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Abstract

Underwater mapping is vital for engineering applications and scientific research in ocean environments, with coral reefs being
a primary focus. Unlike more uniform and predictable terrestrial environments, coral reefs present a unique challenge for 3D
reconstruction due to their intricate and irregular structures. Traditional 3D reconstruction methods struggle to accurately capture the
nuances of coral reefs. This is primarily because coral reefs exhibit a high degree of spatial heterogeneity, featuring diverse shapes,
sizes, and textures. Additionally, the dynamic nature of underwater conditions, such as varying light, water clarity, and movement,
further complicates the accurate geometrical estimation of these ecosystems. With the rapid advancement of photogrammetric
computer vision and deep learning technologies, there are emerging methods that have potential to enhance the quality of its 3D
reconstruction. In this context, this study formulates a coral reef reconstruction workflow that incorporates these cutting-edge
technologies. This workflow is divided into two core stages: sparse reconstruction and dense reconstruction. We conduct individual
summaries of the relevant research efforts in these stages and outline the available methods. To assess the specific capabilities of
these methods, we apply them to real-world coral reef images and conduct a comprehensive evaluation. Additionally, we analyze the
strengths and weaknesses of different methods and identify areas for improvement. We believe this study offers valuable references
for future research in underwater mapping.

1. Introduction

More than 70% of the Earth’s surface is covered by water, pre-
dominantly oceans, presenting considerable scope for the ad-
vancing technologies dedicated to water observation. Affected
by climate change and human activities, marine ecosystems, es-
pecially coral reef ecosystems, are facing significant challenges
(Hughes et al., 2017). Coral reefs represent the most remark-
able ecosystems in warm tropical and subtropical oceans. Al-
though they cover less than 0.1% of the ocean floor, their fish
communities encompass approximately one-third of the recog-
nized marine species (Bowen et al., 2013). To enhance the un-
derstanding, monitoring, and protection of coral reefs, it is es-
sential to use advanced technology to map, monitor and model
coral reef habitats.

In coral reef observation, various approaches and platforms are
employed, including satellite sensing, aerial remote sensing,
vessel-based sonar and LiDAR, underwater vehicle-based ima-
ging, and manual local in-situ underwater surveys (Collin et
al., 2018, Price et al., 2019, Rossi et al., 2020, Character et
al., 2021). Satellite and aerial remote sensing techniques offer
a swift method for acquiring information in large-scale coral-
monitoring applications (Casella et al., 2017). However, they
fall short in capturing detailed and accurate observations of the
intricate structures within coral reefs. In contrast, manual meas-
urements demand substantial time investment, imposing con-
straints on the spatial and temporal scales. In terms of sensors,
while sonar and LiDAR improve the acquisition of geometric

information of benthic habitats, they face challenges in acquir-
ing color information. The rise of vision-based underwater ima-
ging enables the collection of higher-resolution data, unaffected
by surface refraction of water, facilitating precise 3D recon-
struction of real seabed coral reefs at a low cost (Rossi et al.,
2020, Zhong et al., 2023). It provides a foundation of high-
precision, high-resolution information crucial for subsequent
research, and is becoming the centerpiece among various sensors
(Zhong et al., 2023).

Over the past decade, thanks to the rapid advancements in com-
puter vision technologies such as Structure-from-Motion (SfM)
and Multi-View Stereo (MVS), underwater mapping based on
photogrammetric computer vision has been extensively stud-
ied for coral reef observation. Utilizing high-resolution images
captured by vehicles or divers, these techniques enable 3D ob-
servations with precision at the centimeter or even millimeter
level (Guo et al., 2016). These approaches provide automated
image processing tools, which facilitate the generation of fine
3D models that accurately represent the intricate spatial struc-
tural information of coral reefs (Zhong et al., 2023). However,
due to the unique characteristics of coral reef environments and
the limitations of current algorithms, there is still a need for im-
provements in the precision, robustness, and efficiency of un-
derwater mapping. This is particularly true in light of the rapid
advancements in learning-based image processing.

The data for this paper was collected from the shallow-water
coral reefs in the vicinity of Moorea Island in French Polyne-
sia. The island is surrounded by approximately 10 enclosed
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Figure 1. The overall 3D reconstruction workflow.

coral reefs, making it an ideal location for coral monitoring in
the South Pacific. This research utilizes seabed images captured
by an underwater camera system. To achieve high-resolution
underwater mapping, we explore advanced deep learning and
computer vision technologies. Specifically, we have established
a workflow for coral reef 3D reconstruction based on under-
water images, focusing on both sparse and dense reconstruc-
tion. We review and summarize the currently available meth-
ods, evaluating them qualitatively and quantitatively through
comparative experiments. Additionally, we discuss their suit-
able application scenarios in light of their characteristics. We
believe this study provides essential insights for future research
in underwater mapping.

