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ABSTRACT:
The Dunhuang murals, a significant part of Chinese heritage, have suffered deterioration primarily due to environmental and chemical 
factors, notably salt damage. This study proposes a sophisticated method that synergizes Fractional Order Differentiation (FOD) and 
Partial Least Squares Regression (PLSR) to accurately invert the phosphate content in the Mural Plaster of the Dunhuang paintings. 
The focal points of the research include: 1) To address the issue of information loss and reduced modeling precision caused by integer 
order differentiation algorithms, the FOD method is employed for preprocessing hyperspectral data. This approach ensures the fine 
spectral differences in the phosphate content of the Mural Plaster are precisely captured, 2) Utilizing PLSR, the study models the 
spectral bands identified at a significance level of 0.01 with measured conductivity values, thereby enabling the precise prediction of 
the phosphate content in the murals. The research outcomes reveal: 1) The FOD method can elucidate the nonlinear characteristics 
and variation patterns of the mural samples in the hyperspectral curve.As the order increases from zero to two, the number of spectral 
bands meeting the 0.01 significance test initially decreases and then increases. The highest absolute value of the positive correlation 
coefficient is observed at 1.9 orders, corresponding to the 2077 nm band, 2) For predicting the phosphate content in the murals, the 
model at 1.9 orders is most suitable for inversion. This model, after cross-validation, achieves a maximum R2 value of 0.783. This 
study created an efficient FOD-based model for estimating phosphate in mural plasters. 

1. INTRODUCTION

The ancient mural sites serve as historical annotations, with the
Dunhuang murals in China encapsulating the essence of
contemporary human civilization and its developmental
prowess, holding immense historical significance (Sun,
Tongxin, et al., 2023; Wang, F., et al., 2022). Regrettably, due
to the ravages of time, these murals have suffered from
environmental impacts, resulting in fading, efflorescence,
erosion by wind and sand, and mold damage. The detachment
of the mural pigment layer from its mural plaster base, as well
as the separation of the plaster layer from the cliff support layer,
gravely diminishes the aesthetic and historical value of these
murals (Sharma, et al., 2023; Scrivano, S., and Gaggero, L.,
2020). Preserving these murals is tantamount to salvaging a
civilization and art on the brink of extinction. Extensive
research indicates that changes in the hydrothermal
environment are a significant causative factor in the
deterioration of mural paintings due to salt crystallization.
Among existing methods for salt content analysis in mural
samples, Spectrometer Diagnostics stands out as a non-contact,
non-destructive technique (Li, D., et al., 2023). When studying
salt content in murals, hyperspectral imaging can provide
critical information on chemical composition, spatial
distribution, quantity estimation, crystallization monitoring,
environmental effects, and non-destructive testing, revealing
these characteristics through spectral reflection and absorption
(Peng, W., et al., 2022; Schodlok, M. C., et al., 2022; Ma, J., et
al., 2022).

In summary, current hyperspectral remote sensing technology
demonstrates some variability in the accuracy of its salinity
predictions (Wang, Libing, et al. 2021).In the realm of
hyperspectral data mining, mathematical differential

transformation is a commonly employed strategy to enhance
spectral band sensitivity. Scholars like Guozhou Qian (Guo
Zhouqian, et al. 2023)have constructed spectral inversion
models for sulfate in mural plaster utilizing first and second-
order derivatives combined with salinity indices. Qing Zhong
and others (Zhong,Q, et al. 2023) identified significant spectral
feature enhancements using inverse first-order derivatives,
establishing a hyperspectral prediction model for soil nickel
content. Y. Hou and colleagues (Hou,Y and Zhang,F,2014)
compared the modeling accuracy of simple linear regression,
multiple linear stepwise regression, and PLSR with laboratory
SOM content and hyperspectral data. They confirmed that
second-order derivative PLSR was the optimal model,
identifying the most sensitive wavelength range between 640-
790 nm. However, current research indicates that first and
second-order derivatives show significant differences from
original data and tend to lose critical information affecting
model accuracy (Fu,Cheng-Biao, et al. 2019).Fractional
derivatives extend the concept of differentiation to any order,
thereby providing a clearer depiction of the physical
characteristics of natural systems (Sousa,J, et al. 2019;Zhou, P,
et al. 2020).

