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ABSTRACT: 
Airborne laser scanning (ALS) is able to penetrate sparse vegetation to obtain highly accurate height information on the ground surface. 
LiDAR point cloud filtering is an important prerequisite for downstream tasks such as digital terrain model (DTM) extraction and point 
cloud classification. Aiming at the problem that existing LiDAR point cloud filtering algorithms are prone to errors in complex terrain 
environments, an ALS point cloud filtering method based on supervoxel ground saliency (SGSF) is proposed in this paper. Firstly, a 
boundary-preserving TBBP supervoxel algorithm is utilized to perform supervoxel segmentation of ALS point clouds, and multi-
directional scanning strip delineation and ground saliency computation are carried out for the clusters of supervoxel point clouds. 
Subsequently, the energy function is constructed by introducing the ground saliency and the optimal filtering plane of the supervoxel 
is solved using the semi-global optimization idea to realize the effective distinction between ground and non-ground points. 
Experimental results on the ALS point cloud filtering dataset openGF indicate that, compared to state-of-the-art surface-based filtering 
methods, the SGSF algorithm achieves the highest average values across various terrain conditions for multiple evaluation metrics. It 
also addresses the issue of recessed structures in buildings being prone to misclassification as ground points. 

1. INTRODUCTION

With the rapid development of UAV and LiDAR technologies, 
airborne laser scanning (ALS) is widely used for 3D spatial 
information acquisition (Xue et al., 2020). The original ALS 
point cloud contains 3D information of various features in the 
scene, such as ground surface, vegetation, buildings, etc. The 
point cloud filtering can filter out the ground point cloud from 
the massive point cloud, which provides a foundation for the 
subsequent downstream tasks such as DTM extraction and point 
cloud classification. However, due to the highly similar 
geometrical structure of ground points and non-ground points in 
ALS point clouds, the problem of realizing accurate extraction of 
ground points from ALS data of large-scale and complicated 
scenes is still not completely solved.  
Over the past several decades, numerous ground filtering 
algorithms for LiDAR point clouds have been proposed. Existing 
methods can be broadly categorized into slope-based, 
mathematical morphology-based, surface-based, and machine-
learning-based methods (Sithole and Vosselman, 2004;Qin et al., 
2023a). Methods based on slope assume that terrain slope 
changes are gradual, while non-ground points cause significant 
variations in slope. According to this assumption, ground points 
can be filtered out by applying a slope threshold between adjacent 
points (Vosselman, 2000). In order to improve the applicability 
of this method in scenarios such as steep slopes and terraces, 
adaptive slope-based filtering algorithms (Sithole and Vosselman, 
2001; Susaki, 2012) have been proposed to accommodate the 
selection of filtering thresholds for different terrain features. 
Methods based on morphology typically use morphological 
opening and closing operations to construct filters for ground 
point filtering (Kilian et al., 1996). However, morphological 
methods with fixed-size windows are usually unable to filter 
large-size features and preserve fine ground surface at the same 
time, so progressive morphological filters were proposed (Zhang 
et al., 2003), where the filter window size corresponds to 
different elevation thresholds. 
Surface-based methods determine a topographic reference 
surface by constructing a discriminant function and then using 

