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Abstract

Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data require-
ments. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Synthetic
Aperture Radar (SAR) imagery. In order to mitigate occlusion effects caused by the side-looking nature of SAR remote sensing,
two SAR images from opposing aspects are leveraged and processed in an end-to-end deep neural network. The presented approach
is the first of its kind to implicitly handle the transition from the SAR-specific slant range geometry to a ground-based mapping
geometry within the model architecture. Comparative experiments demonstrate the superiority of the dual-aspect fusion over single-
image methods in terms of reconstruction quality and geolocation accuracy. Notably, the model exhibits robust performance across
diverse acquisition modes and geometries, showcasing its generalizability and suitability for height mapping applications. The
study’s findings underscore the potential of deep learning-driven SAR techniques in generating high-quality urban surface models
efficiently and economically.

1. Introduction

In the context of rapid mapping, it is essential to employ meth-
ods that extract information from satellite data at an increasing
speed with minimal data demands. A great variety of methods
have been developed in this regard for the generation of high-
resolution elevation data thanks to the rise of deep learning ap-
proaches, above all single-image methods. There, the advances
are not limited to data from the optical spectrum. Meanwhile,
even single SAR images can be used to generate digital surface
models (DSMs), as demonstrated for coarse-resolution moun-
tainous areas (Xue et al., 2022), and even for complex urban en-
vironments by using VHR SAR data (Recla and Schmitt, 2022,
2024). While providing surprisingly accurate results, the inher-
ent oblique view of SAR results in extensive shadowing, de-
pending on the (urban) topography of the scene under obser-
vation. Figure 1 illustrates the problem schematically: if only
the image of the right-hand satellite were available, the shorter
building would disappear in the shadow of the taller one. By
adding another aspect, data gaps can be filled and redundant
information can be combined into more reliable measurements.

The idea of using multiple SAR acquisitions of one scene from
different aspects to reconstruct its surface is generally not new:
For instance, StereoSAR, the absolute height determination of
strong backscatterers, and Interferometric SAR (InSAR), the
evaluation of phase differences from very similar viewing set-
tings, can be combined to generate absolute DSMs (Eldhuset,
2017). In very complex urban scenes, however, classical InSAR
reaches its limits. Overlapping layover effects and extended
shadow areas prevent reliable phase unwrapping. More sophist-
icated methods using multiple aspects to reduce shadow areas
and multiple baselines to mitigate the phase ambiguity prob-
lem are necessary to reliably reconstruct urban areas (Schmitt
et al., 2014). However, these methods are very computation-
ally intensive and data hungry, oftentimes not even feasible us-
ing spaceborne missions, where only ascending and descending

Figure 1. High buildings lead to extensive radar shadows in
urban areas. If the buildings are located close to each other,

small buildings might even be invisible to a SAR sensor
observing the scene from only one aspect angle.

passes are possible. Another approach to determining build-
ing heights from SAR images is to simulate the backscatter of
buildings with different heights and then compare the simula-
tion to the actual measurements (Brunner et al., 2009). Exper-
iments with multiple aspects were also carried out using this
procedure. Overall, however, this method is again very compu-
tationally expensive, not suitable for complex building shapes,
and therefore not really applicable for large-scale campaigns.

Hence, there is a lack of data-efficient and more generic meth-
ods for height extraction from multi-aspect SAR, considering
that some work has already been published for optical data in
this regard. Deep learning-driven multi-view stereo matching
was demonstrated for aerial imagery by (Liu and Ji, 2020) or
(Yu et al., 2021). But even multi-aspect satellite data is pro-
cessed with deep learning techniques, as to find in (Cao and
Huang, 2021) or in (Jabbar and Taj, 2024). However, to the
best of the authors’ knowledge, no deep learning-based end-to-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-193-2024 | © Author(s) 2024. CC BY 4.0 License.

