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ABSTRACT: 
Dynamic photogrammetry is an established method for acquiring 3D information of deforming objects or dynamic scenes in various 
close-range applications. A crucial impact has occlusions caused by object deformations, obstacles or camera movements. Temporal 
occlusions are highly application-specific and sometimes difficult to predict, resulting in a significant reduction of reconstruction 
quality or the aborting of image sequence processing. Previous approaches usually model such occlusions as semantic information and 
consider them using image masks. However, generating these image masks requires complex methods and extensive training data. Due 
to the unpredictability of the complexity and movements of dynamic scenes, generating training data is challenging in many 
applications. Therefore, this paper proposes an alternative modelling approach, which can be part of a spatio-temporal matching 
process. Based on the characteristic high redundancy, occlusions can be detected using robust estimation methods and considered in 
the optimisation. Therefore, no information about the occlusions and further processing steps are necessary. We evaluate our approach 
with synthetic and real data of an industrial application regarding the accuracy and ability to detect occlusion simultaneously. The 
evaluation of the proposed approach shows that the impact of occlusion can be eliminated, and the quality of the results is comparable 
to conventional methods. 
 
 

1. INTRODUCTION 

Dynamic photogrammetry is an established method for the 
precise reconstruction of dynamic scenes in many applications. 
Especially in high-speed processes where area-based information 
is required, photogrammetry is used more and more (Luhmann et 
al., 2023). In general, the photogrammetric processing of image 
sequences to create 3D trajectories in close-range applications 
consists of several steps. Once the data has been acquired, image 
pre-processing and system calibration are required. Then, spatial 
and temporal matching procedures are carried out. The matching 
steps are usually the most computationally expensive and can be 
performed simultaneously and independently of each other. 
However, the spatial and temporal matching are based on the 
extracted image features or image intensities, resulting in high 
spatio-temporal redundancy. This redundancy can be used as a 
motion model to support the spatial and temporary matching 
process and reduce ambiguities. In general, the dynamic 
characteristics lead to additional requirements for the 
measurement technology and algorithms that surpass the 
requirements for reconstructing static scenes. For example, the 
synchronisation of the cameras, handling possible motion blur, 
and storing large amounts of data must be considered. In specific 
applications where repeatability cannot be guaranteed, temporary 
occlusion can pose a significant challenge. For example, in 
materials testing, the probe is destroyed during the test (Hampel 
and Maas, 2009; Guccione et al., 2020). The presence of 
obstacles can lead to a loss of image data and affect the quality 
of the results. A similar situation applies to car safety tests, where 
the dummy's movement and the footwell's deformation are 
interesting (Raguse et al., 2004). However, temporary occlusions 
caused by movements of the object or the camera itself and 
occlusions caused by damaged components can reduce the 
quality of the image sequences or even lead to aborted 
processing. Consequently, this can result in higher costs or 
reduce the usage of photogrammetric methods. 
 
Therefore, reliable detection is an essential task, and several 
approaches have been developed. In general, solution strategies 

can consist of purely image-based approaches or a combination 
of image and object-based methods. A purely image-based 
approach is to detect occlusions through semantic segmentation, 
which can be generated by various Machine Learning approaches 
(Wu and Nevatla, 2009; Saleh et al., 2021). Afterwards, 
corrupted pixels can be excluded from further processing steps. 
However, application-specific training data is required to 
generate accurate results. Alternative approaches use the optical 
flow that produces information about movements. If the optical 
flow is performed back and forth (in both sequence directions), 
occlusions can be classified using an energy function (Alvarez et 
al., 2007). Rúa et al. (2016) use parametric motion models to 
check the plausibility of the flow and detect occlusions based on 
it. The occlusion detection can be improved if a CAD model of 
the obstacle (Bethmann et al., 2009) or the deforming object 
(Malti et al., 2011) is available. For this purpose, a Kalman filter 
is used to predict the CAD model. Then, the prediction will be 
transformed into the image domain, where corresponding 
positions are excluded from the processing. 
 
