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Abstract

The development of remote sensing platforms and sensors, as well as the improvement of remote data processing tools and methods,
create new opportunities for automatic updating of maps. Currently, aerial photographs serve as the main source for automatic map
updates due to their accessibility and significant informational value. One of the core elements for image to maps transition is
accurate image segmentation. Nowadays, machine learning methods demonstrate the best results in task of image segmentation.
At its core, maps represent information about a certain area in a vector form, that not only contains visual information about area,
but also reflects some relations between objects in the map. This quality makes a map more convenient for human perception
than an aerial photograph (raster image). This study addresses the problem of accurate aerial image segmentation with taking the
advantages of using graph neural network as the more adequate model of map structure. We use graph neural network for retrieving
semantic and vector information about a captured area from its aerial image. The developed framework at first phase utilizes visual
transformer for retrieving deep features from the input aerial image. The graph neural network then performs clustering of the
extracted deep features to obtain semantic segmentation of the image. To train and evaluate the developed framework, a special
dataset is collected and annotated. It contains more than 10k aerial photographs representing various types of objects taken in
different years and seasons. The evaluation results on the created dataset proved the state-of-the-art performance of the developed
framework.

1. Introduction

Timely updating of maps is very important for the proper oper-
ation of a wide range of organizations and services. With the
recent progress in means for acquiring remote sensing data and
striking advances in methods of its processing, the performance
of automatic map updating algorithms reached very impress-
ive level. The main improvements in the automatic updating of
maps are based on a large amount of collected remote sensing
data and on applying machine learning methods for data ana-
lysis.

High quality of aerial image segmentation is a key point in ac-
curate map generating. Applying of machine learning methods
for image semantic segmentation provided significant improve-
ments in the quality of aerial image segmentation, and now deep
learning neural network models demonstrate the state-of-the-art
performance for this task. High results of deep neural network
models in many machine vision and data analysis task are based
on a huge amount of annotated data.

To reduce time and resources for data annotation some ap-
proaches were proposed such as semi-supervised (Assran et
al., 2021) or weakly-supervised (Ren et al., 2020) techniques.
Utilizing of an attention mechanism allowed to develop self-
supervised methods for image segmentation. Thus, the use of
self-distillation with no labels approach (Caron et al., 2021) in
task of Vision Transformer training showed that self-supervised
Vision Transformer aggregates explicit information about the
semantic segmentation of an image as features, surpassing as
supervised Vision Transformers, as convolution neural net-
works in this task. These extracted deep features contain signi-
ficant semantic information, that can be used in task of semantic
segmentation.

At its core, maps represent information about a certain area in

a vector form, that not only contains visual information about
area, but also reflects some relations between objects in the
map. This quality makes a map more convenient for human
perception than an aerial photograph (raster image).

The better the model reflects the essential features of the studied
process (object), the better results it gives at the research stage.
Recently introduced graph neural networks demonstrate the
state-of-the-art performance on graph-structured data, in such
domains as natural language processing (Document Classific-
ation, Text Generation, Question Answering, Sentiment Ana-
lysis), Bioinformatics (Protein-Protein Interaction Prediction,
Genomic Sequence Analysis, Drug Discovery), traffic analysis
and forecasting (Jiang and Luo, 2022).

In this study we apply graph neural network for retrieving se-
mantic and vector information about a captured area from its
aerial image. The developed framework at first phase utilizes
visual transformer for retrieving deep features from the input
image. The graph neural network then performs clustering of
the extracted deep features to obtain semantic segmentation of
the image.

To train and evaluate the developed framework, a special data-
set is collected and annotated. It contains 10 thousand aerial
photographs representing various types of objects taken in dif-
ferent years and seasons.

The main contributions of the presented study are the following:

• the framework for accurate aerial image segmentation
based on graph neural network,

• the special dataset containing aerial images of various
landscapes and land-use territories,

• results of evaluation of the developed framework and
baselines on the created dataset.
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2. Related work

2.1 CNN for semantic segmentation

Recent advancements in deep learning (LeCun et al., 2015, Li
et al., 2020c, Emelyanov et al., 2024) have greatly improved the
deep semantic segmentation network (DSSN) for semantic seg-
mentation of remote sensing (RS) images (Basaeed et al., 2016,
Ouyang and Li, 2021) when compared to traditional methods
like random forest (RF), decision trees (DT), and support vector
machines (SVMs) (Camps-Valls et al., 2013). The fully convo-
lutional network (FCN) was proposed by (Long et al., 2015)
by adding deconvolution layers to the convolutional neural net-
work (CNN), which became a new development in end-to-end
semantic segmentation.

U-Net (Ronneberger et al., 2015) used skip connections to util-
ize multiscale information as the encoder-decoder architecture
representative. U-Net achieved good results by combining low-
level detail and high-level semantic information with skip con-
nections, which strengthened the feature maps. Additionally,
SegNet (Badrinarayanan et al., 2017) used the index of max
pooling in the encoder to conduct nonlinear upsampling in the
decoder.