the reference surface to separate ground points from non-ground 
points. Earlier studies (Kraus and Pfeifer, 2001) utilized a linear 
prediction-based filter to compute the mean elevation to construct 
the initial surface. In order to improve the accuracy of the 
reference surface, a representative algorithm based on multi-scale 
curvature classification, MCC, was proposed (Evans and Hudak, 
2007), which utilizes Thin Plate Spline (TPS) interpolation to the 
seed points to generate the reference ground surface, and 
achieves good results in forested environments. Subsequent 
research has improved upon the iterative updating approach 
based on TPS surface generation (Hu et al., 2014; Liu et al., 2020). 
The triangular irregular net (TIN)-based method is another 
representative method for reference surface generation, which 
constructs a coarse TIN and iteratively encrypts it using the local 
minimum as a reference point (Axelsson, 2000). The method is 
widely used by commercial software, but the iterative 
computational process has a high computational cost. 
Recently, several innovative methods for calculating terrain 
reference surfaces have been proposed. Zhang et al. (2016) 
introduced Cloth Simulation Filtering (CSF), which determines 
the reference surface by simulating the interaction between cloth 
nodes and the inverted point cloud. Hu et al. (2015) introduced 
the concept of ground saliency, which is calculated by 
segmenting the point cloud in a grid and following a prescribed 
sweep direction. They incorporated ground saliency into an 
energy function, employing semi-global optimization to 
determine the optimal reference surface for each grid. The 
approach of partitioning the point cloud into a regular grid 
demonstrates high computational efficiency but overlooks the 
boundary structure of the point cloud. It may face challenges in 
calculating the optimal reference surface in grids with relatively 
small height differences, thereby limiting its potential application 
in complex and mixed terrains. 
Furthermore, point cloud filtering, as a form of classification task, 
can be addressed through machine learning methods. Earlier 
methods achieved classification of ground and non-ground points 
in point clouds by manually constructing features based on 
traditional classifiers ( Lu et al., 2009; Jahromi et al., 2011), and 
the performance of such methods is limited by the descriptive 
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power of manually constructed features. Deep learning-based 
methods, depending on the type of input data into the network, 
can be classified into pipelines based on 2D images (Tatarchenko 
et al., 2018; Wen et al., 2020), 3D voxels (Graham et al., 2018; 
Yotsumata et al., 2020), and directly on 3D points (Qi et al., 2017; 
Zhang et al., 2021). Generally deep neural networks learn 
implicit features that better describe the contextual information 
of 3D point clouds, but learning-based methods usually require 
labeling samples to train models based on specific terrain 
conditions. In practice, the density variation of the point cloud 
and the quality of the labeled samples can affect the 
generalization ability of the filtering, which may produce poor 
filtering results in challenging localized areas. 
This paper proposes an ALS point cloud filtering method based 
on supervoxel ground saliency. In comparison to existing 
surface-based filtering methods, proposed SGSF algorithm 
comprehensively considers the geometric structural information 
of LiDAR point clouds. Through supervoxel segmentation, 
SGSF achieves initial differentiation of point clouds in the 
vertical direction, mitigating issues related to boundary 
intersections in filtering results. By incorporating semi-global 
optimization principles, the method aims to enhance the 
universality of filtering results while minimizing the input of 
filtering parameters. 
 

2. METHODOLOGY 

As illustrated in Figure 1, the SGSF filtering algorithm proposed 
in this paper primarily involves the following three steps: 1) 
Generation of point cloud supervoxel units based on boundary 
preservation. 2) Scanning strip delineation and ground saliency 
computation based on the supervoxel units. 3) Optimal filter 
plane solution based on the idea of semi-global optimization. 
Finally, we tested SGSF against representative surface-based 
filtering algorithms based on the latest airborne LiDAR point 
cloud filtering dataset. 

 
Figure 1. Flowchart of the SGSF algorithms. 

2.1 Supervoxel unit segmentation 

Methods that employ clustering for point cloud filtering 
frequently partition the point cloud into regular grids (Evans and 
Hudak, 2007; Hu et al., 2015). However, this approach may 
disrupt the original boundaries of objects in the point cloud, 
making it less conducive to further segmentation and clustering 
based on elevation. Therefore, this paper employs the supervoxel 
segmentation algorithm TBBP (Lin et al., 2018) to partition the 
point cloud into boundary-preserving supervoxel clusters. Unlike 
methods that require initializing seed points for super-voxels, this 
approach generates super-voxel units with adaptive size. This 
characteristic allows it to effectively preserve the boundaries of 

fine structures such as trees and vehicles in ALS point clouds. 
Figure 2 shows an example of ALS point cloud supervoxel 
segmentation. The fundamental resolution 𝑟  of supervoxels is 
provided as external input. After completing the supervoxel 
segmentation, the centroid coordinates of each super-voxel point 
cloud cluster are computed as the center point of the respective 
super-voxel. This information is utilized in subsequent 
supervoxel-based scan strip division. 

