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ABSTRACT:

A low-resolution digital surface model (DSM) features distinctive attributes impacted by noise, sensor limitations and data acquisition

conditions, which failed to be replicated using simple interpolation methods like bicubic. This causes super-resolution models trained

on synthetic data does not perform effectively on real ones. Training a model on real low and high resolution DSMs pairs is also a

challenge because of the lack of information. On the other hand, the existence of other imaging modalities of the same scene can be

used to enrich the information needed for large-scale super-resolution. In this work, we introduce a novel methodology to address the

intricacies of real-world DSM super-resolution, named REAL-GDSR, breaking down this ill-posed problem into two steps. The first step

involves the utilization of a residual local refinement network. This strategic approach departs from conventional methods that trained

to directly predict height values instead of the differences (residuals) and utilize large receptive fields in their networks. The second

step introduces a diffusion-based technique that enhances the results on a global scale, with a primary focus on smoothing and edge

preservation. Our experiments underscore the effectiveness of the proposed method. We conduct a comprehensive evaluation, comparing

it to recent state-of-the-art techniques in the domain of real-world DSM super-resolution (SR). Our approach consistently outperforms

these existing methods, as evidenced through qualitative and quantitative assessments.

1. INTRODUCTION

Elevation data are essential for a wide range of applications across

multiple sectors. They also contribute significantly to our im-

proved understanding and management of the Earth’s resources

and environment. These data are collected through various tech-

niques, typically aerial data capture and light detection and ranging

(LiDAR) sensors. A digital elevation model (DEM) is a digital

representation of the Earth’s topography, specifically focusing on

the bare ground surface. DEMs play a crucial role in applications

like terrain analysis, hydrological modeling, geological studies,

precision agriculture, and infrastructure planning. A digital sur-

face model (DSM) in the other hand is a representation which

includes all objects on it, such as vegetation and buildings. DSMs

are widely applied in topographic mapping, environmental sim-

ulations (Aktaruzzaman and Schmitt, 2009), 3D city modeling

and planning. Recent remote sensing technology provides several

ways to measure the 3D urban morphology. Conventional ground

surveying, stereo airborne or satellite photogrammetry, interfero-

metric synthetic aperture radar (InSAR), and LiDAR are the main

data sources used to obtain high-resolution DSM. However, each

of these scenarios has its own set of advantages and disadvantages.

Data derived from terrestrial and airborne systems offer high

spatial resolution but have limited coverage and can encounter

precision-related issues. Spaceborne missions, for example Car-

tosat 1, provide global coverage but may lack the finest level of

resolution achieved by terrestrial and airborne methods due to

challenges in capturing high-resolution data from space. The res-

olution of such data have a substantial impact in different fields

of operation. Improving measurement equipment precision is the

most straightforward way to acquire high-resolution elevation data,

but it is a difficult, costly, and time-consuming procedure. There-

fore, generating high-resolution data without extra cost becomes a

key concern of researchers from various fields. A practical way to

solve this problem is to enhance the resolution of easily obtained
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Figure 1: Guided DSM super-resolution: given a low-resolution

dsm and a high-resolution guide image, our method predicts a

high-resolution DSM. The figure shows an example output of the

proposed method on low-resolution DSM with a factor of 10.

low-resolution data (Xu et al., 2015a). In computer vision, various

algorithms have been developed for single image super-resolution

task. Some of the algorithms have been explored for DEM super-

resolution. Both depth estimation (Godard et al., 2017, 2019;

Bhat et al., 2021) and depth super-resolution task (Voynov et al.,

2018; He et al., 2021) are two intriguing applications that can be

applied to DEMs and DSMs. Recently a method termed guided

depth map super-resolution (GDSR) is gaining popularity. The

idea is that a different imaging modality of the same object can

be used as a guide for super-resolving the low-resolution image

by injecting the missing high-frequency content. Research into

GDSR has a long history (Patterson et al., 1992; Izraelevitz, 1994).

The proposed solutions range from classical, entirely hand-crafted

schemes (Ham et al., 2017) to fully learning-based methods (Hui

et al., 2016a), while some recent works have combined the two

with promising results (Lutio et al., 2022; Metzger et al., 2023).
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(a) Bicubic Downsampled

(b) Real Low Resolution

(c) High Resolution

Figure 2: Examples of real low-resolution DSMs compared to the

bicubic-downsampled and high-resolution DSMs. Note that real

low-resolution DSMs preserve less information in comparison to

their bicubic-dowsampled counterparts.

