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ABSTRACT:

We have developed a robust, novel, and cost-effective method for determining the geolocation of vehicles observed in drone camera 
footage. Previous studies in this area have relied on platform GPS and camera geometry to estimate the position of objects in drone 
footage, which we will refer to as object-to-drone location (ODL). The performance of these techniques is degraded with decreasing 
GPS measurement accuracy and camera orientation problems. Our method overcomes these shortcomings and reliably geolocates 
objects on the ground. We refer to our approach as object-to-map localization (OML). The proposed technique determines a 
transformation between drone camera footage and georectified aerial images, for example, from Google Maps. This transformation is 
then used to calculate the positions of objects captured in the drone camera footage. We provide an ablation study of our method’s 
configuration parameter, which are: feature extraction methods, key point filtering schemes, and types of transformations. We also 
conduct experiments with a simulated faulty GPS to demonstrate our method’s robustness to poor estimation of the drone’s position. 
Our approach requires only a drone with a camera and a low-accuracy estimate of its geoposition, we do not rely on markers or 
ground control points. As a result, our method can determine the geolocation of vehicles on the ground in an easy-to-set up and cost-
effective manner, making object geolocalization more accessible to users by decreasing the hardware and software requirements. Our 
GitHub with code can be found at https://github.com/OSUPCVLab/VehicleGeopositioning

1. INTRODUCTION

Drones have a variety of use cases, typically centered on cap-
turing data about an environment with a camera and/or other
complementary sensors. These include agriculture (Daponte et
al., 2019), delivery of medicines in remote regions (Nyaaba and
Ayamga, 2021), delivery of products in urban settings (Rodrig-
ues et al., 2022), and land surveying (EL Meouche et al., 2016).
Two essential tasks for drones are determining where they are
and where other objects are in the scene. These tasks enable
useful data for the end user and prevent the drone from collid-
ing with its environment or other drones.

Today’s approaches for drone camera-based object geolocaliz-
ation rely on precise camera geometry or elevation maps to de-
termine a relationship between a drone camera and its environ-
ment. We will refer to these schemes as object-to-drone localiz-
ation (ODL) methods. The position of an object relative to the
camera is determined, and then the object is localized using the
drone position. This requires precise and accurate knowledge
of the drone and camera parameters to georeference the object
of interest from the image (parameters such as field of view,
intrinsic and extrinsic camera calibration, camera tilt/viewing
angle, drone altitude, and GNSS sensor readings). This presents
a challenge for the end user, as these conversions lead to oppor-
tunities for error and require precise and accurate knowledge of
the drone and its relationship to the environment. The user must
either guarantee the accuracy and precision of these parameters
for each image the drone captures or accept a significant margin

of error.

We present a novel method that requires only the low-accuracy
geoposition of the drone. We will refer to this new scheme as
object-to-map localization (OML). Our approach uses the re-
ported geoposition of the drone with apriori reference mapping
information provided through Google Maps and other platforms
such as Bing Maps or Apple Maps. Our reduced parameter
count minimizes hardware and software requirements to per-
form geolocalization in unseen environments. We note that
our method is robust to spatiotemporal and seasonal differences
between drone camera-acquired images and reference data in
the form of georectified reference images. This scene-centric
approach is similar to the parallax approach introduced origin-
ally by (Irani et al., 1998), which shifts the focus of 3D vision
tasks away from the camera’s explicit relationship to its envir-
onment.

The rest of the paper is organized into related work discussed in
the next section. The proposed approach is discussed in Section
3. This is followed by experiments and their results, and finally
conclusions in Sections 4 and 5.

2. RELATED WORK

There are two main methods for ODL using drone cameras. The
first is to use the drone’s altitude and camera parameters to de-
termine object positions and to localize them using the drone’s
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position. The second is to determine the position of objects rel-
ative to the drone via depth maps or LiDAR data.