 
(a) ALS point cloud          (b) supervoxel segmentation 

Figure 2. ALS point cloud supervoxel segmentation 
 
2.2 Ground saliency calculation based on supervoxels 

2.2.1 Scanning strip division 
Ground saliency is determined by cumulatively computing the 
number of height difference step changes in multiple directions. 
It represents the initial probability of the supervoxel unit 
belonging to the ground category. Firstly, the supervoxels are 
divided into scan strips along 𝑁 directions based on their centroid 
coordinates, as illustrated in Figure 3. Specifically, in the 2D XY 
plane, starting from the y-axis and rotating clockwise around the 
origin, each scan direction is separated by 360/𝑁 degrees. This 
process generates 𝑁 evenly distributed scan directions in the 2D 
plane. The scanning direction here refers to the direction in which 
the supervoxel unit performs elevation difference calculations, 
and is independent of the scanning direction during LiDAR point 
cloud acquisition. The value of 𝑁 is a constant, and a larger 𝑁 
enhances the smoothness of the filtering but also increases 
computational complexity. In this paper, 𝑁 is set to 8, as utilizing 
8 directions strikes a balance between filtering accuracy and 
computational efficiency. 

 
(a) Division into 8 scan directions. (b) Scanning strip divisions 

in a single direction. 
Figure 3. Schematic diagram of scanning strip divisions 

2.2.2 Calculation of ground saliency 
After dividing the scanning directions and obtaining the scanning 
strips in each direction, the scanning strips in each direction were 
sorted, segmented and the ground significance values were 
calculated. The specific steps include the following: 
 (1) Within each scanning strip, supervoxel units are sorted in 
ascending order based on the x-axis of their centroids. 
Specifically, for strips parallel to the y-axis scanning direction, 
supervoxel units are sorted in ascending order based on the y-axis 
of their centroids. The elevation value of each supervoxel is set 
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to the elevation of the lowest point within that supervoxel, and 
the initial saliency value 𝜆௜ of supervoxel 𝑆௜ is uniformly set to 1.  
(2) Compute the absolute value of the elevation difference 
between two adjacent supervoxels in the sorting direction. If this 
absolute value is less than the segmented elevation difference 
threshold 𝛥𝐻, the supervoxel is assigned to the current segment; 
otherwise, it is assigned to the next segment. Segmentation of all 
supervoxels in scanning strips along the scanning direction.  
(3) After the segmentation is complete, calculate the elevation 
difference between the last supervoxel in the current segment and 
the first supervoxel in the adjacent next segment along the 
scanning direction. If the elevation difference is greater than 
twice the segmented elevation difference threshold 𝛥𝐻, subtract 1/𝑁 from the saliency value 𝜆௜ of all supervoxel units within that 
segment. 
(4) Perform the operations of steps (2) and (3) separately for each 
of the 𝑁 scanning directions to obtain the saliency value 𝜆௜ for 
each supervoxel unit 𝑆௜. 
The elevation difference threshold 𝛥𝐻  described above is 
externally inputted, and this parameter determines the lowest 
feature that can be distinguished during the segmentation process, 
which is typically set to around 1.0m. After the significance 
calculation, supervoxels with elevations higher than the adjacent 
units have low saliency (close to 0), while supervoxels with 
elevations lower than the adjacent units have high saliency (close 
to 1). However, the elevation distribution of the actual terrain is 
more complex. For instance, the central depressed part of a 
building is prone to be incorrectly segmented as the ground. 
Therefore, for point clouds with structures featuring central 
depressions, such as buildings, an iterative calculation of saliency 
in step (3) can be performed for segments where saliency remains 
unchanged during a single scanning process. The iterative 
calculation process is illustrated in Figure 4, and typically, 
iterating three times to calculate ground saliency during scanning 
effectively filters out abnormal ground saliency values caused by 
central depressions in buildings. For point clouds without central 
depression structures in buildings, a single scanning process is 
sufficient for accurate saliency calculation. 

