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ABSTRACT:

In this paper, we present a two-stage method for roof wireframe reconstruction employing a self-supervised pretraining technique.
The initial stage utilizes a multi-scale mask autoencoder to generate point-wise features. The subsequent stage involves three steps
for edge parameter regression. Firstly, the initial edge directions are generated under the guidance of edge point identification. The
next step employs edge parameter regression and matching modules to extract the parameters (namely, direction vector and length)
of edge representation from the obtained edge features. Finally, a specifically designed edge non-maximum suppression and an
edge similarity loss function are employed to optimize the representation of the final wireframe models and eliminate redundant
edges. Experimental results indicate that the pre-trained self-supervised model, enriched by the roof wireframe reconstruction task,
demonstrates superior performance on both the publicly available Building3D dataset and its post-processed iterations, specifically
the Dense dataset, outperforming even traditional methods.

1. INTRODUCTION

Accurate 3D roof models play a crucial role in architectural ap-
plications and urban planning. Existing 3D roof reconstruction
methods are mainly divided into two categories: image-based
and point cloud-based (Wang and Zakhor, 2022). In this paper,
we focus on reviewing research related to point cloud-based re-
construction. In comparison to the 3D roof mesh representation
(constructed by vertices, lines, and faces) in surface reconstruc-
tion, a wireframe model (constructed by vertices and lines) is
a simplified representation of a complex 3D shape. It can be
generated from a set of point cloud data and can also serve as
a foundation for constructing mesh models. Due to the char-
acteristics of wireframe model representation, constructed by
vertices and lines, many researchers have transformed the prob-
lem of wireframe reconstruction into vertices identification and
edge linking problems.

With the widespread adoption of deep learning techniques and
considering that traditional methods may introduce accumu-
lated errors, some 3D wireframe reconstruction methods based
on end-to-end approaches have been proposed. A pioneering
work is Point2Roof (Li et al., 2022), which represents the first
end-to-end 3D roof modeling from airborne LiDAR point clouds.
It employs PointNet++ (Qi et al., 2017b) as a backbone to ex-
tract point-wise features and identifies a series of candidate corner
points. These candidate corner points are clustered into a set of
initial vertices, and a paired point attention module is proposed
to predict the final accurate vertices. However, this method is
tested on artificial roof datasets that encompass a limited num-
ber of 16 simple roof types. Following this trajectory, Wang et
al. (Wang et al., 2023) proposed a supervised-based baseline
to predict the final wireframe model on an urban-scale data-
set consisting of more than 160 thousand real-world buildings.
WireframeNet (Cao et al., 2023) utilizes the medial axis trans-
form technique to filter the original input point cloud. It integ-

rates the corner and edge points’ information and analyzes the
connectivity between the edge points to construct the complete
wireframe structure. However, the aforementioned methods are
supervised-based and require a large amount of labeled data.
Given the expensive cost of manually labeling data, SSL is pro-
posed to address this problem, wherein the model is trained with
supervisory signals generated from the data itself. In previous
work (Wang et al., 2023), a self-supervised baseline is proposed
to identify corner points and use a graph neural network to gen-
erate the wireframe model. In essence, this method also follows
the common route of corner identification and edge prediction,
which may fail in the presence of missing corner points and
sparsity in real-world datasets.

In this paper, we propose a pretrain-finetune pattern for 3D roof
wireframe reconstruction, aiming to address the limitations en-
countered in real-world datasets. Specifically, we adopt a mask
autoencoder as our self-supervised feature extractor. The input
point clouds are partitioned into several patches using farthest
point sampling and Ball Query techniques. These patches are
categorized into visible and invisible patches, and the visible
patches are fed into a mask autoencoder with a multi-scale fea-
ture mechanism to extract point-wise features. Subsequently,
these point-wise features are input into a specifically designed
edge point regression module to generate the initial direction
of the edge. The generation of this initial edge direction is de-
termined through an efficient 3D line fitting method. The out-
put, including edge point identification results and edge initial
direction, is then fed into the edge regression module to obtain
the edge’s equation, which comprises the direction vector and
length of the edge. More precisely, the edge parameter regres-
sion module is designed to parse the obtained edge features (in-
cluding edge confidence scores, edge length, direction vector,
and direction offset) by constructing multiple Multilayer Per-
ceptron (MLPs) to regress distinct parameterized edges. Addi-
tionally, bipartite edge matching and edge non-maximum sup-
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pression strategies are employed to generate accurate wireframe
models.