In (Zhang et al., 2019), the authors propose using drone altitude
and camera angle information to find a ground plane and loc-
ate objects with the intrinsic camera calibration matrix. This is
done by backpropagating object positions from 2D to 3D and
placing them on the ground plane. (Liu and Li, 2021) provides
a similar approach; however, they also consider the orientation
of the camera mount and the pitch, roll, and yaw of the drone.
They report their localization accuracy via AprilTags (visual fi-
ducials) which they put on the ground with an established geo-
location. The average error between the AprilTags’ locations
and the true locations is between 4.38 and 6.88 meters when
flying at 6.5 and 10 meters, respectively. In comparison, our
flights occur at 20 to 45 meters.

Another approach uses the field of view and altitude of a cam-
era to determine the position of an object (Dwyer, 2022). They
provide a clear image of the general framework of the geometric
method, which is shown in Fig. 1. (Lygouras, 2020) uses a sim-
ilar method for ODL; however, their approach uses a real-time
kinematic positioning (RTK) correction system. This provides
a more precise geolocation for the drone and improves the qual-
ity of ODL. However, the authors note that if the drone is out-
side of the range of the RTK correction, it uses a GNSS system
to localize the drone and its error significantly propagates to
the predicted positions of the geolocated objects. The practical
challenge this method presents is that RTK systems must be
set up and configured before flight in the desired area and are
available for use at all times, which limits the effectiveness of
this method. We should note that the cost of a single RTK sys-
tem is often high and it must be calibrated before use. If many
are needed to maintain a reliable GPS position, the cost could
be prohibitive. Finally, the RTK correction addresses only one
parameter out of many required for ODL.

Figure 1. Geometry Based Localization Approach (Dwyer,
2022)

The open source software OpenAthena (mkrupczak3, 2023) ex-
pands on previous ODL methods, taking into account the topo-
logy of the ground it observes. This allows for more better loc-
alization and fewer errors, given that the drone’s geolocation is
reported accurately as well. OpenAthena’s method is shown in
Fig. 2. Depth maps are generated by (Carrio et al., 2020) dur-
ing flight to position objects relative to the drone using stereo
vision. Their use case is to avoid collisions with other drones
(or other objects) during flight.

ODL methods use the drone as an anchor in the scene that the
drone observes. This is undesirable in object geolocalization

Figure 2. Geometry Based Localization with Topological
Constraints (mkrupczak3, 2023).

and is tiresome for drone platform operators. The user must de-
termine the drone camera and sensor parameters with sufficient
sensitivity to minimize error and then ensure that these para-
meters are accurate and precise throughout the flight. To satisfy
geometric assumptions, more accurate and precise sensors are
used to meet the requirements. These sensors are larger, heav-
ier, and more expensive. In practical scenarios, the require-
ment of knowing a camera’s exact orientation and relationship
to the environment is easily violated due to the dynamic nature
of drone flight, such as wind, turbulence, platform vibration,
and rapid changes in drone motion.

Multiview geometric analysis was done in (Irani et al., 1998)
by using homographic transformations to describe the scene.
This allows for 3D scene reconstruction and novel view ren-
dering within the scene. The primary assumption is that the
scene has discernible planar surfaces, which can be mapped to
each other across images via the homography transform. The
advantage of this method is that is describes the 3D nature of
the scene without overly relying on the camera parameters and
from where the camera took pictures.

During a survey of object geolocalization, (Wilson et al., 2023)
found no datasets with objects observed from the air with re-
ported object geolocations. We were unable to find such a data-
set as well. This gap in the literature will not be addressed in
this paper, but the result of this gap is that there are no metrics
to evaluate the accuracy of methods to geolocate objects from
drone footage.

Our method’s contributions are as follows:

1. Cost-effective method for localization, with no hardware
requirements beyond any drone with a GPS receiver and
camera,

2. Robustness to the dynamic nature of drone flights,

3. Minimum requirements to start using for the first time and
in a new environment

3. METHODOLOGY

We will briefly describe the pipeline to give the reader a com-
plete picture of the process. This process is summarized in
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Figure 3. Pipeline Summary: In Stage 1, all objects of interest are detected for each drone image, and object tracking is applied in the
sequence. During Stage 2, georectified reference image is queried from a provider (in this paper, we used Google Maps) that is closest
to the drone’s reported geoposition to estimate the projective transformation. In Stage 3, the objects from Stage 1 are transferred to the
reference frame using the transformation estimated in Stage 2. Finally, the geopositions of the objects are estimated and placed on the

map.

