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Abstract: 
 
Underwater photogrammetry is often hampered by chromatic aberration, leading to degraded 2D and 3D products. This study 
investigates the effectiveness of various color enhancement methods in addressing these challenges. 
Theoretical considerations indicate that light penetration depth varies inversely with wavelength, causing underwater images to exhibit 
a blue or green cast with increasing depth. Color enhancement techniques can restore natural colors by compensating for this spectral 
attenuation. Additionally, scattering, caused by light reflected by particles in the water, can introduce haze into underwater images. 
Color enhancement can mitigate scatter and improve image clarity. In this contribution, to quantitatively evaluate color enhancement 
methods, we compare original images with images processed using gray-world assumption methods and physical methods that account 
for the physical properties of light underwater. Using artificial intelligence (AI) for underwater image color enhancement, a data-driven 
approach was also employed. These methods were applied to a case study concerning a Roman Navis Lapidaria shipwreck carrying 
five monumental cipollino marble columns at a depth of 4.5 meters in the Porto Cesareo Marine Protected Area (Italy). These methods 
were compared quantitatively and qualitatively, and the results are presented and discussed. 
 
 

1. Introduction 

The field of underwater imaging encompasses a diverse range of 
applications, from underwater surveying and archaeology to 
marine biology and conservation. Color accuracy and image 
clarity are paramount for effective data capture and analysis in 
these domains. Underwater imaging poses significant challenges 
due to the unique properties of light. Water's selective absorption 
of light wavelengths contributes to the loss of light wavelength 
components as it travels through the water column, imparting a 
distinctive bluish tint to underwater images. Additionally, 
particles suspended in the water, such as plankton and sediment, 
scatter light and further contribute to image degradation. These 
factors make it difficult to capture accurate color reproduction 
and sharp images underwater. Various techniques have been 
developed to address these challenges to enhance underwater 
imaging. These techniques utilize image processing algorithms 
to post-process underwater images, correcting for color balance, 
enhancing sharpness, and reducing noise. 
 
1.1 Understanding Color Rendering Underwater 

An important factor influencing the survey is the depth in which 
the assets are located. This is related to a degradation in the 
visible electromagnetic spectrum, and it is an important aspect of 
the study and recognition of the materials, both for photographic 
and photogrammetric purposes. Water absorbs part of the light 
that passes through it. This absorption is not homogeneous but 
occurs differently, depending on the mass of water crossed by the 
light for the various colors. The phenomenon is known precisely 
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because it occurs selectively on the various colors, called 
"selective absorption" (Figure 1).  
 
Underwater images are affected by inconsistencies in radiometry 
due to the optical properties of water. As light travels through 
water, the intensity of all colors (but significantly higher 
wavelengths) decreases. This degradation varies depending on 
the wavelength, the depth of the water, the distance between the 
camera and the object, and the physical characteristics and 
conditions of the water at the specific location and time of the 
image being taken. Water attenuates light as it travels through it, 
causing the intensity of light to decrease with increasing distance 
(Jaffe, 1990). Light underwater is attenuated more intensely for 
longer wavelengths, such as red light, than for shorter 
wavelengths, such as blue light. This difference in attenuation 
causes objects to appear bluer or greener as they are 
photographed from greater depths (Bryson et al., 2016). 
 
As described by Wang et al. (Wang et al., 2019b), UW 
(underwater) images exhibit a consistent green-bluish color cast 
attributed to the varying attenuation rates of red, green, and blue 
light (Wang et al., 2019a). The attenuation of light in water, and 
consequently the appearance of underwater scenes, is influenced 
by scattering and absorption processes governed by attenuation 
coefficients. These coefficients determine how light intensity 
diminishes with increasing travel distance (Bekerman et al., 
2020). In pure water, light absorption occurs primarily through 
interactions with water molecules and dissolved ions, as 
suspended particles are absent. (Morel, 1974). Long visible 
wavelengths such as red are absorbed first, followed by green and 
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blue. As a result, only a fraction of the sunlight reaching the 
water's surface penetrates depths beyond 100 meters (Menna et 
al., 2018). 
 