 
Figure 4. Iterative calculation of ground saliency. The figure 
shows the process of calculating the ground saliency for three 
iterative scans in each of the two opposite scanning directions. 
The underlined segments in the figure represent that the height 
difference of the segment is greater than the threshold 𝛥𝐻, then 
the saliency of all the supervoxel units in the current segment is 
subtracted by 1/𝑁, which is hidden in the next iteration and does 
not need to participate in the calculation. 
 
2.3 Optimal filter plane solution 

In order to achieve accurate classification of ground and non-
ground points, we utilize the ground saliency calculated at the 
supervoxel unit as a coordinating factor. For each supervoxel, we 
construct an energy function for the optimal filtering plane and 

solve for the optimal segmentation plane to accomplish point 
cloud filtering. Firstly, the minimum elevation value 𝐻ௌ೔  within 
the point cloud of supervoxel unit 𝑆௜  is considered as the 
elevation value for the current supervoxel. Here, 𝐻௠௜௡ represents 
the overall minimum elevation value of the input point cloud. The 
point cloud of the supervoxel is then discretized in the elevation 
direction. 𝑁௭ = 𝐻ௌ೔ − 𝐻௠௜௡𝑑 + 𝑚 ሺ1ሻ 𝐿ௌ೔ = ሼ 𝑙௜௡ ∣∣ 𝑙௜௡ = 𝐻௠௜௡ + 𝑛 ∗ 𝑑 ሽ௡ୀ଴ே೥ ሺ2ሻ 
where 𝑑 is the unit distance of elevation discretization, which is 
set as 0.2 times of the segmentation threshold 𝛥𝐻. The elevation 
compensation coefficient 𝑚  is typically set to 5. 𝑁௭  is the 
maximum value that the filtering plane of supervoxel 𝑆௜ can take 
within the discretized range; The variable 𝑛 is any integer within 
the range of [0, 𝑁௭] . 𝑙௜௡  denotes the elevation value of the 
candidate filtering plane for supervoxel 𝑆௜, and 𝐿ௌ೔  is the set of 𝑙௜௡. The energy function of the supervoxel 𝑆௜ on the t-th scanning 
strip is expressed as: 𝐸௧ሺ𝑆௜ሻ = 𝐸ௗ௔௧௔ሺ𝑆௜ሻ + 𝐸௦௠௢௢௧௛ሺ𝑆௜ିଵ, 𝑆௜ሻ ሺ3ሻ 
where the data term 𝐸ௗ௔௧௔ሺ𝑆௜ሻ  consists of the difference 𝐻ௗ 
between the elevation value 𝑙௜௡ of the candidate filter plane and 
the elevation value 𝐻ௌ೔  of the current supervoxel, and the penalty 
term for 𝑙௜௡ crossing the supervoxel. Simultaneously, the ground 
saliency value  𝜆௜ calculated based on supervoxels in Section 2.2 
is introduced as a coordinating factor. This ensures that the 
energy function is dominated by the data term when the ground 
saliency is high, and by the smoothing term when the ground 
saliency is low. The expression for 𝐸ௗ௔௧௔ is given by: 𝐸ௗ௔௧௔ሺ𝑆௜ሻ = ൝𝜆௜ ∗ ൫1.0 − 𝑒ିு೏మ൯ + ሺ1 − 𝜆௜ሻ ∗ 𝐻ௗ, 𝐻ௗ ≥ 0𝜆௜ ∗ ൫1.0 − 𝑒ିு೏మ൯, 𝐻ௗ < 0 ሺ4ሻ 