Our main contributions can be summarized as follows:

(1) To the best of our knowledge, our proposed method is the
first to utilize a pretrain-finetune strategy for edge regression
under the guidance of edge point identification. The pre-trained
self-supervised model, when combined with the downstream
task of roof wireframe reconstruction, demonstrates superior
performance.

(2) We introduce a novel method for parameterized edge ex-
traction that leverages edge point information to establish the
initial edge’s direction vector. This initial direction vector, com-
bined with edge direction, direction offset, and edge length,
is used iteratively to generate wireframe drafts. Subsequently,
edge-based non-maximum suppression is applied to eliminate
redundant edges.

2. RELATED WORK

2.1 SSL for point clouds based on mask recovery

The fundamental concept underlying mask recovery in SSL
methods involves acquiring point cloud representations through
the reconstruction of corrupted point clouds, with the aim of re-
covering the original structure to the greatest extent possible.
For example, Point-BERT (Yu et al., 2022) randomly masks
a portion of the input point cloud and employs a BERT-style
transformer to reconstruct the invisible tokens. This recon-
struction is performed under the supervision of visible tokens
obtained from a pre-trained discrete Variational Autoencoder
(dVAE). However, this approach tends to overly depend on data
augmentation. To address this issue, Point-MAE (Pang et al.,
2022) introduces a unified framework of mask autoencoder. It
utilizes the standard transformer as the backbone, featuring an
asymmetric encoder-decoder architecture to effectively recover
the masked data with a high ratio. In contrast, Occupancy-MAE
(Min et al., 2023) is proposed to reconstruct masked voxels
by relying only on a small number of visible voxels. This is
achieved by combining a range-aware random masking strategy
and incorporating a pretext task involving occupancy prediction
techniques, particularly when the input point clouds are divided
into multiple voxels. Continuing along this path, we employ the
mask recovery-based autoencoder as our self-supervised feature
extractor.

2.2 Wireframe reconstruction

The detection of corner points, akin to 3D key points, plays
a crucial role in capturing and representing structural inform-
ation. In previous work, USIP (Li and Lee, 2019) utilized a
feature proposal network to obtain features for key points along
with their corresponding transformation pairs. The generated
key points underwent optimization by minimizing the distances
between detected key points in pairs of point clouds. Li et
al. (Li et al., 2022) employed point-wise binary classification
and point clustering techniques to identify initial vertices. The
PointNet backbone was then utilized to extract vertex features
and perform offset regression. A subsequent refinement pro-
cess was applied to precisely determine the locations of the
initial vertices, resulting in the generation of accurate vertex
representations. Jiang et al. (Jiang et al., 2023) introduced a
double-flow structure for extracting both semantic and offset

information. These informative features were then leveraged
to identify high-quality interest regions. Deep estimators were
subsequently employed to predict corner point proposals within
each interest region, facilitating the accurate detection of corner
points. It is noteworthy, however, that these methods belong to
the category of supervised learning approaches, necessitating
a substantial number of annotated point clouds. Furthermore,
these methods have primarily been applied to synthetic datasets
and regular geometric, close-range objects.