However, generally both single image super-resolution (SISR)

and GDSR methods restrict themselves to super-resolving images

downsampled by a simple and uniform degradations (i.e, bicubic

downsampling). Real low-resolution DSMs, in the other hand, do

not preserve as much information (see Fig. 2) and applying these

methods on real-world DSMs is becoming a challenge (Cai et

al., 2019; Wang et al., 2021a). In this paper, we focus on super-

resolving DSMs guided by their corresponding optical images,

which is depicted in Fig. 1. We focus our research on urban DSMs

because they contain richer information which hard to be restored.

This focus also aligns with the evolving interest in leveraging

DSMs for building reconstruction (Bittner et al., 2018; Partovi et

al., 2019; Bittner et al., 2020; Wang et al., 2021b; Gui and Qin,

2021; Stucker and Schindler, 2022; Stucker et al., 2022).

In summary, our contributions are as follows:

1. We propose a novel super-resolution framework guided by

optical images on real-world low-resolution DSMs. To the

best of our knowledge, we are the first to develop a guided

super-resolution network trained on real-world DSMs.

2. We achieve this by utilizing both local and global context.

We improve the conventional methods in two ways: local

refinement and edge-enhancing diffusion. A local refinement

network with small receptive field is utilized to improve

the low-resolution DSM. This shallow network can repair

some missing regions and structures, according to the sur-

rounding local regions after a coarse bicubic-interpolation

stage. An edge-enhancing diffusion network is used to fur-

ther smoothen the super-resolved result. This network can

further improve the visual quality using the global edge in-

formation, especially for removing outliers and preserving

height discontinuities.

3. We demonstrate the effectiveness of our approach by compar-

ing it to other state-of-the-art networks, trained in the same

setting. Furthermore, we show that our approach is feasible

of achieving a 10x super-resolution for low-resolution DSMs

from satellite data. We also found that our proposed approach

outperformed the other works in terms of both qualitative

and quantitative results on unseen data.

2. RELATED WORK

2.1 Single Image Super-Resolution

Single image super-resolution refers to generation of a high-

resolution image from a low-resolution image. Recently SISR

methods has shifted towards example-based approaches. How-

ever in those early years interpolation-based techniques like linear,

bicubic or Lanczos are widely used. The idea is new pixels are

estimated by interpolating given pixels. But these methods suf-

fers from blurry results on high-frequency regions. Learning or

example-based methods aim to gather insight information from

paired low and high-resolution images to understand missing de-

tails in low-resolution images. SRCNN (Dong et al., 2015) is one

of the first approaches to demonstrate the use of neural networks

to learn the nonlinear mapping of the images in the image space.

The method utilize bicubic interpolation of low-resolution image

followed by high-dimensional vector representation and ended by

reconstruction of the vectors to the pixel space. VSDR (Kim et

al., 2016a) was designed to increase the efficiency of SRCNN, by

predicting the residuals rather than the actual pixel values and, to

boost the overall performance by adding more layers. Wang et al.

(2015) introduced sparse coding to the training which enable the

model to enlarge the images to the desired scale factor progres-

sively. Deep recursive layers are introduced in DRCN (Kim et al.,

2016b) to reduce the number of parameters.

Furthermore, the introduction of generative adversarial networks

(GANs) inspired the implementation of GAN for super-resolution.

In GAN the generator produces high-resolution image and the

discriminator is trained to distinguish between patch of the orig-

inal image and patch which are produced by the generator. Two

components are designed to defeat each other in a zero-sum game

(Goodfellow et al., 2014). SRGAN (Ledig et al., 2017) is the

first one to demonstrate the ability to pay more attention to visual

effects, introducing adversarial and perceptual losses. ESRGAN

(Wang et al., 2019) goes another step by introducing relativistic

discriminator and removing batch normalization layers.

But different than images, depth maps contain piecewise affine re-

gions that have sharp depth discontinuities and no textures (Riegler

et al., 2016b). Besides, they are sensitive to artifacts (Xie et al.,

2015). In this paper, we focus on the training strategy and frame-

work of super-resolution networks when dealing with real low

resolution depth maps.

2.2 Guided Depth Map Super-Resolution

GDSR has become an essential topic in multi-modal image pro-

cessing and super-resolution. The idea behind it is that there

are statistical co-occurrences between the texture edges of RGB

images and the discontinuities of depth maps (Xie et al., 2015).