2. 3D Reconstruction Workflow with Deep Learning

Our workflow for high-resolution 3D reconstruction of coral
reefs is illustrated in Figure 1 and mainly comprises four main
stages: data collection and preparation, sparse reconstruction,
dense reconstruction, and further processing. The first stage
mainly involves the acquisition of high-resolution underwater
images and auxiliary data. The images should be clear and ex-
hibit overlap between different perspectives, as this forms the
basis for 3D reconstruction. The auxiliary data, while not oblig-
atory, may encompass measurements such as Ground Control
Points (GCPs) utilized for georeferencing or camera poses de-
rived from an Inertial Measurement Unit (IMU). Sparse recon-
struction applied photogrammetric computer vision techniques
to extract a set of sparse 3D points from input images. These
3D points correspond to feature points or keypoints within the
scene. Through sparse reconstruction, image poses and the ac-
curate structural information of the scene can be estimated sim-
ultaneously, even when dealing with unordered and uninformat-
ive images. The 3D points obtained from sparse reconstruction
are sparse and insufficient to reflect the detailed structure of the
scene. Therefore, it is necessary to perform dense reconstruc-
tion to generate denser 3D points. This process ultimately res-
ults in a dense point cloud or mesh model, facilitating the dense
representation of 3D information within the scene, such as at
millimetre-level resolution. Finally, based on specific require-
ments, different 3D products can be generated. For instance,
texture models can be created through texture mapping, or or-
thomosaics can be generated through orthorectification. In this
workflow, sparse and dense reconstruction play a crucial role
in the accuracy, robustness, reliability, and visual effectiveness
of 3D reconstruction. They constitute the core steps of the en-
tire workflow, and are also the focal areas of photogrammetric
computer vision and deep learning. Therefore, the following
sections will provide detailed descriptions of these two com-
ponents separately.

2.1 Sparse Reconstruction

At present, one of the most widely used frameworks for sparse
reconstruction is the Structure-from-Motion (SfM) technology,

which offers fast, low-cost and easy 3D surveys, particularly ap-
plied successfully in high-resolution topography for geoscience
applications. There exist various SfM strategies, among which
incremental SfM stands out as one of the most popular ap-
proaches, demonstrating suitable robustness, accuracy, and ef-
ficiency. Incremental SfM initiates processing with two im-
ages and gradually incorporates new images while continually
optimizing (Schonberger and Frahm, 2016). This paper ad-
opts the incremental SfM framework, combined with advanced
photogrammetric computer vision and deep learning technolo-
gies, to establish a sparse reconstruction method for coral reefs.
As illustrated in Figure 2, the method primarily comprises two
stages: correspondence search and incremental reconstruction.

Figure 2. Structure-from-Motion with deep learning.

The first stage involves correspondence search, which identifies
projections of the same points in overlapping images. For each
coral reef image, the first step is to extract local features which
are designed to be invariant under radiometric and geometric
changes, ensuring their unique recognition across different im-
ages. Subsequently, feature matching is applied to discern im-
ages capturing the same area and establish feature correspond-
ences across the images. The second stage is incremental recon-
struction, utilizing feature correspondences to estimate the 3D
relationships between 2D images. Building upon the outcomes
of image matching, the inter-image overlap relationships are
generated, and two adjacent images are selected for reconstruc-
tion initialization. Then, the remaining images are registered
to the current model by using feature correspondences to trian-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024 | © Author(s) 2024. CC BY 4.0 License.

 
248



gulated points from previously registered images. The newly
registered images not only encompass the points already ob-
served but also contribute to the addition of new points through
triangulation. However, due to the fact that image registration
and triangulation are separate procedures, errors inevitably ex-
ist, leading to continuous error propagation and accumulation,
which could potentially result in drift and failure of SfM recon-
struction. Therefore, it is essential to optimize these observed
values. Bundle adjustment (Triggs et al., 2000) is consequently
used to minimize reprojection errors by jointly refining camera
and point parameters through a non-linear optimization process.
Through iterative computation based on the above process and
outlier filtering, the scene structure and poses of registered im-
ages can be estimated accurately.