 
193



(a) SAR intensity
image

(b) Pixel-wise height
map in radar geometry

(c) Heights in map
projection

Figure 2. Comparison of a SAR intensity image with its
pixel-wise height map (middle) and the corresponding height

map in an orthonormal projection (right). The geometric
distortion effects of layover are corrected in the map projection,

and the building facades are no longer visible.

end method for dual- or multi-aspect 3D reconstruction from
SAR data has ever been described. And yet SAR systems, due
to their all-weather capability, are particularly well-suited for
rapid mapping applications such as reconnaissance or disaster
management.

In this paper, we present such an approach, using two space-
borne SAR images from opposing orbit directions to recon-
struct urban sceneries. The model will estimate the height val-
ues directly in ground range, i.e. an orthometric projected map
system, which is why we refer to the approach as end-to-end.
This differs from the procedure in (Recla and Schmitt, 2024),
where the heights per pixel are estimated in the sensor-specific
imaging geometry, slant range, and then transferred to world
space in a post-processing step by a geocoding procedure. Refer
to Figure 2: Without the correction for elevated objects, the
building facades appear as if they were lying on the ground (2b)
due to the oblique view and imaging geometry of SAR. In an
orthonormal ground range representation (2c), the view appears
from directly above with geometric distortions rectified. This
offers the great advantage that the loss during training can be
applied directly to the final height map and not to an intermedi-
ate result. This means that there is no need for any reprojection,
which would again introduce gaps and errors in the localiza-
tion of the objects due to incorrectly predicted heights into the
result. Furthermore, it speeds up the processing.

2. Height Estimation from Ascending and Descending
SAR Images

The overall workflow for the generation of digital elevation
models from two SAR images as proposed in this paper is
shown schematically in Figure 3 in the form of a flow chart.
The entire block up to the georeferenced image data is dealt
with in Section 2.1, the component relating to the deep learning
model in Section 2.2.

2.1 Data Preparation

In order to be able to relate two images from different orbits
of the same scene to each other, they have to be mapped to a
common reference surface, as the Level 1B SLC (single look
complex) data used here are provided in their sensor-specific
Zero-Doppler slant range geometry and thus are not georefer-
enced out of the box. A digital terrain model (DTM) is used for
this purpose, which contains no elevated objects such as build-
ings and vegetation. The projection of the image data onto the
DTM is done in a pixel-wise manner using rational polynomial
coefficients (RPCs). Setting up an RPC sensor model leads to a

more efficient and robust projection procedure and mitigates the
use of numerical solvers. To determine the coefficients of the
RPC model, a set of (virtual) ground control points (vGCPs)
with their corresponding image pixel coordinates is required,
which can be generated in any number via the known rigor-
ous sensor model (Range-Doppler): A numerical solver is used
to find the position on the DTM (with added random heights)
for each vGCP that satisfies the following two equations to do
the localization of a pixel (r, c) to a world coordinate system
(X,Y, Z). The range equation

R = |PS − Pt| (1)

where PS stands for the sensor’s and Pt for the target’s po-
sition in an earth-centered frame defines a sphere around the
sensor with the range R as radius, corresponding to the image’s
column (range gate). Second, the Doppler equation allows us
to find the current azimuth position (i.e. the row in the image
raster) and is defined as

fDc =
2

λR
(VS − Vt) · (PS − Pt) , (2)

with fDc as the Doppler centroid frequency, λ the signal
wavelength, VS the sensor’s and Vt the target’s velocity, which
can be derived from Vt = ωe ×Pt with ωe as the Earth’s rota-
tional velocity vector. Solving this non-linear set of equations
is computationally intensive, it relies on reasonable approxim-
ation values and can end up in local minima, which is why it is
more advisable to determine the robust polynomial model as a
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Figure 3. Flowchart of the proposed process for estimating an
nDSM from an ascending and a descending SAR scene.
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Figure 4. An ascending (white → blue) and a descending (white
→ red) intensity image projected on a DTM surface are shown

for the same location. The building outlines are superimposed in
gray. It can be seen how the different imaging geometries affect

the resulting layover and shadowing effects in opposing
directions.

(very good) approximator.

