the training or validation set.
The results are therefore already within an acceptable range.
In general, the prediction of δ∆t has a much higher accuracy

than the predictions for τ0,∆t and µ∆t . One reason for that can
be the much wider range of values and the significantly higher
ratio of standard deviation to mean value of τ0,∆t and µ∆t (see
Tab. 1).

5.2.2 Influence of averaging predictions: In order to in-
vestigate whether the deviations in the predictions are random
rather than systematic, predictions from different input sets for
the same reference value are averaged beforehand. In Tab. 3 it
is shown for the example of the input combination D+m+OF
how the accuracy of the predictions changes when they are av-
eraged beforehand. The second column of the table shows the
results where the predictions of the same reference combina-
tions within a run are averaged beforehand. On average, these
are approx. 40 predictions. The third column shows the res-
ults in which all predictions with the same reference combin-
ation are averaged over all 14 runs (approx. 540 predictions).
The fourth column shows the results where the predictions are
averaged for the same slump flow diameter value respectively
the same yield stress and plastic viscosity, which is on average
about 1900 averaged predictions in each case. It can be seen
that the accuracy increases the more predictions are averaged.
This indicates that a part of the deviations are indeed random.

Table 3. Influence of averaging multiple predictions of the mean
relative and absolute error for the example of the results of the
input combination D+m+OF (the values in bold show the best

performance in the respective category; note that the first
column is identical to the results of D+m+OF in Tab. 2).

Approx. averaged 1 40 540 1900predictions

δ∆t

ϵrel [%] 6.86 6.50 6.29 6.27
ϵabs [cm] 2.99 2.84 2.75 2.74

τ0,∆t

ϵrel [%] 25.30 23.68 22.53 22.47
ϵabs [Pa] 52.05 48.28 45.76 45.62

µ∆t

ϵrel [%] 24.23 23.53 22.87 22.84
ϵabs [Pa · s] 11.52 11.17 10.82 10.81

5.2.3 Time-dependent prediction model for fresh concrete
properties: Since the network receives the time difference
between the moment in time at which the images are recorded
and the time at which the properties of the fresh concrete
are to be predicted, the network implicitly learns how the
properties of the concrete change over time. This can be used
to not only predict the properties at a certain point in time,
but also continuously over the entire fresh concrete age. In
Fig. 3 examples are shown how such a continuous prediction
of the slump flow diameter over a time interval looks like.
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Note, that at this stage of the research only concretes which
exhibit a more or less pronounced decrease in consistency
over time were investigated. The model is thus only trained
to identify and quantify this specific behaviour, which can be
traced back to the type of chemical admixtures used in the
project. Changing the admixture as to yield a steady or even
an increase in flow over time will be studied in future and will
certainly require an adaption of the model or at least its training.

To generate the predictions, one of the respective runs
with all the input sets it contains is used for each concrete to
predict the slump flow diameter at each minute in the time
interval. In this example, the runs of concrete 1, 2 and 3
consist of 549, 466 and 525 input sets, which means that each
estimate is the result of averaging 549, 466 and 525 predictions,
respectively, D+m+OF is used as input. The point at which
∆t is zero is the time at which the images of the runs are
recorded (note that as mentioned before, all images from a run
are assigned the timestamp of the central image pair). Beside
the continuous predictions, the respective reference values are
shown for each concrete. The precision of the slump test is
shown as an error bar.
Considering the continuous prediction of the parameters, it can
be seen that the network has learnt that the slump flow diameter
decreases particularly sharply in the first minutes after mixing
and then decreases more slowly. For the yield stress and plastic
viscosity, it has generally learnt that both parameters increase
over time, but the nature of the increase can vary from concrete
to concrete, and the prediction is not as robust as for the slump
flow diameter. The time-dependent behavior that the network
has learned for the slump flow diameter is plausible and shows
that the network is able to predict this parameter over a longer
period of time, even though the prediction is not yet as robust
for every concrete as in the examples shown.

Figure 3. Three examples for the prediction of the
time-dependent behaviour of the slump flow diameter.

6. Conclusion and outlook

The results in this paper show that it is possible to predict the
fresh concrete properties with an acceptable accuracy based on
images of the fresh concrete flow behaviour, supported by the
mix design information. In particular, the slump flow diameter
can be predicted with a relatively high accuracy. Furthermore,

it could be shown that the time-dependent behaviour of the
fresh concrete properties can be learned by the network. This
makes it possible to predict the properties of the fresh concrete
at specific points in time (e.g. at the time of placement) or
continuously over time already during the mixing process.
Furthermore, it has been shown that the use of images and
information from the mix design improves the results compared
to the use of images alone. However, the information from
the mix design in our dataset probably contains only relatively
small uncertainties, which is why it has a relatively high
positive influence on the result. Such a low level of uncertainty
cannot always be assumed. The results have also shown that a
significant improvement is possible if predictions of the same
values are averaged beforehand.

In future work, the counter-intuitive effect of orthophotos
on the results will be further investigated. As the results
have shown that optical flow images can have a positive
impact on the outcome, future work will focus on utilising
more of the information contained in image sequences (e.g.
with transformer-based models). Also, experiments will be
conducted with an industrial mixer to test the methodology
under realistic conditions. In addition, for an industrial applic-
ation it is necessary to include the environmental parameters
(temperature, humidity, etc.) during the transportation of the
concrete to the construction site in the prediction in order to
be able to reliably predict the properties up to the time of
placement.
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