Hence, information in RGB images can be utilized to restore

low-resolution depth maps. Three categories have been identified

recently for traditional methods for GDSR: learning-free, learning-

based and hybrid approaches. Early work on GDSR consisted

mostly of filter-based and optimization methods which require no

training. Filter-based methods focus on preserving sharp depth

edges under the guidance of the intensity image. For example,
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Figure 3: Summary of the proposed architecture. Real-GDSR comprises mainly a two-step process: Initially, high-dimensional features

are extracted from both bicubic-upsampled low-resolution DSM and high-resolution optical image by a pre-trained model. Subsequently,

a local refinement network refines the upsampled DSM by incorporating residual blocks and upsampling operations, followed by a

diffusion network, which iteratively enhancing the refined upsampled DSMs, emphasizing edge features from the high-resolution optical

image.

RGB images guide the acquisition of bilateral weights (Kopf et

al., 2007). Optimization-based approaches use diverse data priors

to construct energy functions, with data-fidelity regularization lim-

iting the solution space. Several other methods (Xie et al., 2015;

Diebel and Thrun, 2005) employ random field models. Other than

that Liu and Gong (2013) demonstrated an early learning-free

application of anisotropic diffusion. Initial learning-based tech-

niques, such as bimodal co-sparse analysis (Kiechle et al., 2013)

and joint dictionary learning (Tosic and Drewes, 2014), learn the

relationship of RGB and depth information. Deep learning models

are introduced to utilize neural networks to learn the mapping

from low-resolution to high-resolution images. MSG-Net (Hui et

al., 2016b) built on a U-Net deep network architecture and learns

the residual errors of bicubic interpolations by embedding the

source at the smallest scale. Kim et al. (2021) propose deformable

kernel networks (DKN) and its fast implementation (FDKN), that

learn sparse and spatially-invariant filter kernels. He et al. (2021)

employ a high-frequency guidance module to embed the guide de-

tails into the depth map. Deep learning techniques have been used

recently by researchers to improve the ability of predicting outputs

of given inputs that have not encountered within formal frame-

works. Riegler et al. (2016a) train a neural network by unrolling

the optimization phases of a first-order primal-dual algorithm, en-

abling them to train their deep feature extractor throughout the

training process. Using a graph-based, MRF-style optimizer, Lutio

et al. (2022) apply the implicit function theorem. DADA (Metzger

et al., 2023) achieved state-of-the-art performance by adapting the

concept of guided anisotropic diffusion with deep convolutional

networks.

2.3 DSM Super-Resolution

Research on DSM super-resolution is limited, despite its signif-

icance in remote sensing. The majority of research focuses on

DEM superresolution. This includes interpolation-based methods

like bicubic, and bilinear are used for DEM enhancement which

results in smooth terrain models. Xu et al. (2015b) proposed a

super-resolution algorithm based upon non-local means. It op-

erates by using a predetermined equation to search for similar

patches across the training set. Weights determined by the search-

ing phase are then used to upscale the resolution of the target DEM.

Deep learning-based methods also derived from the advances in

SISR domain. D-SRCNN (Chen et al., 2016) was proposed based

on SRCNN (Dong et al., 2015). Later the same author imple-

mented EDSR (Lim et al., 2017) for the same purpose (Xu et al.,

2019). Demiray et al. proposed a DEM super-resolution model,

namely D-SRGAN (Demiray et al., 2021a), with the implementa-

tion of SRGAN (Ledig et al., 2017), and EffecientNetV2 (Tan and

Le, 2021) for DEM SR (Demiray et al., 2021b).

So far none of the methods targeted specifically for urban DSMs.

Because of their characteristics, performing large-scale super-

resolution on such data is still a challenge. First, these mentioned

models sofar trained only on the data generated by bicubic in-

terpolation which only work well on clean low-resolution data

with simple degradations. This is inconsistent with real-world

needs, where low-resolution data have more complex degrada-

tions. Second, urban DSMs provide more details which even

harder to reconstruct. To address this conflict, we proposed a

practical solution, where we collect real low and high-resolution

DSMs pairs and include guiding information in both training and

inference. Optical images of the same scenes are obtained to act

as guidance. Other than that, We utilize both local and global

context in our approach to handle the characteristics of DSMs. In

the following, we explain in more detail how we achieve this.