Consequently, scholars have extensively studied the central
issue of hyperspectral data preprocessing to establish higher-
precision salt content prediction models. The fractional order
differentiation model delineates the physical properties of
systems in nature more clearly (Sousa,J et al. 2019). Compared
to integer-order differentiation, fractional order differentiation
provides a more precise model description and is widely
applied in fields such as signal analysis, weather forecasting,
and image processing (Abbas,S et al. 2017;Y. Yan et al. 2022).
However, it was only in recent years that scientists began to
apply fractional order differentiation models to the
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preprocessing of soil hyperspectral data. Hong (Hong,Y et al.
2019) collected soil samples from the Han River Plain in
Wuhan and computed the fractional order differentiation of the
soil spectra, ranging from 0.0 to 2.0 order in 0.25 order
intervals. Wang (Wang,X et al. 2018) focused on saline soils in
the National Nature Reserve of the Ebinur Lake Wetland in
Xinjiang for quantitative prediction of organic matter content.
Simulation results indicated the highest precision in organic
matter quantification at a model order of 1.2. Recent studies
have found that fractional order differentiation methods can
more meticulously depict the variations in the hyperspectral
reflectance of Mural Plaster samples, thereby uncovering more
hidden information and enhancing the precision of inversion
models.

Based on the aforementioned analysis, scholars have made
considerable efforts and explorations using the FOD method for
the quantitative inversion of salt content in hyperspectral
remote sensing.(Abbas,S et al. 2017;Y. Yan et al. 2022;Wang,X
et al. 2018). However, the majority typically only employ
conventional integer-order differentiation and spectral
transformation processing when selecting salt-sensitive bands
in ancient mural plaster. Whether fractional order
differentiation can innovatively be applied to extract the salt
content characteristics of saline mural surfaces, and more
intricately delineate the changes in reflectance of the ancient
mural plaster, to extract more hidden information from the
hyperspectral reflectance curves and improve the precision of
inversion models remains to be verified in this empirical study.
Figure 1 illustrates the salt migration and phase transition
mechanisms in the in-situ environment of the mural.

Figure.1 Illustration of the in-situ environmental conditions of
murals, focusing on the hydrothermal transport of salts, porous

medium models, and phase transition mechanisms.

2. EXPERIMENT AREA AND SAMPLE
PREPARATION

This study focuses on ancient murals at the Mogao Caves in
Dunhuang, selected for their significant historical value and
characteristic salt damage. The research reveals various forms
of salt-induced deterioration, including: (i) efflorescence, where
salt crystallizes on the mural's surface, commonly referred to as
"white frost," directly affecting the mural's visual and physical
properties; (ii) friability, where the mural plaster becomes loose
due to the action of soluble salts, compromising the structural
integrity of the mural; (iii) fissures, indicating displacement and
cracking of the mural, with salt expansion being a key factor in
the formation or worsening of these cracks; (iv) craquelure,

characterized by fine, net-like cracks on the mural surface,
highlighting the subtle effects of salt content fluctuations on the
mural's texture. These manifestations of salt damage not only
focus on quantitative analysis of salt content but also delve into
how salt, through various physical and chemical reactions,
leads to diverse forms of degradation in murals, emphasizing
the importance of in-depth salt content analysis to improve our
understanding and mitigation of these impacts.

Figure 2. (a)- (c) depict an overview of the research area. (d) sh
owcases typical pathological types found in mural paintings of t
he study area: (i)Salt efflorescence, (ii)Alkaline effervescence,

(iii) Fissures, (iv) Crazing.

The method of sample preparation was based on the studies
described in reference (Bi,W, 2022),while the desalination
process adhered to the GB/T50123-2019 standard.Table 1
presents a list of materials used in the experiment.

component
Material ratio (wt%)

Chengban
soil Sand Wheat

straw Water

Coarse
plaster 64 36 3 20

Table 1. Inventory of Experimental Materials.