Additionally, alternative methods based on different patterns
have been proposed. LC2WF (Yicheng Luo and Bao, 2022) in-
troduced a Line-Patch transformer-based network to construct
building wireframes by extracting junctions and connectivities
from line cloud datasets. Ma et al. (Ma et al., 2022) presented
a deep spatial gestalt model designed to infer the relationship
between visible and invisible cues of 3D structure. Further-
more, some research has focused on achieving the goal of gen-
erating wireframes by extracting line segments. In particular,
there are works dedicated to segmenting the input point cloud
into a collection of facets to extract line segments from large-
scale point clouds (Lin et al., 2017) (Lin et al., 2015). In con-
trast to these approaches, our proposed roof wireframe recon-
struction method omits the corner detection steps and instead
employs a regression approach for the edges. This is achieved
under the guidance of the initial direction generation of the edge
points.

3. OUR PROPOSED METHOD

3.1 Overview of experimental datasets

We present a comprehensive description of the publicly avail-
able Building3D dataset and its post-processed Dense dataset.
We utilize this description to elucidate the motivation behind
constructing a Dense dataset and introducing our proposed ap-
proach. As depicted in Fig.1(a), we randomly selected four
roof datasets from the public Building3D dataset (Wang et al.,
2023). However, this selection revealed certain issues, includ-
ing noise and missing corner points, denoted by red-dotted cir-
cular shapes. The conventional wireframe reconstruction pat-
tern of ”corner detection + edge prediction” encountered chal-
lenges under these conditions. In response to this, we curated
a Dense dataset, as illustrated in Fig.1(b), with the aim of ob-
serving the performance disparity of our proposed method on
both dataset versions.

Figure 1. Characterization of experimental datasets: (a)
illustration of the public Building3D dataset and (b) its

post-processed Dense dataset.
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Figure 2. Workflow of our proposed methodology.

3.2 Workflow of our proposed methodology

Self-supervised feature extractor and edge point regression
module: The Point-MAE (Pang et al., 2022) serves as a self-
supervised feature extractor backbone, facilitating the extrac-
tion of multiple-scale features. For instance, as depicted in
the upper-left corner of Fig.2, the grey points and circles rep-
resent the output derived from farthest point sampling (FPS)
and Ball Query operations on the original input point cloud.
The patches—Patch 1, Patch 2, and Patch 3—illustrate point
sets at varying scales generated by applying the Ball Query op-
eration to the original input. Subsequently, a random mask-
ing strategy is employed on the acquired point sets at differ-
ent scales, segregating them into visible and invisible segments.
The unmasked portions are then utilized as input to an encoder-
decoder structure, facilitating the extraction of point-wise fea-
tures. The point-wise features are fed into an edge point re-
gression module to derive the identification results for the edge
points. Subsequently, an efficient 3D line fitting strategy is ap-
plied to extract the edge features.

Edge regression and matching strategies: The purpose of the
edge regression module is to extract the parameters defining
edge representation from the acquired edge features. This mod-
ule comprises four dedicated MLPs, each operating on specific
tensors (Edge confidence scores, Direction offset, Edge direc-
tion, and Edge length) to regress their corresponding edge para-
meters. Initially, an Edge Confidence Scores MLP is employed
to derive confidence scores for the edges. Subsequently, the ori-
entation of the edge is decomposed into three components along
the XYZ axis. This is achieved using a Direction Offset MLP
to predict three component values on the XYZ axis. Finally,
an Edge Length MLP is utilized to predict the residual offsets
from candidate points to midpoints of the edges. Moreover,
the conventional algorithm employed for solving Bipartite Edge
Matching is the Hungarian algorithm (Zhang et al., 2016). Nev-

ertheless, these methods prove unsuitable for our case, given the
absence of a corner detection process in the 3D wireframe re-
construction. A novel edge similarity is formulated based on
three distinct factors: the distance between the two lines, edge
length, and edge direction.