where 𝐻ௗ = 𝑙௜௡ − 𝐻ௌ೔ . The smoothing term 𝐸௦௠௢௢௧௛  consists of 
the absolute value of the difference between the elevation of the 
optimal filter plane of the current supervoxel 𝑆௜ and that of the 
adjacent previous supervoxel 𝑆௜ିଵ in the scanning direction, and 
is used to smooth out the elevation difference of the optimal filter 
planes between the neighboring segments to make the overall 
filter plane smoother. 𝐸௦௠௢௢௧௛ is expressed as: 𝐸௦௠௢௢௧௛ሺ𝑆௜ିଵ, 𝑆௜ሻ = |𝑙௜ିଵ௡ − 𝑙௜௡| ሺ5ሻ 
The optimal filter plane is determined by accumulating and 
minimizing the energy function for each supervoxel unit in 𝑁 
directions. Following the concept of semi-global optimization 
(Hirschmuller, 2005), the result of this filter plane solution 
approximates the global optimal filter plane: 𝑙௜ = 𝑎𝑟𝑔𝑚𝑖𝑛 ൭෍ 𝐸௧ሺ𝑆௜ሻே

௧ୀଵ ൱ ሺ6ሻ 

Based on the optimal filtering plane 𝑙௜ , each point in the 
supervoxel point cloud clusters 𝑆௜ is individually assessed using 
the following calculation method: If the elevation value of a point 
is less than 𝑙௜ or if the absolute difference between the elevation 
value of the point and 𝑙௜ is less than the discretization unit length 
d, then the point is classified as a ground point. Otherwise, the 
point is classified as a non-ground point. 
 

3. EXPERIMENTAL RESULTS 

To validate the effectiveness of the proposed method, a 
comprehensive comparison was conducted with three advanced 
surface-based airborne LiDAR point cloud filtering methods: 
CSF, MCC, and SGF. In the experimental process, the 
supervoxel resolution 𝑟 was set to 2m, the elevation difference 
threshold 𝛥𝐻  was set to 1m, and the number of scanning 
directions 𝑁  was set to 8. Among the compared methods, the 
CSF algorithm was implemented using CloudCompare software, 
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the MCC algorithm was implemented using MCC-LiDAR 
software, and both SGF and the proposed SGSF algorithm were 
implemented on the Visual Studio 2019 platform. The 
experimental computer was configured with an AMD Ryzen 9 
5900HX CPU, 32GB-RAM, and Windows 11 x64 operating 
system. The hyperparameters of the compared algorithms were 
also appropriately adjusted to their optimal settings. 
 
3.1 Dataset 

Area Topographic 
features Main objects 

S1 smooth complicated buildings, vegetation, 
viaduct, vehicles  

S2 smooth dense buildings, vegetation, 
waterbody, vehicles, boats 

S3 smooth dense buildings, vegetation 
S4 smooth dense buildings, vegetation 
S5 rugged dense buildings, vegetation, slope 
S6 rugged buildings, vegetation, slope 
S7 rugged dense vegetation, roads 
S8 sharp sparse vegetation, steep 
S9 sharp dense vegetation, steep 

Table 1. Main topographic features of the test area 
 
For an objective and comprehensive comparison with other 
methods, we selected the latest known airborne LiDAR point 
cloud filtering dataset, OpenGF (Qin et al., 2023b). The OpenGF 
dataset comprises 9 representative scenes, including metropolis 
with large roofs, metropolis with dense roofs, small city with flat 
ground, small city with local undulating ground, small city with 
rugged ground, village with scattered roofs, mountain with gentle 
slopes and dense vegetation, mountain with steep slopes and 
sparse vegetation, and mountain with steep slopes and dense 
vegetation. For each scene, multiple point cloud blocks with 
semantic ground and non-ground labels are provided for the 
development of deep learning-based filtering pipelines. As our 
method is not learning-based, we conducted comparative 
experiments by selecting point cloud of size 500×500 m2 from 
each of the 9 representative scenes in the OpenGF dataset, for 
comparative experiments to verify the filtering performance 
across various types of scenes. Table 1 provides a detailed list of  

the topographic features and main land objects types in the test 
area. Before conducting the experiments, we filtered out 
unnecessary noise in the point cloud based on label values. 
 