For a row r and column c, the RPC sensor model is defined as

r =
a (X,Y, Z)

b (X,Y, Z)
c =

e (X,Y, Z)

f (X,Y, Z)
, (3)

with X , Y and Z the world-coordinates of a 3D point, and a, b,
e and f the cubic polynomials each of the shape

p(X,Y, Z) = p0 + p1Z + p2Y + p3X + p4ZY + p5ZX

+ p6Y X + p7X
2 + p8Y

2 + p9Z
2 + p10ZY X

+ p11Z
2Y + p12Z

2X + p13Y
2Z + p14Y

2X

+ p15ZX2 + p16Y X2 + p17Z
3 + p18Y

3 + p19X
3,

(4)
incorporating 20 coefficients pi. With p0 = 1 for both of the
denominator polynomials, a total of 78 coefficients have to be
determined by least square fitting for the complete sensor model
(Akiki et al., 2021).

Using this sensor model with the previously determined poly-
nomial coefficients, the position of a point on the earth’s surface
(X,Y, Z) can be robustly converted into sub-pixel-accurate
pixel coordinates (r, c) of the corresponding SAR image. To
georeference the SAR data, for each point in a regular grid on
the earth’s surface the pixel in the SAR image is determined
and its calibrated intensity value is mapped accordingly to that
grid cell. If very-high-resolution slant range images shall be
downsampled during the production of the ground-range image,
the intensity values of several pixels in a window are averaged,
which also results in reduced speckle as a side effect. Objects
not included in the DTM, such as buildings and vegetation, are
still subject to the geometric distortions of the range-based SAR
acquisition principle. Mapping two acquisitions from opposing
orbit directions onto a DTM surface in this fashion causes the
layover areas (on the facades and roofs) from both images to
spread out in the exact opposite directions, with only the base
of the building overlapping. Figure 4 is an attempt to illustrate
this effect. The ascending and descending images take up the
red and blue channels (white → red/blue), while the building
footprints are superimposed in black. The length of the layover
of a building is proportional to its height. The model should
learn these relations from the provided training data by itself.
In this sense, the distortions become our measurement signal.

In order to produce annotated training data, the georeferenced
SAR images are paired with normalized digital surface mod-
els (nDSMs) of the corresponding areas, which are projected to
the same reference system and resolution. An nDSM only con-
tains relative heights above ground as a result of the difference
between DSM and DTM. The information about the absolute
height above sea level is not contained in the raw pixel values
of a SAR image but can be re-added after the inference step via
the DTM, as this is indispensable for the projection of the SAR
images anyway. For model training, the available data is sliced
in a 50% overlapping grid to patches of 512 × 512 pixels in
size, and ascending/descending pairs are formed together with
the corresponding height data.

2.2 Deep Learning Component

The model architecture employed is a modified form of the very
common and widely used U-Net (Ronneberger et al., 2015)
with its encoder-decoder structure, as illustrated in Figure 5.
The two input images from ascending and descending orbits are
fed into the network via two separate heads instead of simply
two channels. The resulting feature maps are then concaten-
ated and sent to the decoder. The entire network is comprised
of residual blocks (ResBlocks), whose structure is dissected in
Figure 6. The blocks in the two input heads differ from the
remaining ResBlocks in two respects: On the one hand, the
so-called Multi-Scale ResBlocks consist of several successive
convolutional layers with different dilation rates, similar to the
structure known from DeepLabv3 (Chen et al., 2017). This is
intended to enable the model to obtain a more global view of
the input features already in this early stage of the network
than conventional 3 × 3 convolutions would allow. In addi-
tion, known sensor parameters of the input images are fed into
the two heads, very similar to how it is described in (Recla and
Schmitt, 2024). The tangent of the looking angle as well as
the cosine and sine of the azimuth angle are used for this pur-
pose. The looking angle has a direct influence on the length of
the recorded layover effect of raised objects such as buildings,
while the azimuth angle determines the direction of the layover
(always towards the sensor). For ascending and descending or-
bits, the azimuth fluctuates around 90◦ and 270◦ respectively,
while the looking angle remains within an interval of approx.
20◦ − 55◦. Knowing these parameters beforehand should make
it easier for the model to understand and reliably interpret the
representation of the scenery.