(1) The distance between the two lines. The Hausdorff Edit
Distance (HED) (Fischer et al., 2015) is employed for pairwise
node matching. Each node in one graph is compared with every
node in the other graph, akin to comparing subsets of a met-
ric space using the Hausdorff distance. For example, we have
defined two sets of edges, denoted as A and B, where each edge
in these sets is represented by Ai and Bj . The points belong-
ing to these edges are denoted as Ai and Bj . The Hausdorff
distance is defined with respect to the metric dis(Ai,Bj) in the
following manner:

H(A,B) = max(max
Ai∈A

min
Bj∈B

dis(Ai,Bj),

max
Bj∈B

min
Ai∈A

dis(Ai,Bj))
(1)

(2) Edge length. The proximity between two edges is quantified
by the ratio of the minimum distance (dmin) between the end
points of the two edges to the length of the shorter segment.
This is defined as follows:

pro(Ai,Bj) = 1−min(1,
dmin

min(lenAi
, lenBj )

) (2)

(3) Edge direction. Cosine similarity (Hoe et al., 2021) is em-
ployed to assess the directional similarity between two edges,
and it is defined as follows:

sim(Ai,Bj) =
< Ai,Bj >

||Ai|| · ||Bj ||
(3)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-239-2024 | © Author(s) 2024. CC BY 4.0 License.

 
241



The edge similarity is expressed by combining Eqs. (1), (2),
and (3), and it is defined as follows:

Edgessim = α ·H(A,B) + β · sim(Ai,Bj) + γ · pro(Ai,Bj)
(4)

Here, α, β, and γ represent the balancing coefficients. In our
experiment, these coefficients are set to α = 2, β = 0.5, and
γ = 0.5, respectively. The smaller the value in Eq. (4), the
greater the similarity between the two edges.

Edge Non-Maximum Suppression: The obtained edge sim-
ilarity representation and predicted edge confidence scores are
amalgamated to function as inputs for eliminating redundant
edges. Firstly, all edges are sorted in descending order based
on confidence scores. Next, the edge similarity function is con-
structed, and a threshold is set to select similar edges. Thirdly,
an empty list is initialized to store the selected candidate edges.
Edges with confidence scores, starting from high to low, are
iteratively added to the list if they meet the threshold criteria.

3.3 Loss function

The overall loss of the entire framework comprises three com-
ponents: the self-supervised feature extractor module, edge
point regression module, and edge regression and matching
modules. Self-supervised feature extractor loss: It is com-
puted using the Chamfer distance (Pang et al., 2022). Edge
point regression and edge length losses: We present a illus-
trative example, as depicted in Fig.3, to elucidate our design of
the edge point loss. Let any point in a point cloud be denoted
as p; the distances between this point p and its neighboring
edges (Line1, Line2, Line3, and Line4) are marked as d1, d2,
d3, and d4, respectively. Assuming the distance between any
point p and the projection point in Line1 is the shortest. In
three-dimensional space, the points within the shortest distance
are distributed on the surface of a sphere, such as a marked point
termed as a Candidate point. Additionally, besides ensuring that
the distance between any point p and the projection point is the
shortest, there is a need to minimize the distance between a
candidate point and the projection point. The L1-norm distance
loss (He et al., 2017) is employed to enforce these constraints
and optimize edge point regression and edge length. Edge con-

Figure 3. Illustration of the edge point regression loss.

fidence scores and edge direction losses: The optimization of
predicted edge confidence scores and edge direction is achieved
through the utilization of cross-entropy and cosine similarity
loss functions, respectively.

Overall edge similarity loss: The edge similarity loss is com-
puted by combining the aforementioned self-supervised loss,

edge point loss, edge length, edge confidence scores, and edge
direction loss with different multiplication factors, respectively.

4. EXPERIMENTS

4.1 Details of the experimental datasets

In this experimental section, the roof dataset utilized is primar-
ily categorized into two versions: the Building3D dataset
(Wang et al., 2023) and the Dense dataset. The generation of
the Dense dataset was executed using CloudCompare software,
facilitating the production of a dense point representation de-
rived from the Building3D dataset. This was done to assess the
performance difference of the proposed method on both Dense
datasets without missing corner points and Building3D. The
primary distinction between the Dense and Building3D data-
sets lies in the point density and the presence of missing corner
points. The Dense dataset maintains uniform point density
throughout, whereas the Building3D dataset may exhibit vari-
ations and lack some points. Specifically, the Dense and the
Building3D datasets consist of 5,698 training point clouds and
583 testing point clouds.