Despite the wide range of applications, these approaches have 
one thing in common: the state of a pixel (occluded or not) is 
represented by an image mask. The image mask can be used in 
the respective matching process to determine whether the 
corresponding pixel will be considered, which can increase the 
complexity and computational time. If the reconstruction of the 
object surface is combined with the tracking, a spatio-temporal 
matching method is formed, enabling better utilisation of the 
spatio-temporal redundancy. In the spatio-temporal approach 
published by Ngo et al. (2015), all observations are used in the 
numerical optimisation. A relevancy score, calculated by 
normalised cross-correlation, weights the observations to control 
the impact of corrupted observations. However, the method 
assumes that the static object surface is known. Instead, Lin et al. 
(2022) use an RGBD sensor to derive spatio-temporal 
information from the sensor data. Here, the object motion is 
modelled using a graph whose spatio-temporal consistency is 
optimised using a Long Short-Term Memory (LSTM) model. 
The network is trained in a supervised manner. Therefore, 
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training data is required for this approach, which is limited or 
unavailable in many dynamic applications such as wind energy 
science or car safety. As a result, the generation of generic 
training data is also difficult. Therefore, previous Machine 
Learning solutions can probably only be used successfully in new 
applications through complex adaptation. 
 
This paper introduces an alternative approach that significantly 
minimises the impact of temporal occlusions in dynamic close-
range applications without requiring prior knowledge about the 
behaviour of occlusions. The method is based on a novel spatio-
temporal matching procedure that takes advantage of the high 
spatio-temporal redundancy and eliminates the impact of 
occlusions using classic statistical methods. The paper begins by 
describing the spatio-temporal matching procedure and robust 
estimation methods. Subsequently, the synthetic and real datasets 
are explained, followed by the evaluation process. Finally, the 
performance of the proposed approach is demonstrated through a 
comparison with a Machine Learning method based on image 
masks.  

 

2. OBJECT-BASED IMAGE SEQUENCE MATCHING 

While classical approaches of dynamic photogrammetry in close-
range applications perform reconstruction and tracking 
separately, various methods can exploit the full potential of 
spatio-temporal redundancy. Some methods, called non-rigid 
structure from motion (NRSfM), aim to determine a dynamic 
scene and the unknown camera positions (Parashar et al., 2018; 
Kong and Lucey, 2019). Other methods use a known rigid object 
surface instead (template-based). Here, a spatio-temporal model 
is used, describing the template's deformation. Based on this, a 
cost function can be formulated to describe the photo consistency 
of homologous image intensities, matched by the template and 
spatio-temporal model. This cost function is minimised, and the 
unknown spatio-temporal parameters are determined by 
numerical optimisation, where smoothness constraints are 
considered (Yu et al., 2015). 
 
This concept can be adapted to object-based image matching to 
reconstruct dynamic surfaces with an established 
photogrammetric method. In object-based image matching, the 
colour intensities of all images are matched, and unknown model 
parameters of radiometry, object surface, and cameras are 
estimated simultaneously (Wrobel, 1987). The model can be 
extended for dynamic surfaces by a kinematic model, which 
describes the movement/deformation of the rigid object surface. 
This description results in a closed mathematical formula, shown 
in Figure 1. 

 
Figure 1. Relationship of image sequence domain and object-

spaced model. The model consists of several patches. 

The mathematical formulation of spatio-temporal object-based 
image sequence matching describes the relationship between 
colour intensity 𝑔𝑔𝑖𝑖𝑖𝑖  in an image sequence 𝑗𝑗 and the corresponding 
surface texture 𝐺𝐺𝑖𝑖(𝑡𝑡) of the dynamic surface point 𝐷𝐷𝑖𝑖(𝑡𝑡), which 
consists of a geometric model 𝑆𝑆 and a kinematic model 𝐾𝐾. 
 
