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ABSTRACT: 

This research introduces a novel approach to improve vision-based positioning in the absence of GNSS signals. Specifically, we address 

the challenge posed by obstacles that alter image information or features, making retrieving the query image from the database difficult. 

While the Bag of Visual Words (BoVW) is a widely used image retrieval technique, it has a limitation in representing each image with 

a single histogram vector or vocabulary of visual words, i.e., the emergence of obstacles can introduce new features to the query image, 

resulting in different visual words. Our study overcomes this limitation by clustering the features of each image using the k-means 

method and generating a graph for each class. Each node or key point in the graph obtains additional information from its direct 

neighbors using functions employed in graph neural networks, functioning as a feedforward network with constant parameters. This 

process generates new embedding nodes, and eventually, global pooling is applied to produce one vector for each graph, representing 

each image with graph vectors based on objects or feature classes. As a result, each image is represented with graph vectors based on 

objects or feature classes. In the presence of obstacles covering one or more graphs, there is sufficient information from the query 

image to retrieve the most relevant image from the database. Our approach was applied to indoor positioning applications, with the 

database collected in Bolz Hall at The Ohio State University. Traditional BoVW techniques struggle to properly retrieve most query 

images from the database due to obstacles like humans or recently deployed objects that alter image features. In contrast, our approach 

has shown progress in image retrieval by representing each image with multiple graph vectors, depending on the number of objects in 

the image. This helps prevent or mitigate changes in image features caused by obstacles covering or adding features to the image, as 

demonstrated in the results. 

1. INTRODUCTION

In recent decades, cameras have achieved widespread acceptance 

and remarkable advancements across various computer vision 

and photogrammetry applications, including obstacle avoidance, 

image recognition, tracking, SLAM, and image-based 

localization. This is particularly notable in GPS/GNSS-denied 

environments [1]. Researchers have endeavoured to address this 

challenge by exploring sensors such as cameras [2], LiDAR [3], 

radar [4], and radio signals. Among these sensors, the camera 

stands out as the most extensively utilized due to its compatibility 

with a wide range of smart devices, robots, cars, etc., and its 

affordability. The domain of indoor positioning, which has 

garnered increased attention recently, presents a significant 

challenge due to weak or absent GNSS signals and the diverse 

infrastructure within indoor environments. Numerous radio 

frequency (RF)-based localization approaches have been 

proposed as solutions for indoor positioning systems (IPS) [5]. 

These approaches can be categorized into Time of Flight (TOF) 

[6], encompassing time of arrival and time difference of arrival, 

as well as angular positioning (AoA, Angle of Arrival). Then 

using range and/or angle measurements between the access 

points,  the user's position is computed by trilateration and 

triangulation. Unfortunately, these methods encounter limitations 

such as non-line-of-sight (NLoS) and signal multipath effects [7]. 

The fingerprinting technique [7] based on Received Signal 

Strength (RSS) is a widely adopted approach, where the location 

is determined by comparing received signal strength data with a 

predefined calibration point database (radio map). Fingerprinting 

is advantageous for its independence from time synchronization 

and lack of requirement for line of sight. However, it necessitates 

a training phase to create the radio map. The Light Detection and 

Ranging sensor (LiDAR) [3] is crucial data acquisition 

technology for topographic and infrastructure mapping, and more 

recently, in autonomous driving. While LiDAR requires accurate 

georeferencing based on integrating Inertial Navigation Systems 

(INS) with GPS/GNSS in outdoor scenarios, its direct 

applicability to indoor navigation is limited, though with the 

introduction of efficient LiDAR SLAM methods recently, it is 

changing. When combined with other sensors, LiDAR can be 

effective but suffers from size, computational cost, and power 

consumption compared to cameras. Cameras offer diverse 

solutions for GNSS-denied environments [2], making them 

suitable for various devices due to their compact size, 

lightweight, low power consumption, and ability to provide rich 

information such as colors and features. The visual fingerprinting 

technique, especially using the Bag of Visual Words (BoVW) 

[8], is commonly employed in indoor environments to determine 

user positions by comparing query images with predefined 

geotagged database images. However, a limitation of BoVW 

arises when obstacles in the image cover or alter features, leading 

to changes in visual words, especially those associated with rare 

occurrences in the database. This poses a challenge in accurately 

retrieving the query image from the database. To address this 

limitation, we propose a new solution that represents the image 

using a set of graphs. By employing the k-means clustering 

technique on image features and constructing object graph 

vectors based on Delaunay triangulation [10], spatial 

relationships between nodes (key points) are more effectively 

captured. This results in the extraction of graph information for 

each object, utilizing knowledge about the direct neighbors of 

each node to build adjacency matrices representing each graph 

[16]. Consequently, each image is represented by different 

vectors based on the objects within, and these vectors are stored 

in the database. Global pooling is then applied to each graph in 

the image to obtain a unique vector representing the entire graph. 

