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Abstract 

Gradient-Boosted Decision Trees (GBDTs), particularly when tuned with Bayesian optimisation, are powerful machine learning 

techniques known for their effectiveness in handling complex, non-linear data. However, the performance of these models can be 

significantly influenced by the characteristics of the terrain being analysed. In this study, we assess the performance of three Bayesian-

optimised GBDTs (XGBoost, LightGBM and CatBoost) using digital elevation model (DEM) error correction as a case study. The 

performance of the models is investigated across five landscapes in Cape Town South Africa: urban/industrial, agricultural, mountain, 

peninsula and grassland/shrubland. The models were trained using a selection of datasets (elevation, terrain parameters and land cover). 

The comparison entailed an analysis of the model execution times, regression error metrics, and level of improvement in the corrected 

DEMs. Generally, the optimised models performed considerably well and demonstrated excellent predictive capability. CatBoost 

emerged with the best results in the level of improvement recorded in the corrected DEMs, while LightGBM was the fastest of all 

models in the execution time for Bayesian optimisation and model training. These findings offer valuable insights for applying machine 

learning and hyperparameter tuning in remote sensing.  

1. Introduction

In recent years, Digital Elevation Models (DEMs) have become 

indispensable tools in a wide range of applications, from 

geographic information systems and environmental modelling to 

urban planning and civil engineering (Musa et al., 2015; Muhadi 

et al., 2020). DEMs provide a simplified representation of the 

Earth's varying topography, but they are not without errors 

(Wechsler, 2007; Elkhrachy, 2018). These errors can arise from 

various sources, including data collection methods, processing 

algorithms, or the inherent limitations of the technologies used 

(Hugonnet et al., 2022). Accurate prediction and correction of 

these errors is crucial for the reliability and usefulness of DEMs 

in environmental and hydrological applications. 

The advent of machine learning (ML) has opened new avenues 

for enhancing the accuracy of DEMs. Among various ML 

techniques, Gradient Boosted Decision Trees (GBDTs) have 

emerged as a powerful tool for handling complex, non-linear 

spatial data (Wang et al., 2021; Wen et al., 2022). GBDT models 

are particularly adept at capturing intricate patterns in data, 

making them well-suited for modelling the errors in DEMs. 

However, the performance of GBDT models can be significantly 

influenced by their hyperparameters, which necessitates 

sophisticated optimization techniques (Ke et al., 2017). 

Bayesian Optimisation (BO) has gained prominence as an 

effective method for hyperparameter tuning of ML models (Yang 

& Shami, 2020; Kavzoglu & Teke, 2022). By employing a 

probabilistic model, Bayesian Optimization efficiently navigates 

the hyperparameter space to find optimal settings. This 

optimisation process is crucial for enhancing the performance of 

GBDT models in predicting DEM errors. However, the 

performance of BO-optimised models, especially when dealing 

with diverse and complex terrain is still open to investigation. 

Performance assessments are important for measuring the 

computational efficiency of machine leaning algorithms. 

Scientists, researchers, and industry practitioners are usually 

interested in the computational efficiency of machine learning 

algorithms before deploying them on a large scale. For example, 

an algorithm with faster training time is more efficient, while 

algorithms with faster prediction times are preferable (e.g. in 

real-time applications) (Pushp, 2023). Moreover, an algorithm 

with better accuracy is preferable for many applications in remote 

sensing. Bayesian optimisation has been proven as an effective 

technique for improving the prediction accuracy of GBDTs, for 

example in DEM correction (e.g. Okolie et al. 2023a; 2023b). 

However, to our knowledge, the relative performances of 

Bayesian-optimised models when applied to DEM correction in 

diverse landscapes has not yet been investigated. 

In this study, we compare the performance of three Bayesian-

optimised gradient boosted trees: the Extreme gradient boosting 

(XGBoost), Light boosting machine (LightGBM) and 

Categorical boosting (CatBoost) in a DEM correction use case. 