 𝐺𝐺𝑖𝑖(𝑡𝑡) = 𝑔𝑔𝑖𝑖𝑖𝑖(𝑆𝑆,𝐾𝐾,𝑂𝑂,𝑅𝑅, 𝑡𝑡)     (1) 
 
As with the original approach, a geometric model forms the basis 
of the method, which determines any 3D object point 𝑝𝑝. In the 
past, numerous models have been developed that differ in 
dimensionality (2.5D or 3D) and computational time (Heipke, 
1991; Schneider, 1991; Schlüter, 1999). As a geometric model, 
we use independent 2.5D planes to approximate the rigid surface. 
Each plane is described by the height 𝑍𝑍 of the centre point 𝑝𝑝𝑃𝑃 and 
the angles 𝛼𝛼 and 𝛽𝛽. The required coordinates 𝑋𝑋 and 𝑌𝑌 are 
assumed to be known of 𝑝𝑝𝑖𝑖 and centre point 𝑝𝑝𝑃𝑃. 
 
 𝑆𝑆:⟺  𝑍𝑍𝑖𝑖(𝑋𝑋,𝑌𝑌) = 𝑍𝑍𝑃𝑃 + (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑃𝑃) ∙ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼)   (2) 

+(𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑃𝑃) ∙ 𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽) 
 
Each object point 𝑝𝑝𝑖𝑖 can be explicitly associated with a static 
plane 𝑃𝑃, whose motion is described by the kinematic model 𝐾𝐾. 
Depending on the application, several planes can use the same 
motion parameters (see the highlighted area in Figure 1). In this 
study, the kinematic model is modelled by a 6-parameter 
similarity transformation, consisting of translation 𝑥𝑥(𝑡𝑡)��������⃗  and 
rotation 𝑅𝑅(𝑡𝑡). However, each set of parameters is only valid for 
one discrete time step 𝑡𝑡 and a discrete area of the surface model. 
 
 𝐾𝐾:⟺ 𝑝𝑝𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)��������⃗ + 𝑅𝑅(𝑡𝑡) ∙ 𝑝𝑝𝑖𝑖    (3) 
 
After applying the transformation, the transformed points 𝑝𝑝𝑑𝑑𝑑𝑑(𝑡𝑡) 
defines the deformed surface 𝐷𝐷(𝑡𝑡). These discrete points can be 
transformed into the image domain of the respective image 
sequence using the collinearity equations and the orientation 
parameters 𝑂𝑂 of the camera 𝑗𝑗. The colour intensities are generated 
by bilinear interpolation in the image domain. In addition, 
radiometric correction terms 𝑟𝑟0𝑗𝑗 and 𝑟𝑟1𝑗𝑗 can be applied through 
the radiometric model 𝑅𝑅. The complexity of these correction 
terms varies depending on the application. Different radiometric 
models can be found in Weisensee (1992) and Gehrke (2008). 
 
 𝑅𝑅 ∶⇔  𝑔𝑔𝑖𝑖𝑖𝑖 = 𝑟𝑟0𝑗𝑗 + 𝑟𝑟1𝑗𝑗 ∙ 𝑔𝑔𝑖𝑖𝑖𝑖′      (4) 
 
The underlined parameters in Equations 1 to 4 are unknown and 
determined using a least squares adjustment. The observation 
equation can be derived from Equation 1. Here, the colour 
intensities of the image sequences are defined as observations so 
that the primary observations of the cameras can be used directly. 
Furthermore, this description allows the use of the entire spatio-
temporal redundancy. Another advantage of the method is the 
dynamic scene's modelling, which allows comprehensive error 
propagation. In addition, all image sequences are matched 
equally, so no reference image is needed. Hence, the method is 
characterised by great flexibility and highly achievable accuracy. 
However, the method needs initial values and long computational 
times. 
 