Recently, there have been numerous advancements in DSSN-
based RS image semantic segmentation within the field of RS.
Several studies have utilized FCN for the task of semantic seg-
mentation in remote sensing images (Wurm et al., 2019, Sher-
rah, 2016). (Kampffmeyer et al., 2016) introduced a new DSSN
for the purpose of mapping urban land cover. (Wang and Li,
2020) utilized an ensemble multiscale residual deep learning
approach inspired by the U-Net structure for building extrac-
tion. (Audebert et al., 2016) utilized a variants network of
SegNet and incorporated multicore convolutional layers to effi-
ciently gather predictions across different scales.

(Zhang et al., 2017) suggested using the DMSMR network
to enhance segmentation performance. (Pan et al., 2018)
used a detailed segmentation network to label objects in
high-resolution aerial images. In order to use multisensor
data (Kniaz, 2018, Knyaz et al., 2024), such as thermal im-
agery, both the RGB image and the multimodal data are com-
bined to provide more information for DSSN. (Marmanis et
al., 2016) suggested using a Siamese network to process images
and DSM data, and included edge detection and semantic seg-
mentation in the upgraded version. (He et al., 2020a) add edge
information to DSSN to improve the segmentation results. Pre-
vious knowledge is applied to semantic segmentation of remote
sensing images. (Alirezaie et al., 2019) used U-Net for quick
and precise pixel classification, along with a knowledge-based
post-processing step.

DSSN uses deep features to show the category of each pixel,
highlighting the significance of features in semantic segmenta-
tion. To get better features, the network’s expressiveness needs
to be improved. Like the human visual system, the attention
mechanism boosts important features and reduces less import-
ant features. In the channel domain, features are chosen based
on their importance in the channel dimension. (Hu et al., 2018)
proposed an squeeze-and-excitation (SE) block that adjusts fea-
ture responses across channels by modeling channel interde-
pendencies. Spatial domain attention assigns different weights
to pixels based on their positions to introduce spatial context.
The U-net attention model (Oktay, 2018) utilizes an attention
gate module to control the significance of features in various

spatial locations. A Semantic Segmentation Network called
SCAttNet (Li et al., 2020a) was introduced for RS image seg-
mentation. It utilized a convolutional block attention module
(CBAM) (Woo et al., 2018) with spatial and channel attention.

2.2 Graph convolutional network

The objects scattered on the ground are interconnected in vari-
ous ways, forming a graph. In this graph, nodes represent the
objects, while the edges represent their spatial relationships,
like being nearby, overlapping, or apart.

While DSSNs have excelled in processing Euclidean data, their
performance falls short when handling graph data, which exists
in a non-Euclidean space. Graph convolutional neural network
(GCN) has clear advantages in extracting features from irregu-
lar graph data by applying deep learning techniques. Through
graph convolution, GCN is able to excel in analyzing graph
data. Graph convolution utilizes edge connections to aggreg-
ate node information and create new node representations. This
allows GCN to effectively capture the dependency relationship
among graph nodes.

These benefits have fostered the advancement of studies in-
volving graph analysis (Gori et al., 2005). (Welling and Kipf,
2016) developed a layered propagation graph model that util-
ized convolution in spectral space to directly process graph
data. NN4G (Niepert et al., 2016) implemented graph con-
volution in the spatial domain by directly collecting informa-
tion from neighboring nodes. (Li et al., 2019) successfully de-
veloped Deep-GCN by incorporating ideas from CNN, such as
residual connections and dilated convolutions, to address the
issue of gradient vanishing in the original GCN model, which
was confined to shallow layers.

When aggregating the neighbor information, the attention
mechanism allows Graph attention network (GAT) (Veličković
et al., 2017) to calculate the weight of each neighbor node in
relation to the central node. GCN focuses more on spatial rela-
tions than similarity weights, unlike GAT. (Lu et al., 2019) sug-
gested utilizing the precise location of each pixel in the image
for semantic segmentation through a pixel-based GCN model,
which was initialized by an FCN. While each pixel contains its
own local position, it fails to accurately depict ground objects
and disregards the importance of spatial relationships.

To address multilabel aerial image scene classification, (Li et
al., 2020b) presented a CNN-GCN framework that mines both
the object information and topological relationships among
multiple objects. CNN’s abstract features are useful for scene
classification, but pixel-level semantic segmentation entails
providing specific details for categorizing each pixel.

3. Material and Method

With the aim to develop a data-driven method for accurate aer-
ial image segmentation, we collected and annotated a special
dataset designed for the tasks of aerial imagery segmentation,
vectorization and change detection. This dataset was then used
to train and test the proposed framework.