3.2 Quantitative results 

In order to objectively evaluate the accuracy of our method, we 
refer to the evaluation metrics of Qin et al. (2023b), including the 
intersection-over-union (IoU) of ground and non-ground points 
and the overall accuracy (OA). Where 𝐼𝑜𝑈௡௚ and 𝐼𝑜𝑈௚ represent 
the classification accuracies of non-ground and ground points, 
respectively, and OA represents the overall accuracy of the 
filtering algorithm. The specific expressions are as follows: 𝑂𝐴 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 ሺ7ሻ 

𝐼𝑜𝑈௡௚ = 𝑇𝑃௡௚𝑇𝑃௡௚ + 𝐹𝑃௡௚ + 𝐹𝑃௚ ሺ8ሻ 
𝐼𝑜𝑈௚ = 𝑇𝑃௚𝑇𝑃௚ + 𝐹𝑃௚ + 𝐹𝑃௡௚ ሺ9ሻ 

where, 𝑇𝑃௡௚ represents the number of correctly recognized non-
ground points, 𝐹𝑃௡௚ represents the number of non-ground points 
incorrectly recognized as ground points, 𝑇𝑃௚  represents the 
number of correctly recognized ground points, and 𝐹𝑃௚ 
represents the number of ground points incorrectly recognized as 
non-ground points. Additionally, we calculated the Kappa 
coefficient (Cohen, 1960) as a measure of consistency for the 
filtering classifier. A higher Kappa coefficient indicates that the 
classification results are unbiased. 
The experimental results are shown in Table 1. From Table 1, it 
can be observed that SGSF filtering algorithm achieved the 
highest average OA and 𝐼𝑜𝑈௚ compared to CSF, MCC, and SGF, 
and also demonstrated sub-optimal results in terms of the average 
Kappa coefficient and 𝐼𝑜𝑈௡௚ . Overall, SGSF achieved 
competitive results in 7 out of the 9 tested scenarios, 
demonstrating the robustness of our proposed algorithm across 
various environments. 

 
 
 
 

Area 
CSF MCC SGF SGSF 

OA 
(%) 

Kp 
(%) 

𝐼𝑜𝑈௨௚ 
(%) 

𝐼𝑜𝑈௚ 
(%) 

OA 
(%) 

Kp 
(%) 

𝐼𝑜𝑈௨௚ 
(%) 

𝐼𝑜𝑈௚ 
(%) 

OA 
(%) 

Kp 
(%) 

𝐼𝑜𝑈௨௚ 
(%) 

𝐼𝑜𝑈௚ 
(%) 

OA 
(%) 

Kp 
(%) 

𝐼𝑜𝑈௨௚ 
(%) 

𝐼𝑜𝑈௚ 
(%) 

S1 97.37  94.71 95.19  94.49  88.10  76.40  87.77  78.21  94.43  88.78  90.22  88.54  98.19  96.37  96.63  96.23  
S2 96.29  91.75 94.53  89.67  94.31  87.28  91.77  84.45  95.26  89.08  93.29  86.13  96.41  92.03  94.68  90.02  
S3 95.96  91.79 91.30  92.91  92.96  85.85  85.98  87.60  94.35  88.66  88.58  89.95  95.93  91.81  91.33  92.88  
S4 96.65  93.29 93.31  93.71  95.94  91.88  92.05  92.33  96.89  93.78  93.77  94.06  96.98  93.96  93.87  94.39  
S5 87.79  73.77 82.36  71.59  89.10  76.68  84.03  74.45  88.62  75.08  83.85  72.18  88.02  75.61  81.39  74.85  
S6 86.95  74.10 86.81  76.69  77.14  71.47  75.09  74.41  91.90  83.77  84.20  85.74  96.74  93.39  92.85  94.36  
S7 84.22 57.16 81.33 49.52 86.74 61.21 84.45 52.70 87.53 60.26 85.64 51.23 88.18 61.42 86.43 52.12 
S8 77.89 54.54 68.57 57.30 83.11 66.12 72.61 69.41 71.76 40.52 64.30 42.54 80.45 61.86 65.17 69.17 
S9 88.93 62.81 87.39 52.41 92.53 64.39 91.87 52.23 91.08 50.95 90.56 38.55 90.06 57.66 89.13 46.36 