3. OCCLUSION DETECTION 

In the context of this work, we assume that occlusions can be 
reduced to obstacles with an unknown motion model. In addition, 
the obstacle's texture is assumed to differ from the dynamic 
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object's surface texture. The following describes two approaches 
to handling occlusion in the spatio-temporal matching method. 
 
3.1 Semantic approach 

The semantic approach refers to the use of binary image masks. 
For this purpose, we use the network architecture of the 
SegFormer network, which is characterised by a small number of 
trainable parameters (Xie et al., 2021). The neuronal network 
processes each image of a sequence and generates a sequence of 
binary image masks. Occluded pixels, which are supposed to be 
processed by the spatio-temporal matching method, are thus 
excluded from the optimisation process. 
 
3.2 Statistical approach 

We define another approach as the statistical method based on 
robust estimation procedures. Such methods are characterised by 
the ability to separate observations from outliers and robustness 
regarding deviations from the expected distribution of 
observations (Huber and Ronchetti, 2009). For example, 
RANSAC algorithms are widely applied methods that allow 
good parameter estimation regardless of many outliers (Fischer 
and Bolles, 1981). However, RANSAC is characterised by high 
computational times and additional memory requirements, which 
would further increase the computational times of the proposed 
spatio-temporal matching method. An alternative are M-
estimators that are based on the maximum likelihood principle. 
Here, a loss function is used for parameter estimation that 
maximises the likelihood function, which allows a parameter 
estimation even though the underlying observation distribution is 
disturbed. Thus, M-estimators have already been successfully 
investigated and used in stereo matching (Arya et al., 2007; Li 
and Wang, 2014). 
 
Nevertheless, to our knowledge, no publications are related to 
spatio-temporal object-based image sequence matching in which 
robust estimation methods are used to handle corrupted 
observations. M-estimators are particularly suitable for spatio-
temporal object-based image sequence matching because they 
can be easily integrated into the least-squares method. Equation 
5 shows the generic estimation of unknown parameters using the 
least-squares method. 
 
 𝑥⃗𝑥 = (𝐽𝐽𝑇𝑇 ∙ 𝐽𝐽)−1 ∙ �𝐽𝐽𝑇𝑇 ∙ 𝑏𝑏�⃗ �     (5) 
 
Here 𝑥⃗𝑥 describes the parameter vector, 𝐽𝐽 the Jacobian matrix, and 
𝑏𝑏�⃗  the observations. In robust estimation, this equation is extended 
by a weight matrix 𝑊𝑊, whereby the influence of each observation 
can be individually controlled. The parameter vector is 
determined following the principle of iteratively reweighted least 
squares (IRLS, Holland and Welsch, 1977), where the 
determination of the weight matrix is repeated simultaneously in 
each iteration. 
 
 𝑥⃗𝑥 = (𝐽𝐽𝑇𝑇 ∙ 𝑊𝑊 ∙ 𝐽𝐽)−1 ∙ �𝐽𝐽𝑇𝑇 ∙ 𝑊𝑊 ∙ 𝑏𝑏�⃗ �    (6) 
 
In the first iteration, the weight matrix corresponds to an identity 
matrix whose diagonal is redefined by a weight function 𝑤𝑤(∙) in 
the next iteration. 
 

 𝑊𝑊 = �
𝑤𝑤11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑤𝑛𝑛𝑛𝑛

�   ;  𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤(𝑟𝑟𝑖𝑖)   (7) 

 

The weight function is the second derivation of a loss function, 
for which numerous variants have been proposed (Holland and 
Welsch, 1977). The weights are usually based on the respective 
residual 𝑟𝑟𝑖𝑖 and a threshold 𝑐𝑐 known as the tuning factor. We refer 
to Huber and Ronchetti (2009) for more information about the 
tuning factor. Two of the most widely used functions are the 
Huber (Equation 8) and the Tukey weight function (Equation 9). 
While the Huber weight function reduces the weights of outliers, 
the Tukey weight function modifies the weights of valid 
observations. At the same time, the outliers are given a weight of 
zero. However, this can lead to unstable equation systems. Thus, 
we use a weight of 10−6 instead. 
 