3. DATA SOURCE AND METHODOLOGY

3.1 Data Collection

The aim of this experiment is to utilize hyperspectral
technology for the non-contact diagnosis of salt content on the
surface of Mural Plaster materials and to construct a pertinent
model.First,design and prepare five sets of Mural Plaster
samples with varying concentrations (a total of 50 pieces), and
to collect their hyperspectral data. The methodology for sample
preparation was informed by the study conducted by (Bi,W.
2022), while the desalination process adheres to the
GB/T50123-2019 standard.Initially, the raw materials used for
sample preparation, including kaolin clay, sand, and wheat
straw, undergo a desalination process. Subsequently, the
desalinated soil samples are dried, crushed, and sieved for
future use. The treated kaolin clay, sand, and wheat straw are
mixed in a mass ratio of 64:36:3, to which 20% of the total
solid mass of distilled water is added. Following this, the
material is prepared for molding. The homogenously mixed
materials are filled into molds using a spreading technique to
ensure a smooth surface, and vibration is applied to expel any
excess air within the specimens. The samples are then placed in
an oven and baked at 90°C for 2 hours to achieve a state as dry
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as possible. This temperature is chosen to minimize the
moisture content within the samples, approximating a
completely dry condition.

The next step involved preparing five different concentrations
of dodecahydrate disodium hydrogen phosphate solutions,
specifically at 0.608 mol/L, 0.808 mol/L, 1.008 mol/L, 1.208
mol/L, and 1.408 mol/L. These solutions represented a gradient
of erosive conditions from the lowest to the highest,
sequentially termed as minimal concentration erosion, low
concentration erosion, medium concentration erosion, high
concentration erosion, and maximal concentration erosion.
Temperature control was maintained using a THD-0506/1015
high-precision low-temperature constant temperature water
bath. The mural plaster samples were immersion exposed to
different concentrations of the dodecahydrate disodium
hydrogen phosphate solution at 32.5°C through capillary action,
simulating the real-world capillary absorption effect of Mural
Plaster from groundwater seepage. Subsequently, the samples
were thoroughly air-dried at room temperature, and their
surface spectral reflectance was measured using an ASD-
FieldSpec4HI-RES terrestrial spectrometer(The spectral range
spans from 350 to 2500 nm, with a sampling interval of 1.4 nm
between 350 and 1000 nm, and 2 nm from 1001 to 2500 nm).
Figure 3 illustrates the experimental layout and procedural flow,
as well as the method of collecting hyperspectral data for Mural
Plaster.

Figure 3.Preparation of samples and collection of hyperspectral
data for Mural Plaster.

3.2 Statistical Analysis of Electrical Conductivity Data in
Mural Plaster

The coefficient of variation is employed to articulate the degree
of relative fluctuation or dispersion in conductivity measureme
nt values.The electrical conductivity data of Mural Plaster colle
cted under the five different conditions were statistically descri
bed using data density distribution, mean, standard deviation (S
D), minimum value (Min), first quartile (Q1), third quartile (Q
3), and coefficient of variation (CV). The first and third quartile
s (Q1 and Q3) are indicated with red dashed lines, while the me
an is denoted with a blue dashed line. OC1 to OC5 represent th
e five conditions ranging from minimal to maximal concentrati
on erosion. The coefficient of variation (CV), also known as the
dispersion coefficient, is a standardized measure of the dispersi
on of a probability distribution, defined as the ratio of the data's

standard deviation to its mean. Data is considered to have low
concentration variability when CV ≤ 15%, moderate variability
when 15% < CV ≤ 35%, and high variability when CV > 35%.
The formula for calculating the coefficient of variation (CV) is
as follows(J. Zhang, et al. 2023):

100%CV
u


  (1)

where CV = the coefficient of variation (expressed as a perc
entage)
� = the standard deviation of the sample
� = the mean value of the sample

3.3 Preliminary Processing of Hyperspectral Data

Initially, the spectral reflectance data for mural plasters was cle
ansed of low signal-to-noise ratio bands between 350-399nm a
nd 2401-2500nm. Following this, the Savitzky-Golay filter was
applied to smooth the hyperspectral reflectance data of 100 si
mulated plaster layer samples(J. Chen, et al. 2004), utilizing 21
window points and a second-order polynomial (Guo Zhouqian,
et al. 2023).
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where ��
' = the spectral reflectance at position i after smoothi
ng.
��+� = points within the original data series.
�� = coefficients in the convolution kernel, acquired t
hrough polynomial fitting.
m = half the size of the window.
∆ = hypically 1, unless the intervals between data poi
nts are non-uniform.