Despite the presence of obstacles that may alter graph vector 

information by covering or adding features to the original image, 
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information from other graph vectors related to the query image 

can still be leveraged for retrieval based on a similarity approach. 

 

2. THE BAG OF VISUAL WORDS (BOVW) 

The Bag of Visual Words (BoVW) [11] is a method employed to 

identify similar images in a database when provided with a query 

image. This technique is widely used in computer vision, 

photogrammetry, and robotics, particularly in tasks involving 

place or location recognition, where the objective is to find one 

or more images of the same location. A familiar example is the 

Google image search, allowing users to drag and drop an image 

into the search window, yielding similar images in return. The 

underlying system stores a concise representation of reference 

images in the database, often in the form of a histogram capturing 

specific feature occurrences. Subsequently, all comparisons are 

conducted based on these histograms. BoVW [9] characterizes 

images by tallying the occurrences of individual visual words in 

an image. It's important to note that popular feature extractors 

like SIFT and SURF are utilized for extracting key points and 

computing their feature descriptors. Figure 1 [11] illustrates 

different visual words marked with colored shapes, where each 

shape denotes the occurrence of a specific visual word. While this 

depiction is a simplified illustration showcasing a few visual 

words, in reality, each image is distilled to visual words, 

rendering the actual pixel values inconsequential. Within the bag 

of words framework, each image transforms into a histogram by 

merely counting the occurrences of visual words within that 

image. The x-axis of the histogram represents the visual words, 

while the y-axis indicates how frequently individual visual words 

appear in the image. A visual word, in this context, refers to a 

feature descriptor computed from the mean of several similar 

descriptors grouped using a clustering algorithm like k-means 

[12].

 
Figure 1: Bag of visual words representation 

 

Each image within the database undergoes transformation into a 

histogram, where the x-axis is defined by visual words, and the 

y-axis signifies their frequency of appearance in the image. 

Consequently, instead of storing M images in the database, M 

histograms are stored. Certain visual words prove more apt for 

conducting comparisons, while others may lack expressiveness, 

such as a word occurring in every image, offering limited support 

for meaningful comparisons. Therefore, to prioritize important 

visual words over others based on anticipated information, a 

weight is computed for each visual word. This weighting process 

is accomplished using Term-Frequency Inverse-Document 

Frequency (TF-IDF) [15], as illustrated in Equation 1. 

 

𝑡𝑖𝑑 =  
𝑛𝑖𝑑

𝑛𝑑

𝑙𝑜𝑔
𝑁

𝑛𝑖

                                         (1) 

 

tid: Histogram bin of word i for image d. 

𝑛𝑖𝑑: Occurrences of word i in image d. 

𝑛𝑑: Number of word occurrences in image d. 

𝑛𝑖: Number of images that contain word i. 

N: Number of images. 

 

TF-IDF serves to diminish the significance of words appearing in 

every image, reducing their weight to zero, while assigning 

higher weights to infrequently occurring words. TF-IDF 

computations are then applied to all histograms within both the 

database and the query image. Typically, these histograms are 

compared using cosine distance, a metric ranging from 0 to 1. 

Subsequently, the cost matrix derived from these histogram 

comparisons reflects a distance of 0 when a histogram is 

compared with itself, whereas all other comparisons yield higher 

values. Given a user-captured query image, the algorithm 

retrieves the N=20 most similar images from the database, 

prioritizing those with the smallest cosine distances in the cost 

matrix. 

 

3. INTRODUCTION TO GRAPHS AND NEW TRENDS 

Graph theory, pioneered in the 18th century by the Swiss 

mathematician Leonhard Euler, provides a mathematical 

framework for modeling pairwise relationships between objects. 

It serves as a valuable tool in addressing real-world problems, 

including applications such as Google Maps for finding the 

shortest path to home, and across a broad spectrum of disciplines. 