The SAR intensity input data of the size 512 × 512 pixels is
clipped below −30 dB and over 10 dB and then min-max nor-
malized to a range between 0 and 1. The target data, i.e. the
nDSM, is scaled through division by 50m, ensuring that the
values to be predicted remain numerically modest. The model is
trained in the conventional supervised manner, using the Adam
optimizer with a learning rate of 10−4 and the L1 norm as a
loss function. 7200 input pairs are randomly drawn from the
dataset in every epoch and fed to the model without a certain
order of ascending and descending images since the model can
draw this information about the acquisition setting already from
the azimuth angles as additional parameters. With a batch size
of 24, the model is trained for 100 epochs. No data augmenta-
tion methods are applied, since there are already approximately
15 different images per city in the dataset with various imaging
modes and acquisition geometries, resulting in very different-
appearing views of the same sceneries.

Since the model already provides georeferenced ground range
detected outputs, the postprocessing effort is very low. First, the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-193-2024 | © Author(s) 2024. CC BY 4.0 License.

 
195



Feature Map

Residual Block

Multi-Scale ResBlock

Max Pooling

Parameter Injection

Skip Connection

Input / Output

51
2

51
2

64

1

25
6

64 128

12
8

128 12
8

256

256 64 512

512

64

25
6

32 32 325121024

512512 64 256 64

12
8

256 256 128 12
8

128 128 25
6

64 25
6

64 64 6451
2 1

51
2

Legend

32 32

51
2

32
51

2

51
2

1
32

51
2

AS
C

EN
D

IN
G

D
ES

C
EN

D
IN

G

SAR #1

SAR #2

nDSM

Figure 5. Network architecture: Two SAR intensity images from opposing orbit directions are fed into two separate heads, whose
feature maps are then concatenated and sent through a U-Net-like encoder/decoder structure. The output is an nDSM of the same
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Figure 6. The basic building block of the network architecture
shown in Figure 5: the Residual Block (ResBlock). It consists of

three consecutive activated batchnorm and convolution layers.
The input features are added back to the result.

heights must be denormalized to correspond to a metric meas-
ure and, second, the individual image snippets must be reas-
sembled into a coherent mosaic. To avoid unsightly artifacts at
their boundaries, the individual images are extracted from the
SAR images with an overlapping area and their predictions are
then linearly weighted against each other.

3. Experimental Setup and Results

The SAR data used here all originate from the German
TerraSAR-X satellite. A dataset consisting of 85 individual
SpotLight images was compiled and paired with normalized di-
gital elevation models. The data is available for eight different
cities, namely Munich, Berlin, Frankfurt am Main, London, Vi-
enna, Barcelona, Melbourne, and St. Louis, and was acquired
from different orbits and looking angles using different imaging
modes, specifically “normal” SpotLight (SL), High Resolution
SpotLight (HS), and Staring SpotLight (ST). StripMap (SM)
images were only used for testing the final models. The corres-
ponding elevation data comes exclusively from freely available
sources of local authorities. For the training dataset, the image
data was projected onto high-resolution terrain models derived
from LiDAR campaigns. For the inference phase of the model,
these are replaced by globally available, lower-resolution al-
ternatives, such as the FABDEM (Hawker et al., 2022), in or-
der to mimic a realistic test case in which LiDAR data is not

necessarily available. For all of the following experiments, any
data taken over Berlin was excluded from the training. Sim-
ilar performance scores of the method can thus be expected for
similarly developed cities. The images used for the following
experiments are listed together with their properties in Table 1.