In the above sparse reconstruction process, the procedures of
pose estimation, triangulation, and bundle adjustment have ma-
tured in research. The current major challenge lies in image
matching, specifically in obtaining a sufficient quantity of ac-
curate and reliable corresponding features. Due to the intricate
and complex structure of coral reefs, the texture in captured im-
ages is more disorderly compared to typical images, which un-
doubtedly presents a considerable challenge for image match-
ing. The process can be further divided into feature extraction
and matching, as shown in Figure 2. For feature extraction,
traditional hand-crafted local feature methods are based on a
two-stage pipeline, first detecting keypoints and then generat-
ing local descriptors for each keypoint. Scale-Invariant Feature
Transform (SIFT) (Lowe, 2004) is the most representative and
widely applied method, capable of extracting keypoints with
scale and rotation invariance from images. There are also meth-
ods such as SURF (Bay et al., 2006) and KAZE (Alcantarilla
et al., 2012). These methods utilize predefined criteria to ex-
tract points with certain characteristics from images. However,
as these criteria may not be applicable to different scenarios, ad-
justments to algorithm parameters are often required. With the
advancement of deep learning technology, many studies have
attempted to overcome these limitations using learning-based
approaches. Early methods such as LIFT (Yi et al., 2016)
utilize keypoint labels obtained by existing hand-crafted meth-
ods to enhance the repeatability of keypoints by optimizing the
objective functions. Convolutional neural network-based ap-
proaches emerged next, such as SuperPoint (DeTone et al.,
2018). It uses a fully convolutional model to extract pixel-level
interest point locations and associated descriptors from the in-
put image, and also applies self-supervised learning to improve
the generalizability of the model. R2D2 (Revaud et al., 2019)
uses a Siamese decoding structure to generate repeatable and
reliable features. DISK (Tyszkiewicz et al., 2020) employs
reinforcement learning to optimize the model for more correct
matches. ALIKED (Zhao et al., 2023) adopts a deformable
descriptor head that learns the deformable positions of support-
ing features for each keypoint, thereby outputting robust and
accurate descriptors. There are also detector-free local feature
matching methods like LoFTR (Sun et al., 2021), but they can-
not be directly used in modern SfM systems because they do
not explicitly extract keypoints and descriptors.

For feature matching, the difficulty lies in how to accurately
match the features and minimize the number of mismatches.
The classic ratio-test (Lowe, 2004) matches features based
on the similarity between descriptors. While this method is
simple and effective, it often results in a large number of out-
liers, leading to registration failure. To achieve robust feature
matching, researchers have studied various strategies. On the

one hand, robust outlier filters are designed to eliminate outliers
while obtaining more correct matches. For example, AdaLAM
(Cavalli et al., 2020) takes the keypoint positions and corres-
ponding descriptors as input and achieves robust matching us-
ing an adaptive strategy. On the other hand, methods based on
deep learning have been utilized, such as SuperGlue (Sarlin et
al., 2020), which takes images and features as input, employ-
ing graph neural networks and attention mechanisms to obtain
accurate matches.

2.2 Dense Reconstruction

Based on the camera poses estimated by sparse reconstruction,
dense reconstruction techniques can be applied to generate a
dense point cloud model or mesh model of the scene, as shown
in Figure 3. For coral reefs, the primary significance of dense
reconstruction is to recover the fine structure of coral reefs. Due
to the presence of structures like tentacles in coral reefs, images
often encounter issues such as occlusion and texture repetition,
imposing high demands on dense reconstruction. Over the past
two decades, many excellent algorithms have emerged, ran-
ging from traditional multi-view stereo (MVS) to deep learning-
based MVS, and more recently, rapidly developing methods
based on Neural Radiance Fields (NeRF). These methods vary
in terms of accuracy, robustness and efficiency. The ongoing
advancements in this field exemplify the continuous evolution
and innovation in 3D reconstruction techniques, thereby open-
ing up new possibilities for underwater mapping.

Figure 3. Dense reconstruction with deep learning.

The commonly used traditional MVS adopts a depth-map-based
strategy, obtaining depth maps corresponding to images through
multi-view matching. Subsequently, it fuses all the depth maps
to ultimately generate a dense 3D point cloud. This approach is
flexible, concise, and suitable for reconstructing the 3D struc-
ture of large-scale scenes. It is a mature study and has been
widely applied. Taking COLMAP (Schonberger and Frahm,
2016) as an example, its key steps involve the cost computation
for multi-view matching. It uses bilateral weighted Normalized
Cross Correlation (NCC) to calculate the similarity between

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024 | © Author(s) 2024. CC BY 4.0 License.

 
249



image patches, thus obtaining matching costs. The optimiza-
tion methods are then applied to minimize the matching cost
for depth map generation.