4.2 Implementation details

During the SSL pipeline, we employ the AdamW optimizer
with a learning rate set to 0.001 and train for 1000 epochs. The
pre-training phase of our model consists of 300 epochs with a
batch size of 128. In the fine-tuning process, the batch size is set
to 2048 points. The point-wise features obtained from the SSL
pipeline are then fed into the edge point identification module.
These features, along with 128 query points and 64 query em-
beddings, are input into the decoder to obtain edge features with
256 channels. All code and models are trained using an RTX
A6000 GPU with 48GB of memory.

4.3 Evaluation metric

The precision and recall of corners and edges are evaluated on
the aforementioned three roof datasets. The metric is the same
as (Wang et al., 2023), (Li et al., 2022). The average precision
(AP) and recall (AR) for the predicted corners are calculated
by considering the sets of predicted labels G and ground truth
labels Q. The AP and AR are formulated as follows:

AP =
TP

TP + FP
, AR =

TP

TP + FN
,

F1 =
2 ∗AP ∗AR

AP +AR

(5)

where TP ∈ |G ∩Q|, FP ∈ |G ∩Q| and FN ∈ |G ∩Q|.
The symbols CP and EP, as well as CR and ER, have the same
formulation as the previously mentioned AP and AR, respect-
ively, and represent the precision and recall of corner points
and edges. The symbols | ∗ | and |∗| denote the cardinality of a
given set and the complementary set of a given set. In addition,
we also calculate the ACO which is the average offset between
predicted corners and ground-truth corners.

4.4 Visual and comparative experiments

We demonstrate the iterative process of our proposed method
using the Dense and Building3D datasets, as depicted in Fig.4
and Fig.5, respectively. In both Fig.4 and Fig.5, the first row
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Figure 4. Results from the iterative step in our proposed method on the Dense dataset.

Figure 5. Results from the iterative step in our proposed method on the Building3D dataset.
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Table 1. Comparative analysis of methodological performance on the Building3D Dataset.

Method (Building3D (Wang et al., 2023)) ACO CP//CR F1 EP//ER F1
PointNet* (Qi et al., 2017a) 0.36 0.71//0.50 0.59 0.81//0.26 0.39
PointNet++* (Qi et al., 2017b) 0.34 0.79//0.52 0.63 0.84//0.33 0.47
RandLA-Net* (Hu et al., 2020) 0.35 0.70//0.60 0.65 0.67//0.16 0.25
DGCNN* (Phan et al., 2018) 0.32 0.73//0.58 0.65 0.81//0.30 0.44
PAConv* (Xu et al., 2021) 0.33 0.75//0.57 0.65 0.85//0.31 0.45
Stratified Transformer* (Lai et al., 2022) 0.38 0.72//0.51 0.62 0.75//0.22 0.34
Point2Roof (Li et al., 2022) 0.30 0.66//0.48 0.56 0.71//0.26 0.38
FG-Net* (Liu et al., 2022) 0.32 0.77//0.64 0.70 0.84//0.38 0.52

Supervised-based

Building3D (supervised) (Wang et al., 2023) 0.26 0.89//0.66 0.76 0.91//0.46 0.61
Point-M2AE* (Zhang et al., 2022) 0.26 0.88//0.69 0.77 0.90//0.31 0.46
Point-MAE* (Pang et al., 2022) 0.27 0.75//0.69 0.72 0.76//0.22 0.34
Building3D (self-supervised) (Wang et al., 2023) 0.25 0.83//0.70 0.76 0.78//0.37 0.50Self-supervised-based
Our proposed method (Dense) 0.03 0.95//0.89 0.92 0.88//0.91 0.89
Our proposed method (Building3D) 0.04 0.86//0.92 0.89 0.72//0.87 0.79

Figure 6. Comparative analysis of methodological performance on the Building3D Dataset.