mean 90.23 77.10 86.75 75.37 88.88 75.70 85.07 73.98 90.20 74.54 86.05 72.10 92.33 80.46 87.94 78.93 
Table 2. Quantitative results of four algorithms. The table highlights the optimal and suboptimal results for each metric. 

3.3 Qualitative results 

SGSF demonstrated significant advantages in the filtering results 
for scenes S1-S3 of the OpenGF dataset, with Figure 5 providing 

qualitative filtering results for part of the S1 scene. In the figure, 
we labeled Type I errors (ground points mistakenly classified as 
non-ground points) and Type II errors (non-ground points 
mistakenly classified as ground points). The features in these 
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scenes often have relatively regular structures, and supervoxel 
segmentation can effectively address the issue of boundary 
crossings between ground and non-ground points. This is 
beneficial for subsequent calculations of the optimal filtering 
plane on a supervoxel point cloud cluster basis. For the CSF 
algorithm, the flat ground in the urban scene enables it to obtain 
more accurate filtering results under harder cloth conditions, but 
such parameter settings also cause the CSF to lose some details 
of the ground on gentle slopes, while setting softer cloth 
parameters will prompt the cloth particles to stick to the middle 
part of large buildings, increasing the Type II error. The SGF and 
MCC algorithms do not account for the top depressions in 
building structures, making them prone to misclassifying the 
depressed parts of large buildings as ground. Additionally, the 
point cloud partitioning method using a regular grid unit is not 
conducive to accurately calculating filtering planes at object 
boundaries (such as curbstones with elevation changes), which is 
prone to Type I errors. 

 
Figure 5. Qualitative results of the four algorithms in the S1 area. 
 
In addition, for the small urban area and forest scenes with 
undulating ground in the OpenGF dataset (S4-S7), SGSF 
demonstrated advantages compared to the other three contrast 
algorithms. For steep mountainous forest terrain (Area S8, S9), 
SGSF shows a significant advantage over SGF and CSF 
algorithms, but its overall performance is not as effective as the 
MCC filtering algorithm designed specifically for forest 
environments. The reason may be that the supervoxel 
segmentation of SGSF is not sensitive to the sparse ground in 
forest areas with large height differences, making it difficult to 
detect sparse ground points with significant topographic height 
differences. Overall, SGSF outperforms SGF, CSF, and MCC in 
terms of the average values of various evaluation metrics under 
multiple terrain conditions, demonstrating the robust application 
potential of our method in various terrain scenarios. 
 
3.4 Comparisons with Baseline Methods 

We specifically compared our baseline method, SGF(Hu et al., 
2015), which calculates ground saliency based on regular grid 
partitioning. Figure 6 visualizes the ground saliency calculated 
based on supervoxel segmentation (SGSF) and the ground 
saliency calculated based on regular grid partitioning (SGF) for 
the S6 area. The visualization also presents the final filtering 
results of both algorithms. It can be observed that due to the 
penetrability of LiDAR point clouds, there are sparse ground 

points beneath the trees. As shown in Figure 6(a), the ground 
saliency computation based on a regular grid only considers the 
lowest point in the two-dimensional plane of the grid, neglecting 
the terrain boundaries in the vertical direction. Consequently, it 
is challenging to distinguish between ground and non-ground 
points in regions with coherent topography. However, the ground 
saliency computed based on supervoxels considers effective 
segmentation along the vertical direction of terrain boundaries, 
significantly alleviating the impact of cross-boundary effects. As 
depicted in the results shown in Figure 6(b), the ground saliency 
of ground points in the scene approaches 1, while the ground 
saliency of non-ground points approaches 0, achieving an 
effective preliminary distinction between ground and non-ground 
points. This further enhances the accuracy of the subsequent 
calculation of the optimal filtering plane.  