Driven by deep learning technology, deep learning-based MVS
have emerged. In this category of methods, MVSNet (Yao et
al., 2018) is a pioneering approach that takes multi-view im-
ages and corresponding camera parameters as input to predict
depth maps for the corresponding images. Specifically, it di-
vides the images into one reference image and others as source
images. A differentiable homography warping operation is em-
ployed to build 3D cost volumes from 2D feature maps, en-
abling the integration of camera parameters in network training.
Ultimately, this results in the generation of a high-quality dense
depth map for the reference image. Finally, a high-quality dense
depth map of the reference image can be generated. There are
several derivative algorithms based on MVSNet, among which
Vis-MVSNet (Zhang et al., 2023) is one of the best in terms of
overall performance, using a coarse-to-fine strategy to achieve
multi view depth map estimation. An innovative aspect lies in
its consideration of pixel visibility. To mitigate the impact of
unmatched pixels, it generates an uncertainty map to estimate
per-pixel visibility. The uncertainty is used as a weighting guid-
ance, fusing the latent volume which is further regularized into
a probability volume and regresses to the final depth estimation.

Another category of methods that has emerged in recent years
is based on Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021). Unlike traditional 3D reconstruction methods, NeRF
methods can represent real-world complex geometry and ap-
pearance using a neural network, storing 3D scene information
in the parameters of the network. The typical input comprises
images with known poses, and the output is the weights of the
network. These methods are theoretically able to realize a finer
representation of the continuous scene. To address the slow
speed of NeRF, Instant-NGP (Müller et al., 2022) applied mul-
tiresolution hash encoding to reduce computational complexity
while maintaining accuracy. This approach also facilitates par-
allel implementation on GPUs, thereby significantly improving
efficiency. Nerfacto (Tancik et al., 2023) integrates improve-
ments from multiple previous methods, allowing the model to
balance accuracy and efficiency. With a modular design, it fa-
cilitates easy improvements in subsequent developments. Ad-
ditionally, it introduces the Python framework Nerfstudio, sup-
porting the output of results in the form of point clouds or mesh
models. There are methods specifically designed for multi-
view 3D reconstruction, such as Neuralangelo (Li et al., 2023),
which utilizes Instant-NGP as a neural Signed Distance Func-
tion (SDF) representation of the underlying 3D scene and is
optimized from multi-view image observations via neural sur-
face rendering. To enhance the effectiveness of multi-resolution
hash encoding, it uses numerical gradients to compute higher-
order derivatives, and a progressive optimization schedule is
adopted to recover structures at different levels of detail, ulti-
mately achieving high-quality surface reconstruction.

3. Experiments and Discussion

3.1 Research Data

The data used in this research is supported by the Moorea Island
Digital Ecosystem Avatar (IDEA) project, consisting of high-
resolution underwater coral reef images captured in the same
area in August 2018 and August 2019. Specifically, in 2018,
523 images were captured, and in 2019, 323 images were cap-
tured. The images were acquired along pre-planned routes, with

overlap rates between adjacent images mostly ranging from 70%
to 85%, enabling multi-view 3D reconstruction. The camera
system includes a PANASONIC LUMIX GH5S camera body
(resolution of 3680×2760 pixels) and a wide-angle lens Lumix
G 14 mm f/2.5.

3.2 Image Matching and SfM Reconstruction

This section focuses on the impact of different feature extrac-
tion and matching methods on image matching and SfM recon-
struction. In the comparative experiments, feature extraction
methods include SIFT (Lowe, 2004), SuperPoint (DeTone et
al., 2018), R2D2 (Revaud et al., 2019), DISK (Tyszkiewicz
et al., 2020), and ALIKED (Zhao et al., 2023), while fea-
ture matching methods include classic ratio-test (Lowe, 2004),
AdaLAM (Cavalli et al., 2020), and SuperGlue (Sarlin et al.,
2020).

For image matching, each feature extraction method is applied
to extract 8000 features from coral reef images. Subsequently,
ratio-test and AdaLAM are employed for feature matching. Ad-
ditionally, considering SuperGlue works particularly well with
SuperPoint (Sarlin et al., 2020), SuperPoint features are also
matched using SuperGlue. SuperGlue offers two pre-trained
weight models, with one tailored for indoor environments (re-
ferred to as SG (in)) and the other designed for outdoor settings
(referred to as SG (out)). The ratio-test is applied with a mutual
nearest neighbor check, and the ratio is set to 0.9. After prelim-
inary experimental analysis, we found that when there is sub-
stantial overlap and only minor translation or rotation is present
between a pair of images, various methods can generally obtain
a sufficient number of correct matches. However, significant
differences arise among different methods when the overlap is
low or there is a large rotation. Figures 4 and 5 illustrate the
results of image matching under two challenging scenarios.