To evaluate the performance of the proposed methodology nu-
merically, a set of metrics is introduced: The mean absolute er-
ror (MAE), the mean value and the median of the discrepancy
between prediction and target serve as absolute error metrics for
this study. More qualitative metrics are the Pearson coefficient
and the Structural Similarity Index Measure (SSIM): Quantify-
ing the magnitude and direction of a linear relation between two
variables, the Pearson Correlation Coefficient, often denoted as
Pearson’s r, spans from -1 to 1. A value of 1 denotes a perfect
positive linear relationship, -1 reflects a perfect negative linear
relationship, and 0 signifies no linear correlation. It is given by

r =

∑n
i=1(yi − µy)(ŷi − µŷ)√∑n

i=1(yi − µy)2
√∑n

i=1(ŷi − µŷ)2
, (5)

with yi and ŷi being the target and predicted value for pixel i
and µy and µŷ as their corresponding mean values.
In the fields of image processing and computer vision, the SSIM
is a metric to quantify the perceptual likeness of an image pair.
It factors in luminance, contrast, and structure to mirror human
perception. Using Gaussian kernels in local windows, the final
measure is the average of these local results. It is defined as

SSIM =
(2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

yŷ + C2)
, (6)

where y and ŷ are the predicted and target images, µy and
µŷ their average pixel intensities, σ2

y and σ2
yŷ the correspond-

ing variances, σyŷ representing the covariance, and C1 and C2

as constants to numerically stabilize the division (Wang et al.,
2004).

Figure 7 displays a comparison of the results using different ac-
quisition modes with the ground truth from LiDAR. Despite not
encountering a single StripMap image during training, the res-
ulting DSM is comparable to those from SpotLight, although
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Figure 7. Comparison between the generated DSMs from different imaging modes and the LiDAR ground truth. A central part of the
city of Berlin can be seen. The higher level of detail of the DSMs from the higher-resolution SpotLight images is noticeable. In the
central north, several newly constructed buildings draw the eye, which are still absent in the image pair from 2015, but are clearly

visible in the one from 2021. Figure 8 shows a further comparison of this area.

Image Imaging Mode Orbit Direction Incidence Angle Acquisition Date
HS#1 HS ASC 42◦ 28.03.2014
HS#2 HS DESC 36◦ 12.03.2015
ST#1 ST ASC 42◦ 23.12.2016
ST#2 ST ASC 30◦ 17.09.2018
ST#3 ST DESC 36◦ 17.08.2018
SM#1 SM ASC 29◦ 06.07.2021
SM#2 SM DESC 35◦ 15.02.2021

Table 1. Listing of the image pairs used for the experiments.

the level of detail is reduced slightly. However, the urban struc-
ture is still easily recognizable, and also unusually tall build-
ings are reliably mapped. The zone north of Berlin Central
Station is particularly interesting. A number of new buildings
have apparently been built in this area, which are included in
the ground truth data from 2022. When comparing the HS data
from 2015 and the 2021 DSMs from SM, this development is
clearly recognizable and directly comparable across different
resolutions, recording modes, and geometries. In Figure 8, er-
ror maps of the zoomed-in view of the new construction zone
can be seen. These error maps were masked with building foot-
prints from OpenStreetMap (OSM) to illustrate the effect of the
missing buildings. While a large number of buildings were still
missing in 2015, the error map from the 2018 image pair shows
precisely which buildings had already been built by that time.
The numerical evaluations of the various DSMs generated can
be found in the lower part of Table 2. In order to guarantee a
fair comparison, the metrics were only collected for the over-

lapping areas of all settings and the previously discussed con-
struction site was masked out. All metrics improve with higher-
resolution input data. However, the recording geometry has an
impact as well. The 42◦ Staring SpotLight image (ST#1) has a
positive effect on the quality of the resulting DSM. Higher in-
cidence angles seem to be favorable in urban areas due to the
reduced layover effect.

In order to examine whether the end-to-end model presented
here for the fusion of ascending and descending images of-
fers significant advantages over the single image case, another
model is introduced with only one input head, taking a single
image as its only input. It is trained with identical data and hy-
perparameters for the same number of steps in order to ensure a
fair comparison. Two HS scenes depicting the center of Berlin

Setting MAE ↓ [m] Mean ↓ [m] Median ↓ [m] Pearson ↑ SSIM ↑
Single HS ASC 4.42 −1.09 −0.03 0.68 0.85
Single HS DESC 4.76 −0.86 −0.04 0.64 0.83
Late Fusion HS 4.53 1.21 0.18 0.70 0.84