3. METHODOLOGY

Real-GDSR consists mainly of two steps: First as a pre-step, a

pre-trained model is used to extract features from both optical

image and low-resolution DSM. Then, we use a residual convo-

lutional neural network (CNN)-based network, namely the local

refinement network, whose objective is to take as input high-

dimensional features and transform them into a high-resolution

DSMs. Second, we use an anisotropic diffusion network to further

enhance the refined DSMs focusing on the edge features from the

high-resolution optical image. Figure 3 shows an overview of our

proposed pipeline. In the following subsections, we describe each

component of our pipeline in more details.

3.1 Local Refinement

In prior works in DEM super-resolution, we observe that many

existing works often follow a common design concept for image

super-resolution, where their networks built of upsampling layers

and have very large receptive field, for example, a U-Net like

architecture or using multiple dilation convolution or attention

layers. In this work, taking inspiration from image inpainting

task, we see super-resolution as an image-to-image translation

task where we assume that an initial coarse high-resolution DSM

of the observed scene has already been generated with existing
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traditional method like bicubic and later refined within the training.

We highlight that for DSMs a network with small receptive field

is enough to fulfill the task. For the local refinement, we create a

shallow network with four residual blocks and two upsampling

procedures (see middle part of Fig. 3). Therefore, this network has

small receptive fields. This architecture eliminates the effect of

distant and unsuccessful filling contents and allows for the restora-

tion of missing sections or buildings utilizing local information

around them. Additionally, we incorporate a long skip connec-

tion that adds the initial DSM straight to the final downsampling

layer’s output, allowing the network to regress residuals rather

than absolute height.

3.2 Edge-Enhancing Diffusion

After the local refinement process, structural features are restored

with guidance of surrounding local regions. However, different

than images, DSMs are sensitive to outliers. For this purpose,

we introduce a diffusion-based edge-enhancement which helps

broaden the scope of information captured. Anisotropic diffu-

sion can be understood as an adaptive filtering technique aimed

at smoothing while preserving inter-region content such as edges

or boundaries, which are crucial for image interpretation. This is

achieved by applying inhomogeneous diffusion, where the diffu-

sivity is guided by a scalar function or diffusion tensor derived

from the gradients of the evolving image. The concept of calcu-

lating diffusivity from a guide image has been investigated in the

area of edge enhancement and semantic segmentation.

Inspired by prior work in guided depth super-resolution (Metzger

et al., 2023), we implement a similar network, where the diffusion

component mirrors traditional optimization approaches solved via

an iterative diffusion loop. For each iteration, multiple steps of

anisotropic diffusion are conducted. Here, the diffusion weights

are influenced by the guide to minimize diffusion at boundaries

with high contrast and enhance diffusion within regions that are

homogeneous. A convolutional feature extractor is used to set

diffusion weights by passing the guide through. Therefore, the

process can transfer edge information from the guide to preserve

depth discontinuities in the target image.

Given a source image S a guide G ∈ H ×W ×C, where C = 3

for RGB images or a larger number for deep features, the first step

is to initialize X0 ∈H ×W with an upsampled version of S. The

diffusion step is defined as

x̂
p
t = x

p

t−1 + λ ⋅ ∑
n∈N4(p)

(xn
t−1 − x

p

t−1) ⋅ c(g
p
, g

n), (1)

where x
p
t denotes the pixel value of Xt at location p (and sim-

ilarly for gp). N4(p) denotes the four-neighbours of pixel p. λ

controls the rate of diffusion. For four-neighbours, λ should be

set to < 0.25 to ensure numerical stability. Diffusion coefficients

for the neighboring pairs of pixels are calculated by function c

which formulated based on their values in the guide. A higher

diffusion coefficient means that information spreads more freely

across neighboring pixels, resulting in stronger smoothing effects.

Conversely, a lower diffusion coefficient restricts the spread of

information, preserving edges and fine details in the image. This

method follows prior work (Perona and Malik, 1990), which de-

fines

c(gp, gn) =
K2

K2+ ∣∣ gp − gn ∣∣2
2

(2)

where K controls the sensitivity to the gradients in G.

We adapt the work of Metzger et al. (2023) by removing the

adjustment step. The adjustment step was utilized by the authors

to constrain the output of the diffusion to always match the source

image when downsampled. This is done to preserve adherence

between the input and output. However, in our approach, we

opt to forego the adjustment step. This decision is motivated by

the recognition that low-resolution DSMs often contain minimal

information, and their use in the adjustment step may hinder the

diffusion process.