 𝑤𝑤(𝑟𝑟) = �
1 |𝑟𝑟| ≤ 𝑐𝑐
𝑐𝑐

|𝑟𝑟|
|𝑟𝑟| > 𝑐𝑐                    ; 𝑐𝑐 = 1.345   (8) 

 

 𝑤𝑤(𝑟𝑟) = ��1 − �𝑟𝑟
𝑐𝑐
�
2
�
2

|𝑟𝑟| ≤ 𝑐𝑐

0 |𝑟𝑟| > 𝑐𝑐
 ; 𝑐𝑐 = 4.685   (9) 

 
In the context of the requirements for temporal occlusions 
described in Chapter 3, the occlusions can be defined as outliers 
in the described matching procedure. The occlusions can be 
detected simultaneously with the parameter estimation through 
the statistical approach, and the influence of occlusions can be 
minimised. That means that no additional processing of the image 
data or prior information about the characteristics of the temporal 
occlusions is required. It should be noted that it is impossible to 
separate the occluded pixels from other outliers. As a result, a 
higher false negative rate can be assumed for the classification of 
occlusions compared to the semantic approach. 
 

4. EXPERIMENTS 

In the following experiments, we investigated the performance of 
the proposed method using synthetic and real data. The datasets 
simulate a modal analysis, a widely used experiment in wind 
energy science to verify the quality of operating and new rotor 
blades (Larsen et al., 2002). A modal analysis aims to evaluate 
the behaviour of a rotor blade by occurring vibrations. Minor 
vibrations can be expected at the root and the highest at the tip 
position of the blade. Different measurement systems can acquire 
the vibrations that occur. Photogrammetric methods are 
especially suitable for the area-based acquisition of 
displacements. However, repeatability cannot guaranteed due to 
changing environmental conditions. Therefore, precise 
calibration and high-quality processing strategies are necessary 
to achieve the required accuracy (Sabato et al., 2018). 
 
4.1 Synthetic dataset 

The modelling and creation of the synthetic dataset and the 
reference masks were carried out with Blender (Blender 
Development Team, 2022). A CAD model of a NREL 5MW 
turbine was used to model the rotor blade. For this experiment, 
the model was scaled to 900 mm. To add the deformation to the 
blade, we used the modifier SimpleDeform Bend. The largest 
deviations were 31.84 mm at the blade's tip and showed a 
sinusoidal pattern over time. A speckle pattern signalises the 
blade, interpreted as a diffuse Lambertian emitter. 
 
The photogrammetry system consisted of four cameras 
corresponding to the high-speed camera PCO Dimax HD+ 
specifications, summarised in Table 1. To simplify the 
processing, no distortion model was applied to the image 
sequences. 
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Sensor size [mm] 21.12 x 15.84 
Sensor size [pixel] 1920 x 1440  

Pixel size [mm] 0.011  
Focal length [mm] 24 

Principal point [mm] -0.0055 (X) 
 0.0055 (Y) 

Table 1. Specification of the camera Dimax HD+ and CS3. 
 
Using four perspective views, which ensured that the whole rotor 
blade was captured in each view and time step. The average 
distance to the object was 1500 mm, resulting in a GSD of 0.72 
mm. To optimise the runtime of the procedure, only the red area 
marked in Figure 2 was reconstructed. 

 
Figure 2. Image configuration of the synthetic dataset (top). 

View 3 (orange) with the reconstruction area and the occlusion 
(bottom). 

 
The size of a geometric patch was 15 mm x 15 mm, so the 
geometric model consisted of 254 elements. The kinematic 
model was structured in strips along the Y-axis, resulting in a 
varying number of geometric meshes per kinematic patch. Each 
kinematic patch consisted of at least 13 geometric patches, which 
led to a different number of observations. The general 
specifications of the adjustment are summarised in Table 2. 
 