The test sites are drawn from various landscapes and this could 

reveal new insights on the influence of terrain complexity on 

model performance. This comparison could also facilitate the 

selection of the most efficient model for similar applications by 

other researchers, and also contributes to the ever-expanding 

machine learning applications in the remote sensing body of 

knowledge. 
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2.  Methodology 

2.1   Study Area and Datasets 

Cape Town is South Africa’s most south-western city, and is 

situated on the south-western coast of the Western Cape 

Province. The town is topographically and geomorphologically 

diverse. Five different landscapes were selected for this study: 

urban/industrial, agricultural, mountain, peninsula and 

grassland/shrubland. The topography of a section of Cape Town 

is shown in Figure 1. The Copernicus GLO-30 DEM (Airbus, 

2020a, 2020b) is the main dataset for this study, while the City 

of Cape Town (CCT) airborne LiDAR-derived DEM is used as 

the reference dataset. The CCT DEM was derived from a point 

cloud with height accuracy of 0.15 m. The Copernicus DEM and 

CCT DEM were harmonised to the same vertical datum 

(EGM2008), and the elevation differences (ΔH) between both 

DEMs were calculated. To characterise the influence of the 

terrain on the elevation error, the following additional input 

variables were generated from the Copernicus DEM elevations: 

slope, aspect, surface roughness, topographic position index 

(TPI), terrain ruggedness index (TRI), terrain surface texture 

(TST), and vector ruggedness measure (VRM). Additionally, the 

percentage forest canopy and percentage bare ground cover data 

were acquired from the Global Land Analysis and Discovery 

(GLAD) data portal (Hansen et al., 2013), while building 

footprints were extracted from the Global Urban Footprints 

(GUF) dataset (Esch et al., 2010, 2013).  

2.2   Gradient Boosted Decision Trees  

Gradient Boosted Decision Trees (GBDTs) are very powerful for 

handling a myriad of classification and regression problems and 

can attain excellent results in a variety of applications. The 

extreme gradient boosting (XGBoost), light boosting machine 

(LightGBM) and categorical boosting (CatBoost) are recent 

implementations of gradient boosting that have revolutionised 

the machine learning community.  

Extreme gradient boosting (XGBoost) is a “scalable end-to-end 

tree boosting system” that has excelled in several machine 

learning tasks (Chen & Guestrin, 2016). LightGBM (Ke et al., 

2017) overcomes several limitations of previous engineering 

optimisations used in GBDTs. LightGBM is “mainly featured by 

the decision tree algorithm based on gradient-based one-side 

sampling (GOSS), exclusive feature bundling (EFB), and a 

histogram and leaf-wise growth strategy with a depth limit” (Li 

et al., 2022). With GOSS and EFB, the speed of training is 

increased (Safaei et al., 2022). Categorical Boosting (CatBoost) 

was introduced in 2018, and is well-suited for handling 

categorical and heterogenous data (Hancock & Khoshgoftaar, 

2020). Two important innovations were introduced in CatBoost: 

ordered boosting, and the processing of categorical features using 

a novel algorithm (Prokhorenkova et al., 2018).  

 

2.3 Bayesian Optimisation  

Bayesian optimisation (BO) enables the construction of optimal 

programs for computing better solutions (Hoos, 2010; Shahriari 

et al., 2016). With BO, the performance of ML algorithms can be 

improved through hyperparameter tuning. A hyperparameter is 

“a parameter whose value is given by the user and used to control 

the learning process” (Mariani & Sipper, 2022). Their values 

“control the learning process and determine the values of model 

parameters that a learning algorithm ends up learning” 

(Nyuytiymbiy, 2020). Essentially, BO “builds a probability 

model of the objective function to determine the optimal 

hyperparameters in an informed manner, reducing the number of 

times the objective function needs to be run by choosing only the 

most promising set of hyperparameters” (Habtemariam et al., 

2023).  

 

2.4   Data Processing and Analysis 

The three GBDT models were trained using the elevation, slope, 

aspect, surface roughness, topographic position index, terrain 

ruggedness index, terrain surface texture, vector ruggedness 

measure, percentage forest canopy, percentage bare ground cover 

and urban footprints as input parameters, and the elevation error 

as the target variable. The attributes of the urban footprints had 

numeric codes representing the urban and non-urban areas. The 

data points used for model training, validation and testing 

encompass a total area of approximately 1579.6km2 (the area of 

each landscape is shown in Table 1). The data points were split 

into separate subsets: 80% for training and validation, and 20% 

 
Figure 1. A topographic map of a section of Cape Town showing urban areas, vegetation and the imposing Table Mountain. 