Dual HS 3.54 −0.42 0.03 0.77 0.87
Dual SM 4.09 −1.05 0.03 0.73 0.85
Dual ST (#2 & #3) 3.72 0.30 0.05 0.77 0.88
Dual ST (#1 & #3) 3.34 0.03 0.04 0.80 0.89

Table 2. Numerically obtained error metrics of the different
experiments. The upper part compares the DSMs generated from
single images and their late fusion. In the lower part, the results
from different image pairs, originating from different acquisition

modes and geometries, are being compared with each other.
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Figure 8. Detail of a new development area. The newly
constructed buildings contained in the (current) ground truth
data lead to large differences in the error maps. These were

masked with OSM building footprints. The pair of images from
2018 clearly shows which buildings had already been built by

then and which were constructed later.

are used as test images. The two DSMs generated from the in-
dividual images are then fused with the following strategy: The
single-image height maps are coregistered and the maximum
height value occurring for each pixel is selected. For instance,
if a building is obscured in one image due to radar shadow, it
should theoretically be identified in the opposite view where the
estimated height would be higher. This is called a “late fusion”,
as the results are only merged at decision level, in contrast to
“early fusion” of the raw sensor images as implemented in the
method proposed by this paper. One would assume a similar
result for both methods. However, in practice, the additional
image already within the model not only helps to fill gaps, but
also has a positive effect on the reconstruction quality of the en-
tire scene. Figure 9 shows a comparison of the results from late
fusion (9b) and early fusion (9c). Due to the less precise posi-
tioning of the individual buildings in the single image case, the
fusion results in blurred edges and a reduction in the quality of
the building shapes. The height values are also less accurate and
the model tends to underestimate building heights. The upper
part of Table 2 reflects this in the numerical results. Compared
to the first row of the lower part (DUAL HS), the results are sig-
nificantly worse, both the DSMs from the individual images and
their late fusion. Figure 11 emphasizes these observations. An
unusually shaped building was reconstructed in three different
ways: Once from only one HS ascending image (11b), once
from one HS descending image (11c), and once using early
fusion of the ascending and descending acquisitions together
(11d). The fusion result is much closer to the ground truth than
the DSMs from the individual images. The additional informa-
tion available to the model through the simultaneous evaluation
of both views helps to better capture the structure of the build-
ings and more reliably depict the transition from slant range to
ground range.
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(b) Late Fusion: The single-image derived DSMs are merged by taking
the individual maxima per pixel during post-processing.
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(c) Early Fusion (this paper): The two input images are processed jointly
within the model.

Figure 9. Comparison between the LiDAR ground truth (top),
the late fusion result of the single-image-derived DSMs

(middle), and the DSM resulting from the early fusion of
ascending/descending images presented in this paper (bottom).

Not only the heights but also the buildings’ positionings and
their edges are significantly superior in the case of early fusion.

4. Discussion

As the results described in Section 3 show, the model seems
to have learned to interpret the SAR data’s underlying imaging
geometry. This is likely due to the large number of different
imaging scenarios of the same scenes during training. A high-
rise building primarily leads to high intensity values along its
layover. However, the individual bright pixels should not be
assigned a large height in the resulting DSM, but only those
pixels within the building footprint. While this task seems far
from straightforward, the model has learned to perform it with
surprising accuracy. It performs the transition from slant-range
geometry to ground-range geometry implicitly. The error met-
rics support the qualitative impression of the generated DSMs.
With a mean absolute deviation of less than 4m and an SSIM of
greater than 0.85, analysis-ready elevation models are produced
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Figure 10. nDSM of Paris, generated from two StripMap scenes. Although the model was trained exclusively on SpotLight images, it
shows impressive transfer capabilities on StripMap data. This example is a testimony to how this model can already be used to

generate very large-scale DSMs in a computationally inexpensive and data-lean manner.
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(d) Asc/Desc Fusion

Figure 11. Visual comparison between the LiDAR DSM, the DSMs generated from single images, and the fusion result. The example
of this unusually shaped building clearly shows that the fusion is more than the sum of the two individual results. The additional
information simultaneously available to the model for interpretation not only leads to more reliable height values but above all to

significantly better building outlines.