As shown in Figure 4, when there is a low overlap between two
images, image matching becomes a challenging task. When
using the ratio-test for feature matching, some correct matches
can be obtained, but there are also many mismatches. While
a limited number of mismatches can be filtered out during re-
construction, an excessive amount is problematic. Particularly,
the matching results of SIFT and SuperPoint are not suitable for
reconstruction, whereas the performance of the other methods
is slightly better. When using AdaLAM, there is almost no ex-
istence of mismatches. SIFT features, due to a high error rate,
struggle to obtain correct matches, while the other four deep
learning-based local features, with the support of AdaLAM,
successfully achieve correspondence search, indicating the ef-
fectiveness of the AdaLAM algorithm in outlier filtering.

The scenario depicted in Figure 5 is markedly different, in-
volving approximately a 90-degree rotation between the two
images. It is evident that the use of deep learning-based fea-
tures fails to yield correct matches, primarily due to the regu-
lar CNNs lacking equivariance to rotation. Despite ALIKED’s
specific design to enhance rotational invariance, it proves insuf-
ficient for handling the current data. In contrast, SIFT demon-
strates significantly better results, generating a majority of cor-
rect matches and a small number of mismatches when using the
ratio-test. When employing AdaLAM, there are nearly no mis-
matches, and a lot of correct matches are obtained. Therefore,
in such cases, using SIFT is a more suitable choice. The SIFT
descriptor achieves rotation invariance by assigning a consist-
ent orientation to each keypoint based on local image proper-
ties. This is a capability lacking in current deep learning-based
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Data Feature SIFT SuperPoint R2D2 DISK ALIKED SuperPoint
Match RT Ada RT Ada RT Ada RT Ada RT Ada SG(in) SG(out)

2018

nImage 523 523 495 523 192 275 518 520 523 523 303 523
Feat 3739 3368 3088 2832 993 1953 3638 4112 2721 3084 3480 4111

nPoint 536k 364k 457k 369k 49k 128k 448k 515k 354k 401k 286k 552k
Track 3.65 4.83 3.34 4.01 3.87 4.2 4.20 4.15 4.02 4.02 3.68 3.89
Error 0.62 0.79 0.68 0.83 1.09 1.20 1.06 1.10 0.59 0.67 0.89 0.98

2019

nImage 323 323 312 316 190 286 312 315 317 317 290 321
Feat 3958 3625 2898 2735 1093 2210 3850 4293 2795 3217 3384 3275

nPoint 332k 234k 260k 208k 52k 145k 273k 310k 212k 246k 309k 334k
Track 3.85 4.99 3.47 4.14 3.99 4.35 4.4 4.36 4.16 4.13 3.17 3.14
Error 0.55 0.70 0.60 0.73 1.03 1.18 1.03 1.08 0.51 0.58 1.24 1.27

Table 1. Various metrics of the reconstruction results of different methods. ”RT” represents ratio-test, and ”Ada” represents AdaLAM.

Figure 4. Qualitative visual inspection of underwater image
matching with low overlap.

features and represents a crucial area for future research. As
for SuperGlue, in both sets of data, the indoor model is almost
unable to generate any matches, and the outdoor model only
produces mismatches. This is likely due to SuperGlue being a
supervised learning method, and its training data lacks scenes
similar to those in the given scenarios, and these scenarios are
inherently challenging, so their performance is poor.

For SfM reconstruction, we utilized the open-source software
COLMAP (Schonberger and Frahm, 2016) to implement in-
cremental reconstruction. The configuration for feature extrac-
tion and matching methods remains the same, and the num-
ber of features of each image is still limited to 8000. We per-
form reconstruction using the images collected from Plot18 in
2018 and 2019, respectively. Figure 6 shows the SfM recon-
struction results using SIFT features with AdaLAM, including
the point cloud of the scene and camera poses. To compare
and evaluate the effectiveness of SfM reconstruction, we calcu-
lated 5 metrics: nImage, Feat, nPoint, Track, and Error.
nImage represents the number of aligned images, Feat is the
average number of features successfully used for triangulation

Figure 5. Qualitative visual inspection of underwater image
matching with a large rotation.

per image, nPoint is the number of reconstructed 3D points
(1k=1000), Track is the mean repeat observation number of
3D point, and Error denotes the average reprojection error of
keypoints. The quantitative results are shown in Table 1.

Figure 6. Visualization of our SfM reconstruction results.