3.4 Research Methodology
3.4.1 Grünwald-Letnikov Fractional Differentiation Fract
ional Order Differentiation (FOD) represents an extension of tr
aditional integer-order differentiation and manifests in various f
orms within the realms of mathematics and engineering (Karac
a, Yeliz, and Dumitru Baleanu. 2022), such as Riemann-Liouvi
lle (R-L), Lévy, Weyl, Caputo, and Grünwald-Letnikov (G-L)
(Wang, X et al. 2020). The current experiment employs the Grü
nwald-Letnikov method, which, owing to its discrete nature, is
particularly suitable for the numerical computation of hyperspe
ctral signals (Equation 3),�denotes the Gamma function (Γ v =
v − 1 !).
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where v = the fractional order
h = step size
t and a = upper and lower bounds of FOD

In this experiment, assuming the function f (x) as a one-dimensi
onal hyperspectral signal with a band range of [a, t], where x∈
[a, t] divided by the differential step length h. Given that the A
SD FieldSpec® 3 Hi-Res Spectrometer's retention interval is 1n
m, the differential step length can be set to h=1. Consequently, t
he expression for the v-th order fractional differentiation of the
function f (x) can be derived from Equation (3) as follows(Wan
g,X et al. 2018):
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where ν = the fractional order
x = the wavelength

3.4.2 Modeling PLSR In this study, the objective is to estab
lish an inversion model to explore the relationship between con
ductivity of Mural Plaster and spectrally significant bands usin
g machine learning method.A Partial Least Squares regression
model was employed to construct the model as delineated in Eq
uations 5 and 6 (Figure 4)(Mehmood, et al. 2020).

TX T P E   (5)
TY U Q F   (6)

where X = Spectral bands ascertained through significance testing
Y = The conductivity of Mural Plaster
T = Score matrix for explanatory variables
U = Score matrix for response variables
P = Loading matrix for explanatory variables
Q = Loading matrix for response variables
E and F = Residual matrix

Figure 4.Workflow of the FOD-PLSR method.

3.4.3 Evaluation This paper employs accuracy assessment
metrics to evaluate the efficacy of the predictive modeling (Tia
n, A et al. 2021;Zhang,J et al. 2023). The computation formulas
for R², RMSE (Root Mean Square Error), and MAE (Mean Ab
solute Error) are delineated as follows in Equations (7) to (9).
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where n = the number of mural plaster samples
�� = the EC measurement value of the i-th mural
plaster sample
�� = the average value of the measured values of all
mural plaster samples
�� = the predicted EC value of the i-th mural plaster
sample
�� = the average EC predicted value of all mural floor
samples

The coefficient of determination of the calibration data set is
expressed as ��

2 . The root mean square error of the calibration
data set and the validation data set is expressed as ����� and
�����. The coefficient of determination of the validation data
set is expressed as ��

2 , and the performance of the model is
expressed as MAE. Among them, �2 is used to evaluate the
model fitting degree. The closer the value is to 1, the higher the
model accuracy. RMSE and MAE are used to evaluate the
stability of the model. The closer the value is to 0, the better the
RMSE and MAE are.

4. RESULTS

4.1 Statistical Description of Mural Plaster Electrical Con
ductivity

As depicted in Figure 5,The electrical conductivity values of M
ural Plaster samples are a direct reflection of the variations in s
alt content within the same material, exhibiting certain variabili
ty. Statistical analysis reveals that the sample values ranged fro
m 2.27 ms·m-1 to 4.86 ms·m-1. The average and standard deviat
ion of the EC values were found to be 3.55 ± 0.75 ms·m-1. The
first (Q1) and third (Q3) quartiles of the data are 2.98 ms·m-1 a
nd 4.15 ms·m-1, respectively, indicating that 50% of the sample
EC values fall between these two figures. Furthermore, the Co
efficient of Variation (CV), derived using Equation (1), is 21%,
signifying a moderate level of relative variability in the EC val
ues of the samples.
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Figure 5.Statistical description of the Electrical Conductivity
(EC) values in Mural Plaster.