A green obstacle was modelled as an occlusion. This obstacle 
dropped alongside the Z-axis, resulting in occlusions in epoch 4 
and obstructing 25% of the observation per view. The dataset was 
used in three experiments, where the number of occluded 
observations varied. In experiment A, occlusions were only 
included in view 3. In experiment B, additional occlusions were 
added in view 4. Finally, in experiment C, occlusions were 
present in views 2, 3, and 4. This means that for experiment C, 

only view 1 provided observation for the reconstruction, and 
consequently this meant that the reconstruction was based on 
view 1 and the spatio-temporal redundancy. 
 
4.2 Real dataset 

The real dataset simulated a modal analysis of a metal bar in the 
laboratory, shown in Figure 3. For data acquisition, two PCO 
Dimax HD+ and two PCO CS3 cameras were used, and they were 
applied in a similar image configuration to the synthetic dataset. 
The camera system was calibrated through bundle adjustment 
and synchronised with an external device. A hammer hit the 
mounted metal bar and deformed the object. Therefore, the metal 
bar oscillated only in the Z-direction (blue arrow) during the 
experiment, where the most significant deviation occurred at the 
tip position (horizontal metal bar). 

 
Figure 3. Experiment setup of real dataset (left). View 2 with 

the green obstacle and shaded area (right). 
 
The kinematic patches were arranged along the X-axis (red 
arrow), similar to the synthetic dataset. The GSD was 0.25 mm, 
and each image sequence consisted of 8 images. This 
specification led to more observations and parameters, 
summarised in Table 2. 

 Synthetic 
dataset Real dataset 

Sequence length 6 8 
Colour depth 3 (RGB) 3 (RGB) 

Number of geometric patches 254 219 
Number of kinematic patches 18 21 
Total number of observations 1,407,168 5,797,824 
Total number of parameters 59,664 182,280 

Table 2. Specification of the datasets. 
 
The occlusion was based on a green obstacle that dropped 
alongside the Z-axis. The occlusions occurred in views 2 and 4 at 
time 4, 5, and 6. Furthermore, the obstacle created shadows at 
time 2 to 6, which could additionally reduced the reconstruction 
quality.  
 
4.3 Evaluation procedure 

The procedure's evaluation can be divided into three groups. 
First, the quality of the reconstruction was analysed. For this 
purpose, the point cloud of each epoch was compared with the 
simulation's reference data and evaluated using the RMS. The 
comparison of all epochs considers the influence of all models 
(geometric and kinematic). In addition, the number of iterations 
was considered but was of minor importance. 
 
The second part of the evaluation included the quality of the 
segmentation. The evaluation aims to analyse the ability of the 
procedure to detect the occlusions. Precision, recall, and the IoU 
were used in the assessment. For this purpose, the observations 
were transformed into the image domain and compared with the 
reference masks. The classification with the robust methods 
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(Huber and Tukey) used the calculated weight. However, the 
weights are not binary, thus a threshold was required. Therefore, 
we used an adaptive threshold determined through Otsu's method 
(Otsu, 1979).  
Image masks were required to compare with the semantic-based 
method. Therefore, the SegFormer network (Section 3.1) was 
used for the pixelwise detection of the objects. The training used 
600 synthetic images, which show different numbers of rotor 
blades, perspective and radiometry. After training, the network 
was characterised by a precision of 99.6 %, a recall of 95.4% and 
an Intersection over Union (IoU) of 0.95. 
 
The third part of the evaluation includes the real dataset. 
However, due to the dynamic and uniqueness of each experiment, 
generating highly accurate reference data for the real dataset was 
not possible. Therefore, only the residuals of each method were 
used to validate the procedure. 
 