Another factor that should not be underestimated is the presence 
of materials in the water: for example, if we consider the delta of 
a river or a lagoon environment (Costa, 2022), the suspended 
sand and clay particles may give the water a turbid appearance 
and a color tending to brown. The presence of phytoplankton is 
another cause of color distortion in underwater environments; in 
fact, it absorbs blue and red, resulting in a reflection of green. In 
practice, where there is water with phytoplankton, its color will 
be more green than blue. Scientists exploit this information to 
assess the distribution and location of phytoplankton worldwide. 
 
Another factor to be considered is the depth of the bottom. If we 
are in the middle of the ocean, the light will not be able to 
penetrate for more than a few hundred meters, so - in other words 
- we will not have any reflection of the bottom, and we will see 
the water of a dark and intense blue. If, on the other hand, we are 
close to the coast, we will see the water of a brilliant blue 
turquoise due in part to the reflection of the seabed. 
 

 
Figure 1. This graph approximates how deep specific 

wavelengths (and related colors) can penetrate a water column. 
Source: Wikimedia Commons, Author: Tomemorris, License: 

CC-BY-SA-4.0 
 

2. State of the art on Color Enhancement Methods 

Underwater image color enhancement is an essential area of 
research for disciplines such as underwater archaeology and 
marine biology. Domain experts and scientists need images with 
colors that are consistent with the real-world scene. Automatic 
and semi-automatic color enhancement methods and algorithms 
have been developed to meet this need and are mainly used in the 
pre- or post-processing phases of photogrammetry (Akkaynak & 
Treibitz, 2019; Bianco et al., 2015; Bryson et al., 2013, 2016; 
Roznere & Li, 2019; Wu et al., 2017). The literature contains 
different methods, which can be grouped based on the approaches 
used to perform the task of underwater image color enhancement 
(Grimaldi et al., 2023); this section will provide an overview of 
these methods and their applicability to the research topic. 
 
2.1 Statistical and Mathematical Methods 

These methods use statistical models to estimate the degradation 
factors, such as light attenuation, scattering, and noise, and then 
use these estimates to restore the image. Water absorption and 
scattering coefficients have been a subject of ongoing scientific 
inquiry for many years. In 1951, Jerlov classified water bodies 

into three oceanic and five coastal types based on these 
coefficients (Jerlov et al., 1951). Since then, various methods 
have been developed to determine the inherent optical properties 
associated with each Jerlov water type (Solonenko & Mobley, 
2015). A mathematical model for spectral analysis of water 
characteristics was proposed by Blasinski et al. (2014). This 
model describes the inherent optical properties of water, which 
can then be used for underwater image color enhancement 
(Akkaynak et al., 2017). A simple fusion-based approach for 
enhancing underwater images was proposed by (Ancuti et al., 
2012). This method uses a single input image and blends multiple 
well-known filters to improve image quality. The authors showed 
that this method effectively improves underwater footage of 
dynamic scenes. 
 
Some studies have attempted to address UW color attenuation 
using specialized calibrated equipment and prior knowledge 
gained from measurements, such as surface reflectance, water 
attenuation coefficient, and image intensity reference values 
obtained from calibrated color charts and spectrometers. In 2021 
(Vlachos et al., 2022) proposed a mathematical method to color-
correct underwater images by modeling light backscattering and 
absorption variation according to the distance of the surveyed 
object. 
 