To this end, our proposed network is trained in an end-to-end

manner, and the final training loss is the summation of losses of

two sub-networks.

4. EXPERIMENTS

4.1 Datasets and Implementation

Imagery and Study Area In this study, we generate a dataset

based on real-world DSMs. We evaluate our method on DSMs

acquired over two main cantons of Switzerland: Zurich and Bern.

We use low-resolution DSMs with a ground sampling distance

(GSD) of 5m generated from Cartosat-1 stereoscopic satellite as

input instead of conventional bicubic-downsampled. We take high-

resolution DSMs and their corresponding RGB orthoimage (GSD

= 0.5m and 0.1m) provided by The Federal Office of Topography

on the Swisstopo Portal1. We downsample the orthoimages to

match the resolution of the DSMs using bicubic interpolation. The

dataset consists of 2200 patches of size (256, 256). We use 2000

samples for training and 200 for testing. The study area includes

widely spaced, detached residential buildings, allotments, and

high commercial buildings. We accomplish this by utilizing the

Esri global land cover map (Karra et al., 2021) to filter the dataset,

specifically focusing on the Built Area class.

Implementation Details We randomly load training patches

during training. At inference time, we reconstruct large-scale

scenes by applying the learned model in a sliding window. We

follow best practices to normalize the data. Every DSM is normal-

ized such that all height points averaged to 0 using its local mean

and global standard deviation computed from all training sam-

ples. Optical images are normalized with the mean and standard

deviation over the intensity values of all training pixels. In all ex-

periments, we use a hidden feature dimension of 64 for the feature

extractor and the refinement decoder. ResNet-50 (He et al., 2016)

backbone pretrained on ImageNet (Deng et al., 2009) is used as

feature extractor. Before extracting the features, low-resolution

DSMs are upsampled to the resolution of the ground truth DSMs

using bicubic interpolation and concatenated with the guide. For

training, we train all methods, including our own, with the L1 loss.

For the diffusion network, we adopt the same setup and strategy

outlined in (Metzger et al., 2023), with K and λ set to 0.001 and

0.24. The number of diffusion steps with and without gradients in

training phase, are set to 8000 and 1024, respectively. Addition-

aly in our refinement network and DSRGAN, perceptual loss is

added. We employ the ADAM optimizer with a base learning rate

of 5 × 10−5 and no weight decay. We set the batch size to 2 for

training and 1 for testing. We stop training once the RMSE on the

test set have converged. We implemented our model in PyTorch

and run it on a NVIDIA Titan RTX GPU.

1https://www.swisstopo.admin.ch/en/geodata.html
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Figure 4: Visual comparison of RealGDSR with selected baselines. Our approach demonstrates its accuracy while producing regularized

and smooth DSMs. All examples are taken from the test set.

4.2 Baselines

We compare Real-GDSR against the following baselines:

● Bicubic: The upsampled low-resolution DSMs using bicubic-

interpolation.

● DADA: Deep Anisotropic Diffusion-Adjustment network is

a hybrid framework for guided super-resolution that com-

bines deep feature learning and anisotropic diffusion. The

approach achieved edge-enhancing properties from the diffu-

sion boosted by the contextual reasoning capabilities of large

pre-trained models and a strict adjustment step guarantees

perfect adherence to the source image. Our diffusion network

is similar to this approach without the adjustment step.

● D-SRGAN: DEM Super-Resolution with Generative Ad-

versarial Networks implemented ESRGAN for single DSM

super-resolution. To compare it with our models we modify

the input of the model by concatenating the low-resolution

DSM with extracted features from the optical images using

the same feature extractor as our model. We make no changes

to the GAN.

4.3 Evaluation Metrics

We evaluate the models’ performance by examining the root mean

square error (RMSE), the normalized median absolute deviation

(NMAD), and the median absolute error (MedAE), which are all

derived from per-pixel differences between prediction and ground

truth.

5. RESULTS

5.1 Comparisons with Prior Works

We start by assessing the performance of Real-GDSR, so as to

quantify the impact of our framework. The high-resolution DSM

generated by bicubic interpolation serves as the baseline. Due to

the limited transformation, the bicubic-upsampled DSMs show

grid-like patterns and lack of structural features (see Fig. 4, 1st

row), resulting in 5.6m RMSE, 3.6m NMAD and 2.3m MedAE.