Overall, the comprehensive performance of SIFT is excellent.
Regardless of the matching method used, all images can be
successfully aligned, and the reprojection error is only slightly
larger than ALIKED. When using AdaLAM, both Feat and
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nPoint decrease, but Track increases, becoming the highest
among the methods. This indicates that AdaLAM can con-
nect more features of different images, making the reconstruc-
tion more stable. On the contrary, R2D2 performs the worst.
It has the fewest successfully aligned images in both datasets,
with the lowest values for Feat and nPoint. Even when using
AdaLAM, only about 2000 features are successfully matched,
and the reprojection error is also high. Among SuperPoint,
DISK, and ALIKED, ALIKED has a relatively good overall
performance. It not only has the highest number of success-
fully aligned images but also the smallest reprojection error.
This suggests that among deep learning-based feature methods,
ALIKED is more suitable for high-precision SfM reconstruc-
tion. DISK and SuperPoint are close in terms of nImage, but
DISK features have a higher Feat and Track. However, the
reprojection error of SuperPoint is slightly lower. As for the
results of SuperGlue, there is a notable distinction between the
indoor and outdoor models. Compared to non-learning meth-
ods, the indoor model performs poorly and struggles to align
all images. The outdoor model shows improvement, but the re-
projection error is relatively high, indicating less accurate fea-
ture matching. It is noteworthy that, compared to the ratio-test,
AdaLAM is relatively less accurate, while generally improving
matching robustness and increasing the number of repeated ob-
servations. It may match keypoints that are not the most accur-
ate correspondences but rather nearby keypoints. This is related
to the geometric assumptions within the algorithm, sacrificing
a bit of accuracy for better stability.

In summary of the above experimental results, SIFT stands out
as the most practical local feature method, showcasing excel-
lent precision and reliability. On the other hand, deep learning-
based methods currently face challenges in effectively hand-
ling coral reef image matching. Despite this, the progression
from early methods like SuperPoint to the recent ALIKED in-
dicates a continuous enhancement in reliability and accuracy.
Therefore, it is reasonable to anticipate the development of even
more outstanding methods in the future. As for feature match-
ing, AdaLAM exhibits remarkable robustness, significantly ad-
dressing issues related to excessive outliers and enhancing the
stability of SfM reconstruction.

3.3 Dense Reconstruction

Based on the accurately reconstructed camera poses derived
from sparse reconstruction, the intricate fine structure of coral
reefs can be estimated through dense reconstruction. This sec-
tion conducts comparative experiments on the three categories
of dense reconstruction methods mentioned in Section 2.2. The
first is traditional MVS, and we use the dense reconstruction
functionality in COLMAP (Schonberger and Frahm, 2016).
The second is deep learning-based MVS, and we employ Vis-
MVSNet (Zhang et al., 2023). The third is the recently pop-
ular method based on NeRF, and we use Instant-NGP (Müller
et al., 2022), Nerfacto (Tancik et al., 2023) and Neuralangelo
(Li et al., 2023). It should be noted that the direct outputs of
COLMAP and Vis-MVSNet are dense point clouds. As for
Instant-NGP and Nerfacto, they are not designed for generating
point clouds or mesh models, but it is still possible to get point
clouds by some means (Tancik et al., 2023). Neuralangelo, on
the other hand, can output mesh models directly. For the pur-
pose of visualization, here we use Poisson surface reconstruc-
tion (Kazhdan et al., 2006) to transform point clouds into mesh
models. Since the three NeRF-based methods applied here are
not suitable for large-scale scenes, we select a subset of images

(42 images) from a specific region for experiments. We adjust
the parameters for each method to obtain the best possible res-
ults, and the visualization of partial dense reconstruction results
is shown in Figure 7.

The results of COLMAP and Vis-MVSNet are similar, but Vis-
MVSNet produces relatively denser results, albeit with slightly
more noise, showcasing its commendable generalization. Mean-
while, COLMAP’s result appears overly smoothed. The res-
ults of Instant-NGP and Neuralangelo are the least satisfact-
ory in general. The point cloud obtained by Instant-NGP con-
tains many outliers, making it difficult to correctly reconstruct
a mesh model. On the other hand, the results of Neuralangelo
are excessively smooth, failing to capture the fine structure of
coral reefs, and the contrast of its mesh texture is abnormally
high. In comparison, Nerfacto’s result is significantly better,
generally able to reconstruct the intricate details of coral reefs,
especially the tentacles of the corals. However, there are still
quite a few outliers in the point cloud, leading to surface irreg-
ularities in the mesh model. While NeRF-based methods often
exhibit noise or over-smoothness in their results, indicating a
current limitation in effectively handling data noise and sug-
gesting a need for enhanced reliability in subsequent improve-
ments, they have already achieved acceptable results. With on-
going enhancements, it is anticipated that satisfying outcomes
will be achieved in the near future. Additionally, a major factor
contributing to poor performance is that the viewpoints of the
images are mainly downward-looking and lack side-view data.
NeRF captures 3D scene information by modeling the volumet-
ric scene as a continuous function that predicts the color and
opacity of any given 3D point. Lower image overlap implies
fewer corresponding 2D projections of 3D points across differ-
ent images. This results in fewer constraints in the NeRF op-
timization process, and inadequate information for NeRF to ac-
curately model the geometry and appearance of the underlying
scene. In practice, improving the quality of 3D reconstruction
can be achieved by increasing image overlap and coverage.