4.2 Hyperspectral Characteristics of Simulated Mural Pl
aster under Different Salt Concentration Erosion

Based on Equation 2, the spectral data are smoothed to highligh
t these spectral features. As observed in Figure 6, the reflectanc
e spectra of Mural Plaster, subjected to varying concentrations
of salt erosion, exhibit similar shapes. The colored curve repres
ents the average spectrum of the Mural Plaster samples. Within
the 400-2400 nm wavelength range, shows reflectance values b
etween 0.08 and 0.45, displaying notable fluctuations.

Figure 6. Spectral reflectance curves of mural samples under di
fferent conditions.

4.3 Fractional Order Differentiation Results of Spectral
Curves

Given the rich high-dimensional information in hyperspectral d
ata and the difficulty in capturing sensitive bands and features
(Song, G et al. 2023), the FOD calculation method delineated i
n Section 3.4.1 was utilized on the samples, employing Equatio
n (4) to enhance the analysis. This method allows for the contro
l of differential step length, thereby enhancing the accuracy of s
alt content detection. Following the approach of (Zhang,J et al.

2023), the interval and step length were set at [0-2] and 0.1, res
pectively. Figure 7 illustrates the average spectrum of the Mura
l Plaster samples.

The results indicate that as the order increases from 0 to 2, the
difference in spectral reflectance enlarges, and the differential v
alues progressively approach zero, explainable by the mathema
tical theory of the G-L method. Given the presence of peaks an
d valleys of certain widths in the reflectance, when the samplin
g step length is less than these widths, this difference is amplifi
ed during computation, thus enhancing spectral information. In
evitably, differentiation operations introduce noise significantly
different from adjacent bands, or amplify short interval reflecta
nce peaks and valleys, subsequently introducing high-frequenc
y noise (Zhang,J et al. 2023). Therefore, at 0.1-0.9 order, the ex
tremities of band peaks, valleys, and inflection points are maxi
mally extracted. At 1.0 order, the reflectance corresponding to t
he full spectral wavelength drops below 0.1, while at 0.5 order,
it fluctuates around zero, beginning to show negative values.

Figure 7. Average fractional-order derivative spectra of Mural
Plaster samples. The range of orders spans from 0 to 2, with a s
tep size of 0.1. Colored curves represent the average spectra of
Mural Plaster samples, while the gray shadow indicates their st

andard deviation.
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4.4 The Correlation between Fractional Order Derivative
(FOD) Results and Salt Content

The optimal correlation between fractional order differential sp
ectra and the phosphate content of Mural Plaster, along with co
rresponding spectral bands, is presented in Table 2.

Table 2.Optimal Correlation between the Fractional Order
Differential Spectra and Phosphate Content in Mural Plaster, A

long with Corresponding Spectral Bands

Correlation coefficients provide an intuitive reflection of the lin
ear relationship between spectral reflectance and phosphate con
tent in Mural Plaster. The higher the correlation, the more sensi
tive the spectral response, which in turn improves the predictiv
e accuracy of subsequent models. Figure 8 illustrates the correl
ation coefficients between differential spectral orders and the se
verity of the disease. It reveals that the correlation between diff
erent orders of differential spectra and phosphate content in Mu
ral Plaster varies significantly. Within these differential spectra,
one can observe different patterns of correlation with the phos
phate content in Mural Plaster.