5. RESULTS 

5.1 Synthetic dataset 

The results of the three synthetic experiments were analysed and 
summarised in Table 3. The presented metrics were determined 
for all methods and experiments. Here, the Standard method 
shows the results of the spatio-temporal matching method 
described in Chapter 2. Ground Truth differs from Standard by 
using occlusion-free image sequences. Therefore, the achievable 
accuracy level can be seen as the best result based on the 
configuration. The RMS was 0.02 mm, which resulted in a 
reprojection error of 0.03 pixels. The accuracy level decreased 
significantly with increasing occlusions. The RMS decreased by 
factors of 2.5, 4, and 5 due to the different experiments. In 
addition, considerably more iterations were required until the 
method converged. However, the three methods can significantly 
reduce this effect, allowing high-quality experiment results.  
 
Differences can be seen between the methods regarding the 
deviations from the CAD model, which are visualised in Figure 
4. Figure 4 shows the reconstructed surface for all time steps of 
experiment C, coloured according to the deviations. Although the 
occlusions only occurred at time 4, high deviations are visible at 

all time steps with the Standard method. The largest deviations 
occurred in the area of the occlusions. Therefore, the occlusions 
seem to influence the affected positions independent of time due 
to the spatio-temporal relationship. If the occlusions were 
considered through image masks, the areas with high deviations 
were significantly smaller. Individual deviations occurred in the 
occlusion area, presumably attributed to incomplete 
segmentation. The use of robust estimation methods resulted in 
even fewer deviations and shows a high level of accuracy 
comparable to Ground Truth throughout all epochs. In addition 
to the RMS values, Table 3 summarises the segmentation 
metrics. High segmentation ratios can be achieved using the 
Mask method, which has the same quality as the training dataset. 
The robust estimation methods Huber and Tukey show a slightly 
different performance but on a same level. Figure 5 visualises the 
weights of the respective detected occlusions. Compared to 
Ground Truth (GT), Mask did not detect the occlusion correctly, 
although the metrics in Table 3 show a very high level. It should 
be noted that the results of all image sequences were cumulated 
to determine the metrics, which means that local discrepancies 
have a minor impact. If the metrics were determined only for the 
affected images at time 4 the IoU for experiment A would be 0.89 
(precision: 94.60% - recall: 94.39%), experiment B 0.95 
(precision: 97.64% - recall: 97.55%) and experiment C 0.87 
(precision: 93.11% - recall: 92.56%). From our point of view, this 
is not suitable for the analysis because the spatio-temporal 
method considered all images of the sequences equally. 
Therefore, spatio-temporal redundancy allowed for the 
achievement of high-quality results even with less reliable 
detection. Nevertheless, it showed the importance of high-quality 
training data for the segmentation task. 
 
By comparing the reference with the calculated weights by 
Huber, it can be seen that the whole occlusion can be detected. 
However, noise could also be recognised in all image views. This 
noise cannot be seen in the Tukey weighting, which the higher 
tuning factor can explain. In addition, the occlusion can be 
detected comprehensively, although the occlusion edge was 
weighted slightly higher.  
 
 

Table 3. Results of spatio-temporal object-based image sequence matching. The best results are marked in bold. 

Experiment Method RMS 
[mm] 

Precision 
[%] 

Recall 
[%] IoU Iteration 

Ground Truth 0.02 - - - 10 

A 

Standard 0.05 - - - 27 
Mask 0.02 99.57 99.72 0.99 10 
Huber 0.02 90.83 99.99 0.91 21 
Tukey 0.02 95.90 99.99 0.96 14 

B 

Standard 0.08 - - - 19 
Mask 0.03 99.37 99.53 0.98 14 
Huber 0.02 94.83 99.99 0.95 17 
Tukey 0.02 95.89 99.96 0.95 13 

C 

Standard 0.10 - - - 36 
Mask 0.03 99.10 99.27 0.98 14 
Huber 0.03 96.31 99.98 0.96 23 
Tukey 0.03 95.96 99.93 0.96 35 
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Figure 4. Deviations from the reference CAD model for experiment C. Modelled occlusions were in time step 4. 