The fundamental components of any network or graph are its 

nodes, representing elements, and edges, representing the 

relationships between nodes. In our work, a key focus after 

extracting image features is the examination of geometric 

relations among key points. These key points are treated as nodes, 

forming graphs where their descriptors serve as the features of 

these nodes. Geometric graphs, specifically those in the 2D 

Euclidean space, are employed in this context, aligning with the 

image domain. Given the similarity in highly overlapping 

images, the graphs defined by key points should exhibit 

topological similarity, which we can be exploited. To address 

this, we adopt a traditional graph representation with functions 

inspired by graph neural networks, effectively operating as a 

feedforward neural network. This system aggregates information 

from the nodes' direct neighbors and updates itself through 

message-passing layers, including the graph attention network 

and graph convolution network. In recent years, there has been a 

substantial surge in interest in applying deep learning to graphs, 

often referred to as graph neural networks (GNN) or geometric 

deep learning [13]. This approach has seen significant research 

in graph representation learning, becoming one of the fastest-

growing areas in machine learning. The integration of graph 

theory with deep learning has gained traction across various 

fields, including social networks (e.g., Facebook), 

recommendation systems, medicine (disease classification), 

pharmacy (learning molecular fingerprints), and intelligent 

transportation [14]. Despite this growth in GNN, achieving 

optimal advancements in graph networks proves challenging 
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with traditional machine learning methods. This challenge arises 

because the graph structure is generic and cannot be easily 

represented in a sequence or a grid. Modern deep learning tools 

like convolution filters and pooling, designed for simple 

sequences and grids, are less effective when dealing with 

networks or graphs possessing arbitrary sizes, complex 

topological structures, and no fixed node ordering or reference 

point, as illustrated in Figure 2. Graph neural networks emerge 

as valuable tools in addressing non-Euclidean data structures 

within machine learning in the graph domain [17]. They 

overcome the limitations of traditional machine learning in non-

Euclidean domains, such as issues with pooling operators and 

localized convolution filters, as demonstrated in Figure 3. 

Consequently, graph theory-based deep learning has garnered 

significant attention in contemporary research. 

 

 
Figure 2: Network structure vs image and text structures 

 

 
Figure 3: Left figure shows an image in regular grid format, and 

the right figure shows graphs with arbitrary size and complex 

topological structure. 

 

Various operations or tasks, as depicted in Figure 4, can be 

executed on graphs. Firstly, there is the option of node-level 

predictions or node classification, involving the prediction of 

attributes for unlabeled nodes and their subsequent classification. 

In this scenario, the Graph Neural Network (GNN) utilizes 

information from other nodes in the graph to deduce attributes for 

these unlabeled nodes. Secondly, another feasible task is link 

prediction or edge-level prediction, where the aim is to predict 

connections between two nodes within the graph. Lastly, the 

entire graph can serve as input for predicting a specific attribute 

or class label associated with graphs in a dataset. Examples of 

applications include predicting molecule properties, analyzing 

social networks, addressing cyber-security challenges, and 

optimizing GPS/Google Maps for finding the shortest path to a 

destination. Additionally, graph matching can be applied to 

support collaborative navigation, particularly in PNT 

(Positioning, Navigation, and Timing) anomaly detection, as an 

effective tool for identifying discrepancies in corrupted local 

positions. 

 
Figure 4: Different GNN task operations 

 

The core concept behind Graph Neural Networks (GNN) is to 

train neural networks to effectively represent graph data, a 

process referred to as representation learning. Leveraging all 

available information about the graph, which includes both node 

features and connections stored in the adjacency matrix, the GNN 

generates new representations, also known as embedding nodes, 

as illustrated in Figure 5. These embedding nodes contain 

information from other nodes in the graph, and this embedding 

can be utilized for making predictions. When nodes possess 

similar features, GNN ensures that their respective embeddings 

are also similar, consequently leading to comparable node 

representations. Similarly, for entire graphs, GNN produces 

similar graph embeddings when dealing with graphs that share 

common features. The core building blocks of graph neural 

networks are the message-passing layers, which play a pivotal 

role in combining node and edge information into the node 

embedding. 

 

 
Figure 5: GNN structure 

 

The basic idea of GNNs is to learn the embedding nodes by 

iteratively combining the node information in a local 

neighborhood; in other words, the nodes learn something about 

the direct neighbors, then the neighbors’ neighbors, and so on. 