Fig. 3. The approach starts with detecting the vehicles in the
drone footage. This process is followed by matching key points
between the drone image and a queried georectified reference
image and estimating the transformation between them. Fi-
nally, the detected vehicle image positions per frame are trans-
formed to the reference frame. We can then geolocate the
objects once they’re in the reference frame because reference
frame is already georectified. In the context of an image se-
quence, visual object tracking is applied to track and determine
many object geopositions per object (which can then be post
processed into one position for each object).

3.1 Detecting and Tracking vehicles

To detect vehicles in the drone footage, we finetuned a YOLOv8
model (Jocher et al., 2022) for 25 epochs. Since the vehicles
are small objects at higher altitudes, during training, we chose
to tile the images in the dataset. The augmentation to the data-
set was performed using Roboflow (Dwyer et al., 2022). We
adopted the SAHI approach reported in (Akyon et al., 2021) to
perform sliced window inference to improve detection perform-
ance, especially when a large number of vehicles co-occur.

To track vehicles in consecutive frames, we adopted the Deep-
SORT approach (Wojke and Bewley, 2018). The tracking his-
tory is used to associate the vehicle geolocations estimated in
consecutive images. This allows us to develop a distribution of
the predicted locations for the vehicles.

3.2 Matching and Filtering Features between Images

As shown in Fig. 4, there is a spatiotemporal domain gap
between the orthorectified reference image and the drone im-
ages. In the drone imagery, the trees have no leaves and cast
shadows occur due to early morning capture. Furthermore, the
georectified Google Maps imagery was captured in 2017, while
drone imagery was captured in 2022, so some of the buildings
and roads have changed across the images. In our experiments,
we observed that the best method for keypoint extraction and
matching that mitigates the spatio-temporal gap is SuperGlue
(Sarlin et al., 2020) and LoFTR (Sun et al., 2021). We apply
no fine-tuning and use the pretrained vanilla models for both.
During the initial testing of our method, we found that classical
methods for keypoint extraction and matching, such as SIFT

(Lowe, 1999) and ORB (Rublee et al., 2011), cannot handle the
spatiotemporal gaps between the images.

Figure 4. Drone Image (left), Corresponding Queried Google
Maps Image (right)

We use the matching keypoints to estimate a projective trans-
form (homography), H , or a 2D affine transformation, A,
between them using RANSAC (Fischler and Bolles, 1981), im-
plemented in (Bradski, 2000). This allows us to georeference
any keypoint in the drone image on the map. We show the effect
of homography by overlaying the drone image on the georecti-
fied reference image in Fig. 5. Note that we assume that the
camera points generally down.

Figure 5. Drone Image Fused onto Google Maps Image (vehicle
positions shown in red)

We implemented three filtering operations to eliminate what we
consider to be unreliable keypoints. We refer to the filters as the
Road, Building, and Vehicle filters. These filters are discussed
in the following text, and sample filtering results are shown in
Fig. 6. The way these filters work is by applying a mask to the
detected keypoints.
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• The road filter removes keypoints that are not located on or
near roads. This was implemented because vehicles exist
on or near the roads, and we expect the best matching fea-
tures to be near the roads in the Google Maps image. The
mask for this filter is found by upper and lower threshold-
ing a semantic Google Maps image from the same position
as the Aerial Google Maps image. The thresholding is set
up to only keep the points which are on the road. Image
dilation is applied to the mask to extend the valid mask
regions slightly beyond the road.

• For the building filter, we remove key points detected on
buildings, as the tops of buildings do not lie on the ground
plane where we observe vehicles. Using keypoints in
buildings could lead to a poor transformation estimate, as
they are not in the same plane as the ground. Like the
road filter, the building filter thresholds a semantic Google
Maps image. Next, image erosion and dilation are applied
to clean up artifacts left by the semantic thresholding.