with only two SAR images. The example of the newly construc-
ted buildings in Figure 8 shows how such a method can be used
to detect changes in the urban topography independent of the re-
cording geometry and mode. This can be highly useful for rapid
mapping applications such as disaster management after natural
catastrophes. However, when using two acquisitions with dif-
ferent timestamps, it remains difficult to understand with this
method what information the generated DSMs reflect. This is
where the black-box nature of end-to-end deep learning meth-
ods becomes apparent. Notably, with missions like TerraSAR-
X, two acquisitions from opposing orbit directions can be made
only half a day apart, if the method, like the one presented here,
does not require the exact same looking angles for both images.

Although the dual-aspect variant loses some flexibility and
transparency compared to the single-image method, the results
from Section 3 leave no doubt that for this type of end-to-end
model, the use of two images from opposite views leads to a sig-
nificant performance improvement in the reconstruction quality
of the observed area. The results of the experiments suggest
that the type of data fusion presented here provides better res-
ults than if the incoming data were analyzed individually with
their results being merged. The fusion is thus more than just the

sum of its parts (Schmitt and Zhu, 2016); refer to Figure 11 for
a comparison. However, it is not only the building shapes that
benefit from the joint evaluation of the two views, their geoloc-
alization is also improved as a result. If the terrain model used
for the projection of the input data contains errors, which can
often occur with the coarse-resolution globally available DTMs,
these affect the projection of the two images. If the terrain is too
high, a pixel is shifted away from the sensor, if it is too low, it
is shifted toward the sensor. Using opposing orbit directions
(and identical incidence angles), these errors have exactly the
opposite effect for both images. The true position of the pixel
would therefore be in the middle. This effect can be seen in the
result of the late fusion in Figure 9b. Some buildings appear as
if they have been reconstructed twice, with a certain offset in
between. These are the localization distortions due to the im-
perfect DTM of the two individual images. However, when the
images are jointly processed, the model corrects this influence
and the buildings are overall closer to the high-precision ground
truth (compare Figure 9c).

The scores in Table 2 still show a fairly significant gap between
the results from SpotLight data and those from StripMap. Nev-
ertheless, the transfer performance of the model to this un-
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known data type is remarkable, as no SM data was used at all
during training. If the model were fine-tuned to this data, a
further improvement of the DSMs would be very likely. Com-
pared to SpotLight data, SM images are not only much more
cost-efficient, their coverage is also many times larger. With
archive data from TerraSAR-X, a global DSM for urban areas
would theoretically be conceivable. Figure 10 shows a section
of the DSM of Paris generated with two SM images. Conven-
tional InSAR methods are not capable of such a level of detail
in complex regions with as many layover and shadow areas as
urban areas like these.

5. Summary & Conclusion

In conclusion, this paper presents a comprehensive methodo-
logy for height estimation in urban areas using two SAR ac-
quisitions taken from opposing orbit directions. The SAR im-
ages are mapped to a common reference surface, namely a
globally available digital terrain model. The proposed deep
learning model, based on a modified U-Net architecture, ef-
fectively fuses information from ascending and descending im-
ages to generate accurate 3D reconstructions in a common map
reference system, like UTM. The conversion from the sensor-
specific imaging geometry, slant range, to the orthometric pro-
jection, ground range, happens implicitly within the model.
Comparisons between single-image and dual-aspect fusion ap-
proaches highlight the superiority of the latter in terms of re-
construction quality and geolocalization accuracy. The paper
provides a numerical evaluation of the achieved accuracies for
different settings, i.e. for different acquisition modes and geo-
metries. As expected, the method performs better with high-
resolution SpotLight data than with the StripMap images. How-
ever, these are not as far apart as one might expect. The model
has a high degree of generalizability to unseen data types and
locations. The method presented here proves to be less data-
hungry and lightweight compared to conventional technologies
such as TomoSAR and thus underscores the potential to gener-
ate fast and inexpensive comparably high-quality urban surface
models.
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