The message-passing layers consist of update and aggregation 

functions as shown in Equation 2: 

 

ℎ𝑢
(𝑘+1)

= 𝑈𝑃𝐷𝐴𝑇𝐸(𝑘) (ℎ𝑢
(𝑘)

, AGGREGATE 𝐸(𝑘)({ℎ𝑣
(𝑘)

, ∀𝑣 ∈ 𝒩(𝑢)}))      (2)

   

Where ℎ𝑢
(𝑘)

 is the current node features, and ℎ𝑢
(𝑘+1)

is the node 

embedding, and 𝒩(𝑢) is the direct neighbors. The aggregation 

function uses the information of the direct neighbors of a node u 

and aggregates them in a specific way. Then, it updates the 

current state in step k and combines them with the aggregated 

neighbor states, as shown in Figure 6; the orange node will get 

information from its direct neighbors (blue nodes) in the first 

layer and then update itself; in the second layer, it can get 

information from the neighbors’ neighbors (green node). 

 
Figure 6: Aggregation and Updating functions. 

 

In preceding research, various researchers have devised different 

methods for aggregation and updating functions within message 

layers. In our study, we employed the feedforward neural 

network concept, utilizing the idea of having these functions 

without learning parameters to obtain node embeddings. The 

message-passing layer constitutes a crucial component of the 

Graph Neural Network (GNN) layer for model construction. 

Numerous researchers have explored different methodologies for 

message-passing layers, varying in their approaches to 
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neighborhood aggregation functions and update functions, which 

aggregate neighbors' information through methods such as 

averaging or maximizing. Some studies have incorporated neural 

networks and recurrent neural networks for acquiring neighbors' 

information and updating nodes [17]. The fundamental approach 

is illustrated in Equation 3, which involves averaging neighbor 

messages, updating the node itself, and subsequently applying 

the neural network. 

 

h𝑣
0 = 𝑋𝑣 

h𝑣
(𝑙+1)

= 𝜎 (W𝑙 ∑  𝑢∈N(𝑣)
h𝑢

(𝑙)

|N(𝑣)|
+ B𝑙h𝑣

(𝑙)
) , ∀𝑙 ∈ {0, … , 𝐿 − 1}   (3) 

Z𝑣 = ℎ𝑣
𝐿 

 

where h𝑣
0 =𝑋𝑣 is the initial  0𝑡ℎlayer represented by node features, 

ℎ𝑣
𝐿 is the node embedding at L layers of neighborhood 

aggregation, L is the total number of layers, and σ is a nonlinear 

function, such as RELU. 𝑊𝑙 and 𝐵𝑙 are learnable parameters. 

∑  𝑢∈N(𝑣)
h𝑢

(𝑙)

|N(𝑣)|
 is the average of the neighbor’s previous layer 

embedding. Z𝑣 is the final node embedding which can be fed into 

any loss function and then running stochastic gradient descent 

(SGD) to train the weight parameters.  Figure 7 shows how one 

node can learn from its neighbors based on aggregation and 

update functions. In the first GNN layer (message passing layer), 

the node gets information from the direct neighbors, and in the 

second GNN layer, it learns from the indirect neighbors. 

 

 
Figure 7: Aggregation and updating processing. 

 

 

4. PROPOSED ALGORITHMS 

The specific research objective is to address the issue of obstacles 

present in images, which can alter visual words and diminish the 

effectiveness of Bag of Visual Words (BoVW) methods in the 

search process. To tackle this problem and enhance applicability 

to image recognition applications for querying databases, an 

algorithm inspired by graph topology, akin to Graph Neural 

Networks (GNN), is proposed. Numerous applications, including 

recognition, vision-based positioning, visual SLAM, and other 

vision-related tasks, rely on querying images matched against 

databases to determine the user's location. The proposed model 

encodes both the database and query images to generate image 

vectors. Figure 8 illustrates the workflow for obtaining the 

encoded image fingerprint, starting with the application of the k-

means algorithm to the image's key points to exclude those 

distant from each centroid. Subsequently, a Delaunay 

triangulation is applied to the clustered key points, providing 

information about the key points (nodes), such as their neighbors 

and edges. This information is then used to construct an 

adjacency matrix for creating image graphs. Each image's graphs 

serve as input to the aggregation and updating functions, 

employed in graph convolutional networks with consistent 

parameters. This process generates a new embedding feature by 

sharing information between nodes' direct local neighbors 

through the initial message-passing layer, iteratively learning 

from neighbors of neighbors. Two message-passing layers are 

utilized to generate distinct node embedding features. Finally, a 

global graph pooling algorithm is applied to each graph, yielding 

a single vector to represent each graph within the image. Figure 

9 shows the process of representing the image by a set of graphs, 

describing the geometric relationships of features which should 

be similar in both highly overlapping images and graph 

topologies because of the similarity in the 2D keypoint locations. 