• The vehicle filter is used to prevent similar vehicles across
the images from being used as matching features (since
these vehicles are extremely unlikely to be the same
vehicles with the 5-year temporal gap). For the vehicle
filter, we remove matching key points that are within the
detected vehicles’ bounding boxes in the drone footage.

Figure 6. Sample Camera Image Key Points with Filters
Applied: Original Features (top left), Road Filter (top right),
Vehicle Filter (bottom left), Building Filter (bottom right).

3.3 Summary of Configuration Parameters

This subsection will briefly review which parameters we can
adjust in our method. For the keypoint extraction portion, we
can either use SuperGlue, LoFTR, or both (3 options). For the
filtering portion, we can apply any combination of the Road,
Vehicle, or Building filters, or we can apply no filtering (8 op-
tions). Finally we can either use a homography or a 2D affine
transformation to describe the relationship between the drone
image and the Google Maps image (2 options). There are 48
different parameter configurations we can have, we test all of
them in Section 4.

3.4 Calculating the geolocation of vehicles

Once a transformation is determined between the georectified
reference image and the drone image, it is applied to the vehicle
geolocations to place them on the reference image. Since

Google Maps is adopted for georectified image retrieval, in
the following discussion, we will provide the conversion from
the drone image to georectified coordinates in terms of Google
Maps parameters.

In the following formulas; xgm and ygm are the x, y pixel posi-
tions after they’ve been transformed from the drone image to the
Google Maps image, gmiw and gmih are the width and height
of the Google Maps image in pixels, deg per m is the number
of degrees latitude per meter on earth, m per pix is how many
meters each pixel in a Google Maps image represents, zoom is
the Google Maps zoom level (in our case 20), lat factor is the
adjustment when computing the latitude change at varying latit-
udes, and lat, long are the latitude and longitude of the Google
Maps image (located at its center in the image).

�x = xgm � gmiw

2
(1)

�y =
gmih

2
� ygm (2)

deg per m =
360

2⇥ ⇡ ⇥ 6378137
(3)

m per pix =
156543.03392

2zoom
(4)

lat factor = cos(
lat⇥ ⇡

180
) (5)

Then we can see that the change in latitude and longitude come
from equations (1) through (5) as follows:

�lat = �x⇥ deg per m⇥m per pix⇥ lat factor (6)
�long = �y ⇥ deg per m⇥m per pix (7)

Finally we can get the latitude and longitude of the object of
interest:

objlat = �lat + lat (8)
objlong = �long + long (9)

4. EXPERIMENTS

In this section, we first introduce the in-house generated dataset.
We will then discuss the evaluation metrics and finally provide
a discussion of our results. We will also discuss some addi-
tional experiments we performed to evaluate how resilient our
algorithm is to faulty GPS devices and position estimation with
respect to the the drone’s true geoposition.

4.1 Data

The drone images used in this project are from videos released
in (Wei et al., 2022). The data was captured using a DJI Mavic
Air2. We use the method proposed in (Wei et al., 2022) to
determine approximate drone geopositions. Eighty-eight im-
ages from three videos were labeled using Roboflow (Dwyer
et al., 2022) to generate a small vehicle training data set. Some
sample annotations are shown in Fig. 7. The footage generally
was captured during the early morning, as a result we expect the
predicted vehicle positions to be tightly clustered and consistent
across frames.
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Figure 7. Sample Annotations

Drone geopositions are used to query a reference Google Maps
georectified reference image during the analysis of the captured
footage. Fig. 4 shows a drone image and the Google Maps ref-
erence image at the reported geoposition.

4.2 Results and Evaluation Metric

To evaluate our method and various configurations of paramet-
ers that can be used with the proposed pipeline, we sampled 100
frames of drone footage in 5 different regions. These regions
have varying heights (20-45 meters) and constantly changing
camera orientations (due to the drone motion and interaction
with the environment). We only provide metrics for precision
as we do not have the ground-truth geolocations for the vehicles
captured in this dataset. We convert the car predicted positions
to meters and operate in this space for easier interpretability.