In 3D reconstruction, dense reconstruction has always been the
most time-consuming task. Therefore, we also test the execu-
tion time of different methods, where COLMAP is implemen-
ted in C++, and the other methods are implemented in Python.
Instant-NGP and Nerfacto are implemented using Nerfstudio
(Tancik et al., 2023). All experiments are conducted using an
NVIDIA Geforce RTX 3090 GPU. We test the time taken by
different dense reconstruction methods used in Figure 7, and the
results are shown in Table 2. Vis-MVSNet exhibits the fastest
speed, significantly outperforming other methods. Instant-NGP
and Nerfacto have similar runtime, while Neuralangelo is con-
siderably slower. The runtime of NeRF-based methods is dir-
ectly correlated with the number of training iterations set. Typ-
ically, a larger number of iterations result in better network fit-
ting, although the improvement becomes less pronounced over
time. As for how to better balance between effectiveness and
efficiency, further research is needed.

Method Time (second)
COLMAP 991

Vis-MVSNet 224
Instant-NGP 982

Nerfacto 921
Neuralangelo 34708

Table 2. The runtime in seconds for small-scale scenes.

In addition, we also test the runtime of COLMAP and Vis-
MVSNet in reconstructing large-scale scenes. We apply these
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Figure 7. Comparison of dense reconstruction results.

two methods for the dense reconstruction of the entire area. As
they are both depth map-based methods, the entire process can
be divided into three steps: I. Data preprocessing, II. Depth map
generation, and III. Fusion of depth maps to obtain point clouds.
The specific execution times are presented in Table 3. The
total time taken by Vis-MVSNet is significantly less than that
of COLMAP, mainly due to the time-consuming tasks involved
in the MVS process within COLMAP, like iterative computa-
tions. The most time-consuming step in Vis-MVSNet is also
depth map generation. Nevertheless, its preprocessing stage is
also resource-intensive, mainly due to the conversion of sparse
reconstruction results from COLMAP into a format suitable for
the network input. Overall, Vis-MVSNet achieves appropriate
results with excellent operational efficiency, while NeRF-based
methods demonstrate outstanding potential in fineness but come
with a longer processing time.

Data Step COLMAP Vis-MVSNet

2018

I 30 724
II 10364 1601
III 148 232

Total 10542 2557

2019

I 21 215
II 5131 983
III 108 70

Total 5260 1268

Table 3. The runtime in seconds for large-scale scenes.

In future practical applications, the reconstruction approach may
not necessarily rely on a specific method alone. Instead, it may
be beneficial to integrate the strengths and weaknesses of vari-
ous methods in accordance with the specific requirements of
the task, achieving a balance between effectiveness and effi-
ciency. For example, a coarse-to-fine strategy can be adopted
for large-scale underwater mapping. Specifically, after sparse
reconstruction, initial dense reconstruction of the terrain could
be rapidly achieved using deep learning-based MVS methods,
resulting in a preliminary dense model. Subsequently, based on
this model and task requirements, more densely sampled and
higher-resolution data could be collected in areas of interest,
such as coral reefs. Finally, fine-grained dense reconstruction
could be carried out using NeRF-based methods.

In summary, deep learning-based dense reconstruction methods
are not inferior to, and in some aspects even surpass, traditional
MVS in fineness and efficiency. This indicates that emerging

computer vision and deep learning technologies have achieved
remarkable advancements, with substantial room for improve-
ment. Looking ahead, these advancements hold the potential
to significantly advance the field of high-resolution underwa-
ter mapping, leading to more in-depth and comprehensive out-
comes.