2.2 Heuristic methods - the Gray-world assumption  

The gray-world assumption is a well-known approach proposed 
by Buchsbaum (1980). In its simplest version, it assumes that the 
information in the average of each channel of the image is the 
representative gray level. In other words, the average of the 
captured image should be gray (achromatic). These methods have 
the advantage of working with any datasets without considering 
any physical or geometric information, therefore applying 
enhancements that work only in very generic conditions that 
mainly differ from real-world applications. Several algorithms 
that include the grey world assumption have been developed, 
such as Lab Color Enhancement (Bianco et al., 2015), Contrast 
Limited Automatic Histogram Equalization (CLAHE) (Pizer et 
al., 1987; Zuiderveld, 1994), etc, to correct the colors of UW 
imagery, each with its strengths and weaknesses. In digital 
photography, the "white balance" process allows the camera to 
interpret the colors appropriately by eliminating the chromatic 
dominants due to the light that, instead of white, can be colored. 
White balance eliminates this effect by returning more natural 
colors, which cannot happen using film. Compared to traditional 
film photography, the advantage of digital images is that they 
automatically correct the colors and give them a more similar 
aspect to the real one. Some digital camera models are provided 
with “Underwater” acquisition modes that automatically 
compensate for this issue. However, there are some limits: the 
camera can reduce the intensity of a chromatic component, for 
example, blue, if this predominates over the others, but certainly 
cannot create red where it is absent. This first problem can be 
partially solved by using the flash. Its white light allows it to 
revive even the dullest colors, but only at a certain distance. What 
happens with sunlight also happens with a flashlight; as said 
earlier, colors are absorbed as a function of the amount of water 
the light passes through; it does not matter which direction the 
light comes from; what matters is the distance the light travels 
underwater. A significant drawback of automatic white balance 
methods is that their effectiveness relies heavily on the color 
scheme of the scene, as they calculate the average color for the 
overall view. 
 
A first proposal for color enhancement of UW images using the 
CIE 1976 Lab color space (a color space defined by the 
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International Commission on Illumination that expresses color as 
three values: L for perceptual lightness and a and b for the four 
unique colors of human vision)is presented in (Bianco et al., 
2015). This method white balances the chromatic components 
and performs histogram cut-off and stretching of the luminance 
component to increase image contrast. The method performs 
effectively under a gray-world assumption and uniform scene 
illumination, appropriate for close-range downward acquisitions 
such as seabed mapping or underwater photography and in 
conditions with minimal lighting variations. (Bryson et al., 2013) 
proposed an automated underwater image color enhancement 
method using a gray-world color distribution. This means that 
surface reflectance has a gray-scale distribution independent of 
scene geometry. This approach is beneficial for imaging large-
scale biological environments, where using color charts is not 
always possible. 
 
2.3 Physically based methods 

These methods consider the physical properties of light 
underwater, such as attenuation and scattering. They can provide 
highly accurate results but require additional information about 
the underwater environment, such as lighting conditions, depths, 
distances between the camera and objects, and water properties, 
which may only sometimes be available or require expensive 
equipment or complex calculations. Akkaynak & Treibitz (2018) 
proposed a revised underwater image formation model. They 
derived the physically valid space of backscatter using 
oceanographic measurements and validated their model using in 
situ underwater experiments. The revised model is more 
physically accurate than the current one but contains more 
parameters, which can be challenging. However, the researchers 
also implemented a pipeline called Sea-thru (Akkaynak & 
Treibitz, 2019) that uses the revised model to correct the colors 
of underwater images. 
 
2.4 Artificial intelligence methods 

Artificial intelligence-based methods have shown promising 
results in enhancing underwater images by learning from a large 
annotated dataset. (Levy et al., 2023) presented SeaThru-NeRF1, 
a new rendering model for NeRFs in scattering media, which is 
based on the SeaThru image formation model and suggests a 
suitable architecture for learning both scene information and 
medium parameters. In 2023, Jamieson et al. proposed 
DeepSeeColor2 (Jamieson et al., 2023). This novel algorithm 
combines a state-of-the-art underwater image formation model 
with the computational efficiency of deep learning frameworks. 
In their experiments, the authors show that DeepSeeColor offers 
comparable performance to the popular "Sea-Thru" algorithm 
while being able to rapidly process images at up to 60Hz, thus 
making it suitable for use onboard AUVs as a preprocessing step 
to enable more robust vision-based behaviors.  
 

3. Evaluation of Color Enhancement Methods 

In this work, we processed the acquired images with different 
color enhancement methods: 
 
A. Original images: exported in .jpg format starting from the 

camera raw format. 
B. UW camera setting: The camera automatically enhances 

the color on the fly to acquire the images. 

 
1 https://github.com/deborahLevy130/seathru_NeRF 
2 https://github.com/warplab/DeepSeeColor 

C. White balance: The process of adjusting the colors in an 
image to make a white object appear white under any 
light source. Underwater, the light source is different 
from on land, so it is important to white-balance 
underwater images to achieve accurate colors. White 
balance can be achieved using various methods, such as 
a white or gray balance card. 