The correlation coefficient can intuitively reflect the linear corr
elation between spectral reflectance and the phosphate content
of Mural Plaster; a higher correlation signifies a more sensitive
spectral response, which in turn suggests more accurate predicti
ve modeling outcomes.The correlation coefficients of the vario
us orders of differential spectra and the severity of the patholog
y are as depicted in Figure 8.Figure 8 elucidates the significant
differences in the correlation between the differential spectra of
varying orders and the phosphate content of the Mural Plaster.
Within these differential spectra of different orders, one can ob
serve distinct patterns of correlation with the phosphate content
of the Mural Plaster.Initially, it is noticeable that the maximum
absolute values of the correlation coefficients fluctuate minima
lly and follow a similar trend from 0.1 to 0.7 order.In the visibl
e light region (approximately 400 - 700 nm) and the near-infrar
ed region (700 - 2500 nm), the correlation coefficients transitio
n from positive to negative as the order increases.Furthermore,
the adjacent bands of the correlation coefficients exhibit consid
erable volatility, becoming increasingly chaotic, which indicate
s that higher-order differentials capture more complex non-line
ar relationships.Lastly, the Mural Plaster phosphate has several
advantageous wavelength ranges: 400-490 nm, 790-820 nm, 84
0-890 nm, 1150-1170 nm, 1380-1390 nm, 1465-1480 nm, 1760
-1790 nm, 2060-2090 nm, 2190-2210 nm, and 2240-2290 nm.
As the order incrementally rises from zero to first order, the ov
erall trend of the number of bands that satisfy the 0.01 significa
nce level test under spectral transformation is to initially decrea
se and then increase with the order.Based on the data presented
in Table 2, it can be discerned that the maximum absolute value
of the positive correlation coefficient is observed at the 1.9 ord
er, corresponding to a wavelength of 2077 nm. Conversely, the
peak absolute value of the negative correlation coefficient occu
rs at the 1.1 order, with the associated wavelength being 847 n
m.Its first six characteristic bands (2077, 2064, 1470, 402, 1786,

and 1712 nm) exhibit high consistency with the advantageous
wavelength ranges of the Mural Plaster phosphate.In contrast, t
he characteristic bands extracted at integer orders (1.0 and 2.0 o
rders), although partially coinciding at 1.0 order (874, 847, 848,
854, 850, 875, and 2239 nm), differ significantly at 2.0 order
(2239, 1180, 1605, 1756, 2063, and 1793 nm).This suggests tha
t fractional-order differentiation is more effective in capturing s
pectral characteristics related to the phosphate content of Mural
Plaster.

In conclusion, when establishing a spectral inversion model for
Mural Plaster phosphate, 1.9 order differential spectral analysis
may be the optimal choice.However, to ensure the accuracy an
d reliability of the model, it is still necessary to conduct a comp
rehensive comparison, considering the results of different order
s of differential spectral analysis, as well as their capability in r
evealing the relationship between spectral reflectance and plast
er phosphate content.

Figure 8. Correlation coefficients between differential spectra
at different orders and the phosphate content in Mural Plaster.

4.5 Model Construction of Mural Plaster Phosphate Mon
itoring from Feature Bands Extracted by the FOD Algorith
m

Table 3. Monitoring Models and Validation Results for Ph
osphate Content in Mural Plaster

Utilizing Equations 5 and 6, Table 3 can be derived.According
to Table 3, the model exhibits varying performance at different
orders. In integer-order differentiation, the first-order differenti
al spectrum model has a higher coefficient of determination R²
than the second order, with the highest R² of 0.716 in the valida
tion set, indicating greater accuracy. In fractional order differen
tiation, model performance varies with the refinement of the dif
ferentiation order, achieving an optimal R² of 0.783 at 1.9 order,
surpassing both the original and second-order spectra. Additio
nally, the fractional order differentiation at 1.9 order yields RM
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SE and MAE values of 0.057 and 0.078 in the calibration set, a
nd 0.371 and 0.312 in the validation set, respectively, demonstr
ating high predictive accuracy and stability.

Figure 9 presents the optimal Mural Plaster Phosphate Monitori
ng Models established based on sensitive bands selected from F
OD spectra, including (a) 1.0 order, (b) 2.0 order, (c) 1.1 order,
and (d) 1.9 order models.

Figure 9. Optimal Mural Plaster phosphate monitoring models
established based on FOD spectral band selection: (a) 1.0 order,

(b) 2.0 order, (c) 1.1 order, (d) 1.9 order.

A comparison of model performance reveals that the 1.9 order
differential spectrum model exhibits the best performance in th
e calibration dataset, with an R² of 0.984 and RMSE of 0.057. I
ts performance in the validation dataset is also superior, with an
R² of 0.783 and RMSE of 0.371, demonstrating its high accura
cy and reliability in monitoring phosphate content in Mural Pla
ster.