Figure 7. Qualitative comparisons among three conventional approaches, two affiliated deep learning methods, and our proposed
method.
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illustrates the original point cloud, while the second row dis-
plays the results of edge point identification. Proceeding to
the third row, we provide an illustration depicting the gener-
ation of initial direction based on the outcomes of edge point
detection. The fourth row presents the Non-Maximum Suppres-
sion (NMS) results processed through our proposed edge NMS
method. The fifth and sixth rows represent the ground truth
and the wireframe results of our reconstruction, respectively.
We also evaluate the performance of our proposed method on
the Building3D dataset using two different pretrained models
on the Dense and Building3D datasets, comparing it with both
non-transformer and transformer-based supervised learning, as
well as other SSL approaches, as illustrated in Table.1 and
Fig.6, respectively. The symbol ”*” denotes that the method
is utilized as a feature extractor to extract point-wise features,
followed by the corner detection and edge prediction modules
for wireframe reconstruction, as reported in (Wang et al., 2023).
The experimental results demonstrate that our proposed method
on the Dense dataset exhibits a significant performance mar-
gin compared to the baseline provided by Building3D (Wang
et al., 2023). The metrics CR and ER show increases of 19%
and 54% (Building3D: 22% and 50%), respectively, with cor-
responding F1 scores showing improvements of 16% and 39%
(Building3D: 13% and 29%) on the Building3D dataset. Fur-
thermore, the ACO distance has significantly decreased. As il-
lustrated in Fig.6, the red and blue dotted boxes indicate that
higher values correspond to better performance in metrics such
as CP, CR, F1 scores of corners, EP, ER, and F1 scores of edges,
while lower values of ACO signify better results. These remark-
able improvements can be attributed to the guidance provided
by the edge point regression and edge initial directions in our
proposed method.

Furthermore, we conduct visual comparisons with several ex-
perimental methods, including three traditional approaches:
2.5D Dual Contouring (Zhou and Neumann, 2010), City3D
(Huang et al., 2022), and KSR (Bauchet and Lafarge, 2020).
Additionally, we compare against two recent deep learning
methods, PC2WF (Liu et al., 2021) and NerVE (Zhu et al.,
2023), as illustrated in Fig.7. Compared with two deep
learning-based methods, our reconstruction results achieve the
most accurate representation of the roofs, as evidenced by the
visualization results. Our reconstruction outputs are in the form
of wireframes, which can be further processed by filling each
face of the wireframe and assigning specific height values to
generate the faces. This process enables us to convert the wire-
frames into mesh format. Such conversion provides a clear
advantage when compared with the reconstruction results ob-
tained from traditional methods. It is evident upon observation
that the reconstruction results achieved by our proposed method
surpass those of other compared methods, encompassing both
traditional and related deep learning approaches.

5. CONCLUSION

This paper introduces a two-stage SSL method for the recon-
struction of 3D roof wireframes. The proposed approach con-
sists of four key components: a self-supervised feature ex-
tractor, an edge point regression module, edge regression and
matching modules guided by edge initial direction, and an edge
Non-Maximum Suppression module, aimed at eliminating re-
dundant edges to achieve an accurate wireframe model. Not-
ably, we incorporate an efficient edge point regression loss to
identify the distribution of edge points and ensure the accuracy
of the initial edge direction. Subsequently, parameterized edges

resulting from this process undergo bipartite edge matching us-
ing the designed edge similarity algorithm. Experimental res-
ults demonstrate the superiority of our approach over state-of-
the-art methods in terms of reconstruction performance on both
Dense and Building3D datasets. Furthermore, the proposed
method can be extended to other domains within architecture
and urban planning where labeled data is limited, enabling the
generation of more precise and diverse models.
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