Applying our model improves the reconstruction significantly. The

RMSE is lowered to 3.6m, a 36% improvement compared to the

bicubic-upsampled. Similarly, the NMAD and MedAE are also
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Figure 5: Line profile analysis of RealGDSR and other baselines.

reduced to 2.6m and 1.5m. Beside the quantitative improvement,

visually we can see that the reconstructed 3D geometry is clearly

recovered. Buildings have sharp lines, and there are fewer visible

artifacts and bumps on the terrain. The most notable finding is the

recovery of detailed building structures like a cluster of buildings

on Fig. 4, 4th row, 1st column. Furthermore, Real-GDSR recon-

structs realistic scenes even in the presence of previously unseen

building shapes and arrangement of buildings. The reconstruction

of height and arrangement of buildings in urban areas are more

accurate, where most of the baselines failed (see Fig. 5). In such

cases, the model predict the height using information extracted

from the optical image.

Model RMSE NMAD MedAE

Bicubic 5.59 3.62 2.30

DADA 5.55 3.40 2.17

D-SRGAN 4.1 2.06 3.08

Real-GDSR 3.54 2.65 1.46

Table 1: Performance comparison of Real-GDSR and baselines in

meters (m). Our model outperforms other methods.

Among all methods Real-GDSR yields the lowest reconstruction

errors accross most metrics (Table 1). Compared to other net-

works it reconstructs more accurate heights and smoother surfaces

(Fig. 4, 4th row) where other networks failed (Fig. 4, 2nd row)

and produce noises on the terrain and building shapes (Fig. 4, 3rd

row). While having higher NMAD, Real-GDSR achieves 14%

lower RMSE and 53% lower MedAE compared to the second best

model DSRGAN.

5.2 Ablation Study

Refinement Diffusion RMSE NMAD MedAE

1 ✓ 4.54 1.81 1.42

2 ✓ 5.53 3.45 1.95

3 ✓ ✓ 3.54 2.65 1.46

Table 2: Contribution of each component in our network

Local Residual Refinement Network One of the main con-

tributions of this work is our local residual refinement step of

bicubic-interpolated sample which focusing on local features. To

evaluate this we retrained our model removing the diffusion step

leaving only refinement network and compared it (Table 2, 1st row)

with the modified DSRGAN (Table 1, 3rd row). Although having

worse RMSE with 0.4m difference, our network has greater vari-

ability. This is evidenced by its lower NMAD and MedAE values

compared to DSRGAN, emphasizing its ability to handle outliers

more effectively.

Refinement and Diffusion Networks We conduct an evalua-

tion on the contribution of each component in Real-GDSR . Our

refinement network outperforms other baselines in NMAD and

MedAE with 1.8m and 1.4m, respectively (Table 1, 1st row).

Our diffusion network performed better than DADA because of

the adjustment-step removal. Adding diffusion component the

RMSE is lower but increasing both NMAD and MedAE (Table 1,

3rd row). It indicates that the diffusion network, while effectively

regularizing the model’s structure and filtering out outliers, may

inadvertently remove some of the intricate details captured by the

refinement network.

6. CONCLUSION

We have presented Real-GDSR, a practical yet effective approach

to guided super-resolution of DSMs. The approach is trying to

solve the super-resolution problem in two steps: local refinement

and an edge-enhancing diffusion. We highlight that the combina-

tion of CNN-based network and diffusion process bring the best

of both worlds. Moreover, the local refinement network follows a

residual learning strategy, i.e., it is trained to refine an imperfect

bicubic-upsampled digital surface model (DSM) by predicting

correction to the height, using both the DSMs and optical im-

ages as input. Together with the diffusion step, it can leverage

information from optical images not only for the local distribution

of the heights but also globally preserving the edges effectively.

Our approach learns to restore substantial geometry such as sharp

building lines and smooth height discontinuities. It also success-

fully restore missing shape details in the low-resolution DSM with

information from the optical images.

In our experiments, Real-GDSR reaches top performance and out-

performs state-of-the-art networks, including GANs and hybrid

methods. We also found that Real-GDSR is fairly robust in terms

of generalization that it can generate accurate high-resolution

DSMs of unseen test samples. However, we acknowledge the

trade-off between bias and variance in our approach and believe

that more diverse training data can be gathered for a more ex-

tensive and representative analysis on different section of cities.

Hence, our approach can be applied universally across various

regions. On a conceptual level, we hope that our work motivates

further research on DSM super-resolution.
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