5. DISUSSION

The innovations of this study are as follows:

(1) In terms of spectral preprocessing, this study innovatively p
roposed the Fractional Order Differentiation (FOD) method for
preprocessing the hyperspectral data of Dunhuang Mural Plaste
r layers. Compared to traditional integer-order differentiation al
gorithms, the FOD method more acutely captures minor variati
ons in phosphate content within hyperspectral data. By unveilin
g the nonlinear characteristics and complex patterns of variatio
n in the mural samples' spectra, FOD preprocessing retains mor
e nuanced information, significantly enhancing the accuracy an
d reliability of modeling for Mural Plaster phosphate content.

(2) On feature band extraction and modeling, the research has d
eveloped a model combining Fractional Order Differentiation a
nd Partial Least Squares Regression (FOD-PLSR) for the hyper
spectral feature inversion of Mural Plaster phosphate content. T
his enables non-destructive detection and accurate prediction of
phosphate content in Dunhuang Mural Plaster, which holds sig
nificant value for cultural heritage conservation.

However, it is pertinent to acknowledge the limitations of this s
tudy. In selecting sensitive features for Mural Plaster phosphate,
only the selection of sensitive bands was considered, without e
xploring combinations of sensitive bands, such as the constructi

on of salinity indices at different orders. Moreover, the study o
nly employed a limited range of fractional orders with a step le
ngth of 0.1, without analyzing the impact of more detailed fract
ional order differential spectral changes on the remote sensing
monitoring of Mural Plaster phosphate damage. Furthermore, t
he current study primarily focuses on mural salt damage monito
ring under specific samples and conditions, potentially limiting
the model's generalizability across different types of murals or
environmental conditions. Future research should consider a br
oader range of samples and diverse environmental conditions to
enhance the applicability of the model. Future studies should f
ocus on improving the model's generalizability, optimizing algo
rithms and automation of technologies, and exploring the applic
ation of these techniques in other related fields. Through these
efforts, further advancement of hyperspectral technology in cult
ural heritage conservation and other related areas can be achiev
ed.

6. CONCLUSION

This study has processed hyperspectral data using the Fractiona
l Order Differentiation (FOD) method, delving into the sensitiv
e orders and characteristic bands between spectral reflectance a
nd phosphate concentration in Mural Plaster under various conc
entration erosion conditions. Furthermore, we developed an FO
D-PLSR model based on fractional order differential spectra, ai
med at precisely estimating the phosphate content in Mural Plas
ter.

(1) Trends in the Correlation Coefficients between FOD Fractio
nal Orders and Salt Content: Sensitive bands for phosphate cont
ent variations are identified at 408, 847, 874, 2064, and 2077 n
m (Table 2).

(2) Correlation between Spectral Reflectance and Phosphate Co
ncentration: The FOD method reveals the nonlinear characterist
ics and patterns of change in the hyperspectral data of mural sa
mples. The spectral sensitivity, controlled by the weighted orde
r, shows a trend of initially increasing and then decreasing in th
e number of spectral bands satisfying the 0.01 significance test
as the order increases from zero to one. The highest absolute va
lue of positive correlation occurs at 1.9 order, corresponding to
the 2077 nm band (Figure 8, Table 2), with its top six character
istic bands (2077, 2064, 1470, 402, 1786, and 1712 nm) showin
g high consistency with known sensitive bands. In contrast, the
characteristic bands extracted at integer orders (1.0 and 2.0) par
tially align at 1.0 order (874, 847, 848, 854, 850, 875, and 2239
nm) but differ significantly at 2.0 order (2239, 1180, 1605, 175
6, 2063, and 1793 nm).

(3) Performance Evaluation of the Dunhuang Mural Plaster Pho
sphate Content Prediction Model: When predicting the behavio
r of murals under unknown concentration erosion, the 1.9 order
model offers the highest inversion accuracy, achieving a maxi
mum R² value of 0.783 after cross-validation. Empirical tests d
emonstrate that the correlation of fractional order differentiatio
n exceeds that of integer order, with precision improvements of
9.36% and 39.57% over the integer orders (1.0 and 2.0) respect
ively. This study has successfully developed a hyperspectral fea
ture inversion model for predicting Mural Plaster phosphate co
ntent based on the FOD method, exhibiting high efficiency and
accuracy in the assessment of salt damage in Dunhuang murals
(Figure 9, Table 3).
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