4. Conclusions

In this paper, we take the coral reefs of Moorea Island as an
example and elaborate in detail on how current emerging pho-
togrammetric computer vision and deep learning technologies
can be applied in high-resolution underwater mapping, in re-
sponse to the limitations of traditional methods. Combining
the current research, we establish an improved workflow for
3D reconstruction of coral reefs. Delving into both sparse and
dense reconstruction, this paper conducts an analysis and sum-
mary of classical and state-of-the-art methods, elucidating how
to apply them concretely. Through experiments on actual coral
reef images, qualitative and quantitative evaluations of these
methods are performed in terms of accuracy, reliability, effi-
ciency, etc. Building upon this foundation, we analyze their
strengths and limitations, confirm the promising prospects of
cutting-edge methods, and propose feasible directions for im-
provement, providing outlooks for future research and applica-
tions.
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Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C.,
Beger, M., Bellwood, D. R., Berkelmans, R. et al., 2017.
Global warming and recurrent mass bleaching of corals. Nature,
543(7645), 373–377.

Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson surface
reconstruction. Proceedings of the fourth Eurographics sym-
posium on Geometry processing, 7, 0.

Li, Z., Müller, T., Evans, A., Taylor, R. H., Unberath, M., Liu,
M.-Y., Lin, C.-H., 2023. Neuralangelo: High-fidelity neural
surface reconstruction. Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 8456–8465.

Lowe, D. G., 2004. Distinctive image features from scale-
invariant keypoints. International journal of computer vision,
60, 91–110.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., Ng, R., 2021. Nerf: Representing scenes as
neural radiance fields for view synthesis. Communications of
the ACM, 65(1), 99–106.

Müller, T., Evans, A., Schied, C., Keller, A., 2022. Instant
neural graphics primitives with a multiresolution hash encod-
ing. ACM Transactions on Graphics (ToG), 41(4), 1–15.

Price, D. M., Robert, K., Callaway, A., Lo Lacono, C., Hall,
R. A., Huvenne, V. A., 2019. Using 3D photogrammetry from
ROV video to quantify cold-water coral reef structural com-
plexity and investigate its influence on biodiversity and com-
munity assemblage. Coral Reefs, 38, 1007–1021.

Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G.,
Cabon, Y., Humenberger, M., 2019. R2D2: repeatable and reli-
able detector and descriptor. arXiv preprint arXiv:1906.06195.

Rossi, P., Castagnetti, C., Capra, A., Brooks, A. J., Mancini,
F., 2020. Detecting change in coral reef 3D structure using un-
derwater photogrammetry: critical issues and performance met-
rics. Applied Geomatics, 12, 3–17.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A.,
2020. Superglue: Learning feature matching with graph neural
networks. Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 4938–4947.

Schonberger, J. L., Frahm, J.-M., 2016. Structure-from-motion
revisited. Proceedings of the IEEE conference on computer vis-
ion and pattern recognition, 4104–4113.

Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X., 2021. Loftr:
Detector-free local feature matching with transformers. Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 8922–8931.

Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T., Kristof-
fersen, A., Austin, J., Salahi, K., Ahuja, A. et al., 2023. Nerf-
studio: A modular framework for neural radiance field develop-
ment. ACM SIGGRAPH 2023 Conference Proceedings, 1–12.

Triggs, B., McLauchlan, P. F., Hartley, R. I., Fitzgibbon,
A. W., 2000. Bundle adjustment—a modern synthesis. Vision
Algorithms: Theory and Practice: International Workshop on
Vision Algorithms Corfu, Greece, September 21–22, 1999 Pro-
ceedings, Springer, 298–372.

Tyszkiewicz, M., Fua, P., Trulls, E., 2020. DISK: Learning local
features with policy gradient. Advances in Neural Information
Processing Systems, 33, 14254–14265.

Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L., 2018. Mvsnet:
Depth inference for unstructured multi-view stereo. Proceed-
ings of the European conference on computer vision (ECCV),
767–783.

Yi, K. M., Trulls, E., Lepetit, V., Fua, P., 2016. Lift: Learned in-
variant feature transform. Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part VI 14, Springer, 467–483.

Zhang, J., Li, S., Luo, Z., Fang, T., Yao, Y., 2023. Vis-
mvsnet: Visibility-aware multi-view stereo network. Interna-
tional Journal of Computer Vision, 131(1), 199–214.

Zhao, X., Wu, X., Chen, W., Chen, P. C., Xu, Q., Li, Z., 2023.
ALIKED: A Lighter Keypoint and Descriptor Extraction Net-
work via Deformable Transformation. IEEE Transactions on
Instrumentation and Measurement.

Zhong, J., Li, M., Zhang, H., Qin, J., 2023. Fine-Grained 3D
Modeling and Semantic Mapping of Coral Reefs Using Photo-
grammetric Computer Vision and Machine Learning. Sensors,
23(15), 6753.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024 | © Author(s) 2024. CC BY 4.0 License.

 
254