 

 
Figure 5. Colourised detected occlusion (black) through weights. Correct observations are bright, and corrupted observations are 

dark. 
 
5.2 Real dataset 

Figure 6 shows the reconstructed surface of the real dataset. The 
surfaces are colourised based on the residuals of the view's 2 
observations for time 2 to 7. The method Standard (first row) 
showed high residuals in the occlusion and shadow area. In 
addition, all residuals were higher than the other methods, 
leading to a 𝜎𝜎0 of 21.36 intensity. Furthermore, the method 
converged after 37 iterations. The reconstructed object with the 
Mask method obtained some gaps due to eliminating invalid 
pixels. In addition, high residuals could be seen in some areas 
caused by the inefficient detection of shaded areas. However, 
only 24 iterations were needed to obtain a 𝜎𝜎0 of 17.65 intensity. 
Huber and Tukey achieved a similar performance. The methods 
converged after 35 and 28 iterations and reached a 𝜎𝜎0 of 15.26 

and 15.73 intensity. Contrary to Standard, the residuals were 
homogenous for the whole surface. Although minor artefacts in 
the shaded area could be seen in Tukey, the reconstructed surface 
was of high quality. 
 
Similar behaviour could be observed compared to the synthetic 
dataset, and the results from the synthetic experiments could be 
confirmed. In both datasets, occlusion's impact was significantly 
reduced with robust and masked-based methods. Although the 
masked-based approach required fewer iterations, robust 
methods detected all corrupted observations. However, both 
approaches increased the quality and allowed high-accuracy 
reconstruction of partly-occluded dynamic surfaces. 
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Figure 6. Reconstructed surface of the real dataset, colourised by the residuals of view's 2 observations. 

 
6. CONCLUSION 

Temporal occlusions can significantly affect the reconstruction 
process of dynamic scenes. In the past, image masks were often 
used to detect occluded pixels and exclude them from the 
reconstruction process. However, this requires prior knowledge 
of the occlusion and additional processing steps. 
 
This paper proposed an alternative framework that exploits high 
spatio-temporal redundancy and uses robust estimation methods. 
The framework extends an established object-based image 
matching approach with a kinematic model, which allowed the 
processing of dynamic scenes. We combined the framework with 
different methods to handle occlusions. Moreover, we evaluated 
those approaches using synthetic and tested them on real data. It 
was shown that the spatio-temporal matching method 
reconstructs the dynamic surface with high quality but was 
sensitive to occlusions. Robust and mask-based methods 
significantly increased the accuracy in all experiments so that the 
influence of temporal occlusions was reduced entirely. Even with 
occlusions in 75% of all images of an epoch, the reconstruction 
could be achieved without significant loss of accuracy, which can 
be explained by high spatio-temporal redundancy. 
 
Distinctions between the methods could be seen in the 
reconstruction results. On the one hand, the robust methods 
required a few more iterations than the mask-based approach. On 
the other hand, inaccurate image masks could corrupt the result 
or led to gaps in the reconstructed surface, especially in the case 
of poorly identifiable artefacts such as shadows. Therefore, an 
accurate segmentation method should be used if high-quality 
semantic information is required. In summary, both approaches 
were equivalent, and their use should depend on the application. 
 
The investigated setup is based on the modal analysis of a rotor 
blade, where an artificial object generates the occlusions. 
Therefore, it is still interesting whether similar results can be 
achieved if the occlusion has radiometric properties similar to 

those of the reconstruction object. Due to the image configuration 
and the local radiometric uniqueness, similar results can probably 
still be achieved. However, this requires further experiments.  
 
Upcoming steps will focus on expanding the proposed 
framework. For example, measured velocities or rotations of the 
object can be integrated into the optimisation process to improve 
the reconstruction quality.  
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