 
Figure 8: Workflow for getting encoding image fingerprint. 

 
(a) Original image 

 
(b) Image key points 

 
(c) K-means clustering algorithm. 
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(d) Delaunay triangulation 

 
(e) Image graph representation and global pooling. 

Figure 9: The process of representing the image by a set of graphs 

depending on the features’ geometric relationship. 

 

The proposed matching algorithm relies on k-dimensional trees, 

utilizing cosine similarity approaches to calculate the distance or 

similarity between two fingerprints. In our study, the feature size 

is 64 as we employ SURF descriptors as a vector representation 

for classification through the k-dimensional trees algorithm. In 

the context of Bag of Visual Words (BoVW), the cosine 

similarity approach is adopted, given the large magnitude of 

vectors, and the visual word vocabulary size of 20,000. For 

vision-based indoor positioning, our proposed algorithm follows 

a workflow akin to the visual fingerprinting (VF) algorithm, 

representing the image with a visual word vocabulary in BoVW. 

In instances where an obstacle obscures image features, BoVW 

may struggle to find a match for the query image. The algorithm 

we propose addresses this limitation by representing the image 

with multiple graph embedding vectors. Even when an obstacle 

covers a portion of the image, we may retain information about 

the query image from other vectors, facilitating similarity 

algorithms in identifying the closest image from the alternate 

graph vectors. The workflow of the proposed algorithm is 

illustrated in Figure 10. 

 
Figure 10: Workflow of the proposed algorithm. 

 

 

5. EXPERIMENTAL RESULTS 

The experiments utilized three distinct datasets gathered within 

Bolz Hall at the Ohio State University. Data collection occurred 

on the 2nd, 3rd, and 4th floors employing the LooMo robot from 

the SPIN Lab. The robot was equipped with a GoPro HERO5 

camera mounted on its top, capturing training datasets from the 

center of the corridor, as depicted in Figure 11. To generalize the 

problem across the entire building, all datasets from each floor 

were combined. This approach ensures that the robot can 

recognize its position in any location of interest within the real 

environment.

 
Figure 11: LooMo robot with the GoPro HERO5 camera. 

 

While these datasets were acquired in the same building, they are 

different in terms of the number of objects on each floor that 

impacts the number of image features. For example, the first 

dataset on the 2nd floor has less features because it has fewer 

objects in each image, as shown in Figures 12 and 13. 

 

 
Figure 12: Image samples from the 2nd floor. 

 

In contrast to the 2nd floor, the dataset of the 3rd has more 

objects, as shown in Figure 13. 

 
Figure 13: Image samples from the 3rd floor 

 

The 4th floor shows a more typical pattern with many different 

objects, as shown in Figure 14. 
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Figure 14: Image samples from the 4th floor. 

 

The process of visual fingerprinting is divided into two primary 

phases, illustrated in Figure 15. Initially, during the training 

phase, images are captured at predetermined calibration points 

and processed through our algorithm to produce image graph 

vectors, subsequently populating the database. In the test phase, 

a mobile user captures an image at an unknown position, and its 

graph vectors are calculated. These vectors are then compared to 

the image graph vector entries in the database using the 

previously described similarity approach. Ultimately, the user's 

position can be determined by associating it with the closest pre-

defined location of an image in the database. 

                 
Figure 15: Workflow of the fingerprinting approach. 

 

The corridor area in the building is (38m x 3m) and images were 

recorded continuously. For the visual fingerprinting, the 

corridors were divided into equal spaces, and the images were 

collected in both directions at accurately surveyed locations 

which were distributed evenly on each floor. The total number of 

database images that were collected in the experiment is 1,220 

for the whole building. 

 

 
          Figure 16: Corridor layout, cells, and calibration points 

 

 
Figure 17: Samples of test images with obstacles. 

 

In addition, test images were collected at different locations to 

add some obstacles to the images and thus to present the real 

world as shown in Figures 17 and 18, illustrating the effect of the 

obstacle features on the original image. 

 

 
Figure 18: The effect of obstacle to the features of the original 

image 

 
Cluster Assignments and Centroids                             Cluster Assignments and Centroids 

 
Figure 19: Missing feature due to the obstacle. 