D. The Lab algorithm: based on gray-world and uniform 
illumination assumptions applied in the CIELAB color 
space (Fairchild, 2010). Color enhancement is performed 
by white balancing of chromatic components (α and β), 
while the luminance component l is processed to improve 
the image contrast. (Bianco et al., 2015) 

E. The Sea-thru algorithm (Akkaynak & Treibitz, 2019) is a 
physics-based algorithm using the Akkaynak-Treibitz 
underwater image formation model. The authors state 
that their model does not use neural networks and was not 
trained on any dataset. It works without a color chart or 
any information about the optical qualities or depth of the 
water body. 

F. The DeepSeeColor algorithm (Jamieson et al., 2023) is a 
free, open-source, AI-powered color enhancement 
algorithm specifically designed for underwater images. 
DeepSeeColor uses a deep learning model to analyze the 
image and adjust the colors to produce a more natural-
looking result.  

 
Methods A and B are automatically applied during the image 
acquisition phase. In contrast, the authors of this paper have 
applied C, D, and F - using the standard settings of iterations and 
learning rate presented in (Jamieson et al., 2023). Method E has 
been applied as a courtesy by one of the respective creators of the 
algorithm. The images processed with the described approaches 
are compared following the method presented in section 3.2.  
 
3.1 Dataset acquisition and processing 

The dataset employed for the comparison and evaluation of the 
above color enhancement methods was acquired over the 
shipwreck of a Roman Navis Lapidaria, with a cargo of five 
monumental cipollino marble columns and one block from the 
quarries of Karystos in Evia, Greece, 8.5-8.8 meters long, with a 
total weight of 78 tons, lies 4.5 meters deep, located in the AMP 
of Porto Cesareo (Italy). The ship ran aground due to its draft (3 
meters) being greater than the depth at the site, considering that 
the sea level was then approximately 3 m lower than today. In the 
framework of this research, a compact underwater camera 
(Olympus Stylus TG-6) and a color calibration chart 
(ColorChecker® Classic | X-Rite3) were used (Figure 2). 
 

  
Figure 2. The Olympus Stylus TG-6 and the ColorChecker® 

Classic | X-Rite calibration chart are employed in the 
framework of this research. 

 
X-Rite manufactures two versions of the ColorChecker test chart 
with slightly different reference values. The reference values of 

3 Since the 1st of July 2021, X-Rite Incorporated and Calibrite 
announced their partnership to transition the X-Rite photo and 
video portfolio to Calibrite. 
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the chart used in this research match the "After November 2014" 
version. The dataset was recorded under natural light at a 
constant depth of about 3m and a camera-to-object distance of 
about 1,5 m. It comprises 353 raw files converted to .jpg files. 
The images were processed through a standard self-calibration 
bundle adjustment based on a structure-form-motion algorithm 
followed by multi-view stereo in Agisoft Metashape v. 1.7.1. The 
corresponding depth map was estimated for each image within 
the photogrammetric process. 
 
3.2 Color enhancement and analysis 

Since only one color chart was deployed in the test site, the 
analysis refers to the same image after applying the different 
color enhancement methods. The analysis was performed in 
Matlab: the RGB values were estimated by applying a median 
filter to each of the 24 patches of the color chart and their 
Euclidean distances from reference values computed (see Table 
1). ΔE represents the Euclidean distance between the measured 
and reference colors: colors considered more accurate correspond 
to smaller ΔE values. 
 
As the RGB colorspace is non-perceptually uniform, the same 
analysis in the CIELAB color space has been performed to 
provide a better perceptually uniform and standardized 
comparison (Table 2). In this case, reference colors are within the 
CIE 1976 Lab color space. All ΔE formulae are designed initially 

to have a difference of 1.0, standing for a JND (Just Noticeable 
Difference), intended as the amount that a color must be changed 
for a difference to be noticeable to the human eye (Thomas et al., 
2013). Specifically for the CIE 1976 Lab color space—adopted 
in the framework of this research—an ΔE ≈ 2,3 corresponds to a 
JND (Sharma & Bala, 2017). 
 
Figure 4 and Figure 5 display the color accuracy measurements 
for each of the employed methods, as described in Section 3. 
Each small square color patch represents the color as measured, 
while the thick surrounding border indicates the color reference 
for that specific region of interest (ROI).  
 