(Source: 1:50,000 South Africa topographic map series, published by the Chief Directorate: National Geo-spatial Information, 

© 2015) 
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for testing. For the hyperparameter tuning, Bayesian optimisation 

was adopted.  

 

The optimisation for XGBoost, LightGBM and CatBoost was 

meticulously implemented using 10 steps of random exploration, 

and depending on the available computing power, 40 - 50 steps 

of optimisation. For Copernicus DEM in the urban/industrial, 

mountain, peninsula and grassland/shrubland landscapes, 50 

iterations were executed for the Bayesian optimisations, while 40 

iterations were executed in the agricultural landscape. Nine 

hyperparameters were selected for each model, for example: 

• The number of decision trees/boosting rounds: range 

(1, 50000) 
• Learning rate: range (0.0001, 1) 
• The depth of the tree: XGBoost and LightGBM 

(range (1, 50)); CatBoost (range (1, 16)) 

After training and testing, the models were implemented for 

predicting the DEM errors at two separate implementation sites 

with similar terrain characteristics. The predicted elevation errors 

were applied for deriving corrected DEMs (i.e.., 

𝐷𝐸𝑀𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐷𝐸𝑀𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − ∆𝐻𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) at the 

implementation sites. The assessed models were compared based 

on the execution time and accuracy of predictions. 

 

3.  Results and Discussion 

Table 1 shows the Bayesian optimisation execution time (in 

seconds) of XGBoost, LightGBM and CatBoost for Copernicus 

DEM. LightGBM was several times faster than XGBoost and 

CatBoost. For example, in the Cape Peninsula, LightGBM was 

15x faster than XGBoost (167.138 s vs 2486.832 s) and 25x faster 

than CatBoost (167.138 s vs 4102.972 s) respectively. Similarly, 

in the grasslands/shrublands, it was 20x faster than XGBoost 

(151.293 s vs 2976.456 s), and 28x faster than CatBoost (151.293 

s vs 4267.270 s) respectively. The optimisation process 

consumed a considerable amount of time and system resources, 

especially in the urban/industrial areas and agricultural lands. 

XGBoost was slower than CatBoost in the optimisation time in 

the urban/industrial and agricultural lands, but was faster in the 

mountain, peninsula and grassland/shrubland areas. However, 

the number of training samples in the urban and agricultural lands 

exceeded that of other landscapes by several hundreds of 

thousands.  

 

Table 2 shows the execution time comparisons for model training 

and prediction of Copernicus DEM. LightGBM is known for its 

faster training speed, high efficiency, lower memory usage and 

capability to handle large-scale data (LightGBM Documentation, 

2024). This explains its very fast training speed in all landscapes, 

far ahead of XGBoost and CatBoost. 

 

Table 3 compares the test root mean square error (RMSE) for 

XGBoost, LightGBM and CatBoost respectively. Both XGBoost 

and CatBoost had lower RMSEs than LightGBM. Generally, the 

optimised models performed considerably well and demonstrated 

excellent predictive capability. Test RMSEs were lowest in the 

agricultural lands (0.601 – 0.860 m) and highest in the mountains 

(1.856 – 1.934 m). In a related study, Bentéjac et al compared the 

training speed, generalisation performance and hyperparameter 

setup of several GBDTs. In their results, CatBoost emerged with 

the best results in generalisation accuracy while LightGBM was 

the fastest of all models, although not the most accurate.  

Finally, the predicted errors by XGBoost, LightGBM and 

CatBoost were applied to correct the original Copernicus DEM 

at two external implementation sites. Figures 2 and 3 show the 

percentage reduction in the vertical RMSE of the original 

Copernicus DEM at the first and second implementation sites 

Landscape Training/ validation/ 

test area (km2) 

No. of iterations  for 

BO 

Execution time for BO (s) 

XGBoost LightGBM CatBoost 

Urban/ industrial 532.9 50 17959.282 1033.409 6157.880 

Agricultural 509.0 40 26080.685 1691.126 14862.721 

Mountain 280.6 50 2911.410 295.583 4548.114 

Peninsula 135.2 50 2486.832 167.138 4102.972 

Grassland/ shrubland 121.9 50 2976.456 151.293 4267.270 

Table 1. Execution time for Bayesian optimisation (BO) of XGBoost, LightGBM and CatBoost 