 
Figure 6. Comparison results of SGSF and SGF algorithms in 

the S6 area. 
 

We also visualized the comparison results of ground saliency 
calculation under different terrain conditions in Figure 7. From 
the results, it can be observed that the ground saliency calculated 
based on supervoxel segmentation (Figure 7d) effectively 
separates small structures such as trees, vehicles, and power lines. 
These structures are often overlooked by the ground saliency 
calculated by SGF (Figure 7c). This enables SGSF to obtain more 
distinguishable ground saliency values in various terrain 
environments, enhancing the robustness of the SGSF algorithm. 
We conducted a statistical analysis of the distribution histograms 
of ground saliency values in S6 area calculated by the two 
methods (Figure 8). From the graph, it can be observed that the 
ground saliency values calculated by SGSF are mainly 
concentrated around 0 or 1, allowing for a good preliminary 
separation of ground and non-ground points. However, the 
ground saliency values calculated by SGF are uniformly 
distributed around 0.5, failing to effectively differentiate between 
ground and non-ground points. This can also have a negative 
impact on the subsequent calculation of the optimal filtering 
plane based on ground saliency. 
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(a) Point cloud depth map                  (b) ground truth                           (c) SGF ground saliency          (d) SGSF ground saliency 

Figure 7. Comparison of the results of ground saliency calculations in different terrains 
 

 
Figure 8. Histogram of the number distribution of ground 

saliency for the SGSF and SGF algorithms. 

3.5 Algorithm efficiency comparison 

In terms of algorithm efficiency, the number of point clouds in a 
single block of the openGF validation set used in the experiments 
ranges from 200,000 to 6 million points, and the computation 
time of SGSF in the S2 plot with the largest amount of data is 
about 24s, which is lower than the efficiency of SGF (about 5s) 
and CSF (about 4s) under the same parameters, but better than 
the computation efficiency of MCC, whose computation time is 
usually more than 4min. The increased computational effort of 
SGSF compared to SGF is mainly reflected in the segmentation 
of supervoxels. Since the TBBP algorithm can adaptively 
preserve the fine structure of features when performing 
supervoxel segmentation, the number of segmented supervoxels 
is generally larger than the number of regular grid divisions at the 
same resolution, which inevitably increases the computational 
amount. 

4. CONCLUSIONS 

We propose an airborne LiDAR point cloud filtering algorithm, 
SGSF, based on supervoxels to calculate ground saliency. This 

method takes full consideration of the geometric structure of 
LiDAR point clouds, computes ground saliency using 
supervoxels as units, and subsequently solves for the optimal 
filtering plane, achieving precise classification between ground 
and non-ground points. The experimental results on the ALS 
filtering dataset OpenGF demonstrate that, across various terrain 
environments in ALS point clouds, the averages of various 
evaluation metrics for SGSF are superior to those of surface-
based filtering algorithms such as CSF, MCC, and SGF, 
indicating its promising application potential across diverse 
scenarios.  
Compared with the filtering algorithm based on regular grid 
division, SGSF is able to correctly recognize the depressed 
structures of large buildings in urban areas and the fine structural 
boundaries of terrain features, which is a significant advantage in 
the scenarios of urban areas with gentle terrain and small cities 
with rugged ground. However, the filtering performance of SGSF 
in steep mountainous terrain needs further improvement. Our 
future work will primarily focus on adaptively distinguishing and 
enhancing the filtering effectiveness in mountainous terrain. 
Additionally, the computational speed of SGSF is currently slow 
due to supervoxel segmentation. We plan to address this by 
introducing parallel computing techniques to improve the 
algorithm efficiency. 
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