On the following pages, the diagrams on the right-hand side 
depict the placement of measured and reference colors within the 
CIE 1976 Lab color space on a chromaticity diagram. Red circles 
represent the color reference, while green circles indicate the 
measured colors of each color patch. The chromaticity diagram 
accounts not for color brightness but only for the α and β 
components. ROIs with a shorter distance between the reference 
and measured points exhibit smaller chromatic differences, 
potentially contributing to a lower ΔE value. However, 
brightness also influences the ΔE value. To provide a 
comprehensive comparative analysis, the color enhancement 
methods were applied to the entire dataset, and six orthophotos 
were created to provide a qualitative comparison (Figure 6).  
 

 
ΔE (RGB) Color enhancement methods 
ROI Color A B C D E F 
1 DarkSkin 52 63 47 32 25 24 
2 LightSkin 87 81 63 67 101 149 
3 BlueSky 83 57 70 43 132 146 
4 Foliage 60 51 41 33 35 83 
5 BlueFlower 80 53 59 42 138 144 
6 BluishGreen 78 61 71 86 131 142 
7 Orange 60 81 49 52 71 32 
8 PurplishBlue 88 59 84 36 110 93 
9 ModerateRed 55 77 43 56 84 86 
10 Purple 54 53 36 28 102 94 
11 YellowGreen 69 59 60 66 88 147 
12 OrangeYellow 82 78 61 68 44 115 
13 Blue 104 79 104 39 117 119 
14 Green 82 68 96 85 83 79 
15 Red 49 72 41 61 62 71 
16 Yellow 103 91 89 84 56 92 
17 Magenta 72 81 56 59 98 132 
18 Cyan 78 55 89 82 88 141 
19 White 57 45 26 14 28 25 
20 Neutral8 65 37 58 31 77 78 
21 Neutral6,5 75 51 75 40 92 114 
22 Neutral5 72 61 62 38 61 120 
23 Neutral3,5 61 52 46 21 50 74 
24 Black 43 40 25 11 77 58 
ΔE X̅ All ROIs 71 63 60 49 81 98 
Table 1. The table shows the Euclidean distance (RGB color 

space) between the reference color chart and the different color 
enhancement methods adopted - A) Original images; B) UW 
camera setting; C) White balance; D) Lab algorithm; E) Sea-
thru algorithm; F) DeepSeeColor algorithm - and the average 

Euclidean distance for all the 24 patches. 

 
ΔE (CIELAB) Color enhancement methods 
ROI Color A B C D E F 
1 DarkSkin 18,3 21,2 14,0 14,3 15,1 17,3 
2 LightSkin 35,9 32,9 25,7 25,8 28,0 36,5 
3 BlueSky 29,7 18,5 26,0 10,7 48,0 34,1 
4 Foliage 25,2 19,0 15,9 14,9 23,4 21,1 
5 BlueFlower 27,0 17,1 20,6 13,3 47,7 36,8 
6 BluishGreen 31,5 22,9 29,9 22,6 28,4 28,4 
7 Orange 25,8 34,7 20,1 24,7 28,7 16,3 
8 PurplishBlue 27,5 18,4 24,7 9,7 48,8 40,4 
9 ModerateRed 31,8 40,1 22,7 32,4 35,6 31,9 
10 Purple 26,7 24,1 18,4 13,1 55,1 55,6 
11 YellowGreen 28,1 23,0 23,7 27,2 34,7 29,8 
12 OrangeYellow 39,8 37,3 29,1 32,6 17,7 41,0 
13 Blue 34,8 25,2 31,6 10,8 74,5 70,3 
14 Green 27,5 17,9 24,2 24,4 50,5 21,8 
15 Red 30,0 39,9 19,9 35,6 14,5 29,1 
16 Yellow 40,2 34,9 30,9 31,8 25,2 23,6 
17 Magenta 34,3 37,7 25,8 29,7 60,0 39,3 
18 Cyan 28,1 17,8 26,0 16,0 36,3 37,8 
19 White 22,0 17,8 12,5 9,3 5,7 5,9 
20 Neutral8 27,5 17,0 19,3 10,4 18,3 17,8 
21 Neutral6,5 31,0 20,5 23,2 12,8 31,0 28,2 
22 Neutral5 29,6 22,4 22,1 13,0 25,0 38,2 
23 Neutral3,5 26,4 20,5 19,6 9,4 26,7 34,5 
24 Black 20,4 14,7 13,4 5,7 20,2 28,7 
ΔE X̅ All ROIs 29,1 24,8 22,5 18,8 33,3 31,9 