For all tracked vehicles, we remove spurious detections and
vehicles that appeared once during the video. For each vehicle,
we run (Pedregosa et al., 2011)’s implementation of DBSCAN
(Ester et al., 1996), with the eps parameter set to 4.48 meters,
the average length of a car’s major axis. We then select only the
points inside the largest cluster found. We observed that we re-
move approximately 20% of points when using any parameter
configuration with SuperGlue and 40 to 50 % of points when
using only LoFTR. There is some variation in the number of
points due to other parameters, but the keypoint extraction and
matching makes the largest difference. Next we perform PCA
to identify the major and minor axes the car’s predicted posi-
tions lie on. We scale the values so that the major axis compon-
ents have the same range as the minor access components. A
sample cleaning of points can be see in Fig. 9. We added the
scaling via PCA to minimize the error due to projection.

If our method predicts car positions consistently, we expect the
distance of all the predicted car positions to the car’s predicted
position center to be low. In Fig. 8 we show qualitative results
of plotting the geolocations of the cars observed in the drone
footage after post processing.

In Table 1 we provide the mean and standard deviation of the
distances of all car’s predicted positions to their cluster cen-
ter. The best geoposition estimates are generated using keypo-
ints generated using SuperGlue, no filters, and homography as
the transformation. This configuration typically places vehicles

Figure 8. Sample Scattering of Vehicle geolocations for 500
Frames (one color per vehicle)

within 0.7 meters of the vehicle’s geolocation cluster center.
We consider this to be a strong result since the dimensions of a
typical vehicle are 4.48 x 1.77 meters (Meyer, 2023).

Figure 9. Sample Outlier Removal and Post Processing done
with DBSCAN and PCA. Original Car Predicted Positions (left),

Cleaned Car Positions (right).

We also preformed t-tests using (Virtanen et al., 2020) on the
distributions seen in Table 1, if two distributions only had one
configuration parameter changed. Our p-value threshold for this
was 0.01. We summarize the results of these t-tests in Table 2.

4.3 Faulty GPS

We simulate flying a drone with a faulty GPS to show how
robust our method is to the estimate of the geoposition of the
drone. To do this we take the drone’s geolocation and randomly
add up to ± 1, 5, 10, 20, 30, 40, 50, or 60 meters to the drones
x and y positions. We then input these noisy geolocations to
our method and compare how much each predicted car position
changes. Sample geolocations which we input into our method
can be seen in Fig. 10, and the change in each predicted car
position can be seen in Fig. 11.

4.4 Discussion

Across all of our experiments that use LoFTR for feature ex-
traction, the vehicle geolocalization performance was determ-
ined to be the worst. Generally speaking, LoFTR + SuperGlue
typically under-performs just using SuperGlue. We hypothesis
that this gap in performance comes from the variations in per-
formance we expect to see from difference models on different
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Filtering Performed Feature Extraction Method
Road Building Vehicle LoFTR SuperGlue LoFTR + SuperGlue

4.101 ± 4.424 5.927 ± 5.027 0.665 ± 0.640 1.740 ± 1.604 0.668 ± 0.610 1.853 ± 1.729
X 4.182 ± 4.502 6.148 ± 5.238 0.718 ± 0.743 1.731 ± 1.556 0.748 ± 0.817 1.895 ± 1.746

X 4.759 ± 4.791 6.146 ± 4.738 0.791 ± 0.782 1.674 ± 1.600 0.817 ± 0.930 1.855 ± 1.662
X X 4.821 ± 5.000 6.203 ± 4.912 0.793 ± 0.755 1.817 ± 1.674 0.779 ± 0.823 1.888 ± 1.788