 

To construct the BoVW database, a total of 494,473 features are 

extracted from 1,220 training images. Subsequently, 80 percent 

of the strongest features from each category are retained. 

Utilizing k-means clustering, we create visual vocabulary words 

by determining the mean of each group from the entire database. 

Each image is then represented based on the length of the 

vocabulary words, depending on the words present in the image. 

As a result of the k-means output, each image is represented by a 

length of 20,000 visual words. As illustrated in Figure 19, 

numerous features are eliminated from the original image 

features, and obstacle features are introduced. Despite this, our 

solution generally retains sufficient information from the image 
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for a successful match. The query image can be retrieved from 

the database based on strong vectors with high similarity scores. 

In contrast, as demonstrated in Figure 20, the Bag of Visual 

Words fails to retrieve the nearest image to the query image in 

most of the test samples due to alterations in image features. 

 

 
Figure 20: BoVW performance illustration: query (left) and 

retrieved (right) images. 

 

When assessing image retrieval performance, our methodology 

was implemented on identical datasets and image samples. 

Illustrated in Figure 21, our approach consistently achieves 

success in identifying the closest image to the query images 

across all instances. The k-d tree algorithm is employed for 

obtaining results from the nearest neighbor search, providing 

optimal candidate solutions. Following the determination of the 

nearest image to the query image, the user's position can be 

allocated to the pre-defined position associated with the closest 

image stored in the database. 

 

 

 

 

 

 
 

Figure 21: Performance of our approach: query (left) and 

retrieved (right) images. 

 

To compare findings using Visual Fingerprinting based on 

BoVW and our proposed algorithm, we employed the cosine 

similarity approach, represented on a scale from 0 to 1, as 

depicted in Figure 22. Given the lengthy visual word 

representation in BoVW, consisting of 20,000 bins, the similarity 

results for the query image are notably low. In contrast, our 

proposed algorithm utilizes a visual vector with a length of 64, 

resulting in a higher cosine similarity compared to BoVW. Figure 

23 illustrates that our proposed algorithm successfully identifies 

the nearest image to the query image, whereas BoVW fails in this 

regard. Furthermore, Figure 22 displays the cosine distance 

between the query image and the 20 best candidates for both 

approaches. 

 

 

 
 

Figure 22: Best similarity score of BoVW and our proposed 

algorithm candidates. 

 

For the comparison between our approach and the BoVW, we 

utilized 20 query images, with sample results depicted in Figures 

20 and 21. The visual words in BoVW have a length of 20,000 

bins, resulting in a very low similarity score for the query image, 

approximately around 0.1, rendering it highly sensitive to any 

changes in the visual words, as evidenced in Figure 22. In 

contrast, our proposed algorithm utilizes a visual vector with a 

size of 64, leading to a generally higher cosine similarity 

compared to BoVW. Figure 22 illustrates the cosine distance 

between the query image and the 20 best candidates for both 

approaches. 
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Figure 23: A comparison: proposed method (top row) and 

BoVW (bottom row). 

 

 

6. CONCLUSION 

This study aims to contribute to vision-based positioning through 

an image retrieval approach by presenting a solution to address 

the impact of obstacles in images, which can alter the visual 

words of the image and potentially lead to the failure of retrieving 

the correct image(s) from the database. The effectiveness of Bag 

of Visual Words (BoVW) techniques in image tracking or 

retrieval applications relies on the stability of the query image 

features. However, when obstacles are present, these features 

may undergo changes, resulting in alterations to the image's 

visual word and, consequently, hindering the retrieval process. In 

contrast, our proposed algorithm adopts a clustering approach for 

image features based on objects. This design minimizes the 

impact of obstacle features on the overall visual word. Even when 

certain parts of the image are obscured, causing changes in one 

or more vectors, the remaining vectors remain generally 

unaffected. By generating a unique vector for each graph, we 

apply aggregation and updating functions to construct a new node 

embedding for each node. A global pooling process is then 

employed to obtain a global vector for each graph. This approach 

yields distinctive vectors for both the dataset and the query 

image, thereby enhancing the likelihood of accurate image 

retrieval. The results demonstrate the efficacy of our solution in 

overcoming this issue compared to the BoVW technique based 

on a moderate size image datasets from an office environment. 

While the BoVW technique achieved a 30% success rate, our 

method achieved an 80% success rate based on testing with 20 

images. Obviously, more testing with larger diverse datasets is 

required to better assess the performance of the proposed method. 
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