 

Landscape XGBoost LightGBM CatBoost 

Training (s) Prediction (s) Training (s) Prediction (s) Training (s) Prediction (s) 

Urban/ industrial 291.885 0.399 20.045 2.603 916.761 0.457 

Agricultural 1371.493 3.900 74.576 5.545 1860.448 0.911 

Mountain 106.034 0.221 4.877 0.164 1824.249 0.156 

Peninsula 135.030 0.268 1.601 0.084 290.231 0.059 

Grassland/ 

shrubland 

88.611 0.163 1.208 0.108 489.858 0.101 

Table 2. Execution time for training and prediction of XGBoost, LightGBM and CatBoost 

 

Landscape RMSE (m)  

XGBoost LightGBM CatBoost 

Urban/ industrial 0.859 0.935 0.857 

Agricultural 0.601 0.860 0.602 

Mountain 1.883 1.934 1.856 

Peninsula 1.138 1.195 1.145 

Grassland/ shrubland 0.838 0.968 0.842 

Table 3. Comparison of XGBoost, LightGBM and CatBoost test error  
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respectively. Generally, CatBoost achieved the highest reduction 

in RMSE of original DEM (the greatest improvement in DEM 

accuracy) in most landscapes, followed by XGBoost and 

LightGBM respectively. The highest improvements in DEM 

accuracy occurred in the urban/industrial, agricultural and 

grassland/shrubland landscapes. 

 

The results suggest that while Bayesian optimisation 

significantly enhances the accuracy of these models, it also 

imposes a considerable computational burden, especially in data-

rich environments like urban/industrial and agricultural lands. 

 

 

4.  Conclusion 

The aim of this study was to compare the performance of three 

Bayesian-optimised gradient boosted trees: XGBoost, 

LightGBM and CatBoost in a DEM correction use case, with test 

sites spread across five landscapes in Cape Town, South Africa 

(urban/industrial, agricultural, mountain, peninsula and 

grassland/shrubland). The results have yielded critical insights 

into the balance between computational efficiency and model 

accuracy. The comparative analysis of XGBoost, LightGBM and 

CatBoost under various terrain conditions has highlighted 

significant differences in performance. This finding is crucial for 

applications where time efficiency is as important as model 

accuracy, such as real-time environmental monitoring and rapid 

response scenarios. 

 

In practical terms, the study suggests a necessary trade-off 

between the expected accuracy improvements from 

hyperparameter optimisation and the associated computational 

time and resources. For instance, while the optimised CatBoost 

model shows a marked slowdown across various landscapes, the 

accuracy gains might justify this trade-off in scenarios where 

precision is paramount. Conversely, in situations where speed is 

critical, the relatively more efficient LightGBM, even in its 

optimised form, might be the preferred choice. The accuracy 

improvements achieved through hyperparameter optimisation 

could have tremendous benefits for the use of the DEMs in 

hydrological modelling and other environmental applications. 

This finding is particularly relevant for researchers and 

practitioners in the field of geospatial analysis, where the choice 

of an appropriate machine learning model can significantly 

impact the efficiency and effectiveness of their work. 

 

In conclusion, this research contributes valuable knowledge to 

the field of DEM analysis, particularly in the application of 

machine learning models for DEM error correction. It 

underscores the importance of carefully considering the specific 

requirements of each application, balancing the need for accuracy 

with the constraints of computational resources. The insights 

gained from this study are expected to guide future research and 

practical applications in DEM analysis and terrain modelling, and 

other environmental studies. This study not only contributes to 

the advancement of geospatial analysis using machine learning 

but also could aid in optimising DEM applications in various 

fields such as urban planning, environmental monitoring, and 

navigation systems. The conclusions drawn from this research 

 
Figure 2. Percentage reduction in vertical RMSE of the original Copernicus DEM at the first implementation site 

 
Figure 3. Percentage reduction in vertical RMSE of the original Copernicus DEM at the second implementation site 
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highlight the potential of Bayesian-Optimized GBDT models in 

handling geospatial data efficiently. Future research can compare 

the performance of gradient boosted trees with deep learning 

approaches. 
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