X 5.675 ± 4.776 6.525 ± 4.800 1.281 ± 1.395 1.906 ± 1.720 1.272 ± 1.391 2.153 ± 2.111
X X 5.701 ± 4.712 6.434 ± 4.728 1.131 ± 1.101 1.937 ± 1.745 1.250 ± 1.300 2.331 ± 2.175
X X 5.849 ± 4.869 6.503 ± 4.623 1.425 ± 1.618 2.406 ± 2.319 1.328 ± 1.557 2.459 ± 2.449
X X X 5.929 ± 4.790 6.255 ± 4.616 1.405 ± 1.570 2.394 ± 2.235 1.479 ± 1.619 2.725 ± 2.607

Homography 2D Affine Homography 2D Affine Homography 2D Affine
Transformation

Table 1. Mean and Standard Deviation of Distance to Vehicle Cluster Center for each Configuration (measured in meters) (bold
indicates best).

Configuration Feature Count
Vehicle Filter 10/24
Road Filter 23/24

Building Filter 18/24
Homography vs Affine 2D 24/24

SuperGlue 16/16
LoFTR 12/16

Table 2. Count of Times when Adding or Removing a
Configuration Parameter causes a Statistically Significant

Change in the Evaluation Metric.

Figure 10. Original (top left) and Noisy Geolocations (top right -
5 m, bottom left - 20 m, bottom right- 60 m) for Drone Flight.

datasets. We also see from Table 2 that changing the Super-
Glue or LoFTR configuration parameter almost always causes
a statistically significant change in the output.

Surprisingly to us, the use of filters tends to decrease perform-
ance and the difference is often statistically significant as seen
in Table 1 and Table 2. This means that using these filters typic-
ally does not improve performance in a statistically significant
way. Though there are a few exceptions. We hypothesize that
there are two causes for this; the first being that RANSAC is
already designed to remove outliers and the second being that
the filters may remove points which are geometrically valid for
the transformation. As a result, we are decreasing how many
valid points we can use to find the transformation, resulting in
a poorer transformation.

Figure 11. Change in each Predicted Position (measured at 15th,
50th, and 85th percentiles).

We observed that the homography transform tends to provide
more consistent predictions compared to 2D affine transforma-
tions. From Table 2 we can see that this difference is always
statistically significant. This is likely because homography
transforms can account for changes in different perspectives on
the same plane as the drone moves. Georectified reference im-
ages and drone images have different perspectives for the same
scene, and homography can better capture the appropriate geo-
metric transformation. Likely the drone camera doesn’t point
exactly down, and the ground it observes is also on a slight
slope, so the homography transform captures the transforma-
tion better.

Our faulty GPS experiments show that our method can localize
objects consistently even with a low accuracy estimate for the
drone’s GPS position. Note that in traditional ODL methods,
any shift in the GPS position would result in the same shift to
the predicted object position, however in our case we are typ-
ically significantly lower than this shift as seen in Fig. 11. For
reference, consumer-grade smartphones as of 2015 have a mean
accuracy of 4.9 meters (van Diggelen and Enge, 2015).

One limitation to consider is that this method can only be ap-
plied in places which have been apriori mapped. High resolu-
tion orthorectified maps are no available for all locations. How-
ever, many cities have these orthorectified maps, and platforms
such as Google Maps have made many of them publicly avail-
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able. In the context of indoor or custom environments however,
these maps would need to be generated on an individual basis.

5. CONCLUSIONS AND FUTURE WORK

We have developed a method for vehicle geolocalization that
removes requirements for known platform parameters such as
altitude, roll, pitch, and yaw, and camera parameters such as
focal length and orientation. Our method standardizes the ref-
erence to a single source; in our experiments, we chose Google
Maps as the reference. We note that in our approach any
mapped system can be used as a reference. We also note that,
by eliminating the large number of parameters used in altern-
ative approaches, it is possible to deploy our solution with any
camera-drone combination. The immediate effect of this is the
reduced cost of deployment to unseen environments and to new
users. In the future, we would like to apply our method to a
dataset with ground truth geolocations for the vehicles observed
in the drone footage to measure our method’s accuracy.
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