Table 2. The table shows the Euclidean distance (CIELAB color 
space) between the reference color chart and the different color 
enhancement methods adopted - A) Original images; B) UW 
camera setting; C) White balance; D) Lab algorithm; E) Sea-
thru algorithm; F) DeepSeeColor algorithm - and the average 

Euclidean distance for all the 24 patches.   
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Figure 4. Color accuracy measurements for A) Original images, B) UW camera setting, and C) White balance. On the right, each 
square color patch is the measured color, and the thick surrounding border is the reference color for that ROI. The diagram on the 

right shows the measured and reference colors in the CIE 1976 L*a*b* color space on a chromaticity diagram. Red circles indicate 
the reference color. Green circles indicate the measured color of each color patch. The chromaticity diagram does not portray the 

brightness of color, but only α and β components. 
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Figure 5. Color accuracy measurements for D) Lab algorithm, E) Sea-thru algorithm, and F) DeepSeeColor algorithm. On the right, 
each square color patch is the measured color, and the thick surrounding border is the reference color for that ROI. The diagram on 

the right shows the measured and reference colors in the CIE 1976 L*a*b* color space on a chromaticity diagram. Red circles 
indicate the reference color. Green circles indicate the measured color of each color patch. The chromaticity diagram does not portray 

the brightness of color, but only α and β components.
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Figure 6. Orthoimages of the cargo of the Navis Lapidaria of AMP Porto Cesareo, A) Original images; B) UW camera setting; C) 

White balance; D) Lab algorithm; (E) Sea-thru algorithm; F) DeepSeeColor algorithm. 

4. Discussions and Conclusions 

An evaluation of color enhancement techniques for underwater 
images was conducted using a dataset of underwater images 
captured in shallow depths. The evaluation compared original 
images acquired with the digital camera, together with the 
automatically on-the-fly color-corrected version (UW camera 
setting), two traditional methods (white balancing and CIE 1976 
Lab color space conversion), one AI-based approach 
(DeepSeeColor), and a physical model approach (Sea-thru). The 
results showed that traditional methods performed better than AI-
based methods in terms of color accuracy and realism.In the 
evaluation, white balancing and CIE 1976 Lab color space 
conversion consistently produced images with more natural 
colors and better overall quality than AI-based and physical-
based methods. This suggests that traditional methods can still be 
valuable for underwater image enhancement, at least when 
applied in shallow waters. 
 
Additionally, the evaluation found that the tested AI-based 
method can introduce artifacts or oversaturate colors, resulting in 
less realistic images than those produced with traditional 
methods. It can also not effectively handle some specific 
challenges of underwater photography, such as the presence of 
backscatter and caustics. This, however, is an expected outcome 
since the specific algorithm is tailored for higher depths and 
different sensors and acquisition configurations than the ones 
depicted in this research. To the authors' knowledge, a specific 
AI-based color enhancement method for very shallow water 
conditions (where there could be more phenomena to consider, 
such as caustics) is still missing.The evaluation used a limited 
dataset of underwater images captured in shallow depths. More 
extensive testing is needed to evaluate the performance of 
different color enhancement methods across a broader range of 
conditions and depths. 
 

Despite the advances in underwater image enhancement 
techniques, achieving perfect color fidelity remains challenging. 
Traditional methods such as white balancing and CIE 1976 Lab 
color space conversion may still be effective for correcting color 
casts and enhancing overall image quality, especially in shallow 
depths. One important strength of these methods is that they are 
free, open source, and can be applied by non-specialized 
operators without additional effort.Ongoing research and 
development in this field will continue to improve the quality of 
underwater images; in the following research, the author foresees 
considering variations in the accuracy of geometric 
reconstruction when color enhancement methods are applied and 
including diverse scenes and different depths, allowing for better 
models’ evaluation and enabling more effective data capture and 
analysis for various applications.  
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