3.1 Dataset

The developed algorithm was trained on a purpose-built dataset
for aerial imagery segmentation, vectorization and change de-
tection tasks (SVAI dataset). SVAI dataset is a novel large-scale
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Figure 1. Example images from the Segmentation and Visualization Aerial Images dataset. Images in columns 1 and 3 were obtained
from Bing and Google satellites in 2018 and 2024, respectively; columns 2 and 4 show changes (destroyed objects are shown in red,

and newly appeared objects are shown in blue).

Figure 2. An example of code for describing a node.

remote sensing dataset for building change detection, segmenta-
tion and vectorization. SVAI consists of 2000 pairs of Bing and
Google Earth satellite images with very high resolution (VHR,
0.34 m/pixel) and a size of 512x512 pixels. These images with
a time span of 6 years feature significant land-use changes, es-
pecially growth of buildings and roads.

SVAI covers different building types, such as single-family
houses, small garages, and large warehouses. It primarily fo-
cuses on building-related changes, including building growth
(change from soil, grass, or building under construction to new
built-up areas) and building decay, as well as the emergence of
new road routes.

The images used are annotated by remote sensing imagery in-
terpretation experts using binary labels (1 for change and 0
for unchanged). Each sample in the dataset is annotated by
one annotator and then double-checked by another to obtain
high-quality annotations. A fully annotated SVAI contains over
40,000 individual building and road change instances.

The images in SVAI were obtained during surveys of the bor-
der of the Tula and Moscow regions, namely the villages of
Kostino, Parshino, Lukyanovo, Verkhneye Romanovo, etc. Fig-
ure 1 shows example images from the dataset. The Bing satel-
lite images were taken in mid-2018, and the Google Earth satel-
lite images were taken in mid-2024.

For the vectorization task, SVAI was supplemented with data
from OpenStreetMap. OpenStreetMap (literally ”open street
map”), abbreviated OSM, is a non-profit web mapping project

aimed at creating a detailed, free and open-source geographic
map of the world by a community of participants — Internet
users. To create maps, data from personal GPS trackers, aerial
photography, video recordings, satellite images and street pan-
oramas provided by some companies, as well as the knowledge
of the person drawing the map, are used.

OpenStreetMap uses the wiki principle when creating a map.
Each registered user can make changes to the map. The project
data is distributed under the terms of the free Open Database
License. The data obtained from OpenStreetMap provides a
vector format of streets and buildings, which is necessary for
vectorization. The sample data from the dataset intended for the
tasks of aerial images vectorization is shown in Figure 3. We
use open data from OpenStreetMap to initially annotate images
for task of vectorization.

The original data file in OSM format is an XML format. The
OSM file contains a set of object such as nodes, ways, relations
and tags.

Nodes are points with a unique identifier and a pair of coordin-
ates. Nodes can be independent objects (with descriptive tags),
and also be part of ways and relations. The sample code de-
scribing a node is shown in Figure 2.

Ways are a set of nodes. It can be independent objects (with
descriptive tags), and also be part of relations. The sample code
describing a way is shown in Figure 4.

Relations can contain nodes, ways and other relations. The
sample code describing a relation is shown in Figure 5.
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Figure 3. Example images from the Segmentation and Visualization Aerial Images dataset. The top and bottom rows are OSM images
from 2018 and 2024, respectively, and the middle row is changes to the roadmap during this period of time.

Figure 4. An example of code for describing a way.

Figure 5. An example of code for describing relation.

3.2 Framework architecture

The proposed framework firstly exploits visual transformer to
extract deep object features from the input aerial image basing
on attention mechanism. Then a graphical neural network is
applied to cluster these deep features into homogeneous seg-
mented areas. The proposed architecture is shown in Figure 6.

3.2.1 Deep Features Retrieving To retrieve deep features
from aerial image we apply Vision Transfomer (Dosovitskiy et
al., 2020) trained with DINO (Caron et al., 2021).

DINO framework has the overall structure similar to modern
self-supervised approaches (Caron et al., 2020, Grill et al.,
2020, He et al., 2020b). It exploits the advantages of knowledge
distillation (Hinton et al., 2015) to improve the performance in

several tasks of computer vision such image segmentation, ob-
ject detection, video instance segmentation, etc. This feature
allows DINO framework to identify different areas in the im-
age, that can be then used for accurate segmentation.

Vision Transfomer divides input image I into k2 patches of size

s =
h

k
× w

k
, (1)

where h and w are the height and width of the image I respect-
ively. For the token embedding dimension t, the output feature
vector Z has a size of s× t.

The samples of DINO attention maps from multiple heads of
Vision Transformer are shown in Figure 7.

These attention maps contain significant information about an
image that can be used for segmentation. If to consider the
similarity between image patches as a graph, then the problem
of the image segmentation can be formulated as graph-cut task.
Such technique was applied by a number of authors (Shi and
Malik, 2000, Bansal et al., 2004, Bagon and Galun, 2011) with
different approaches for finding optimal the graph-cut.

3.2.2 Image Graph Representation Let represent an im-
age as an undirected graph G = {V, E} with node set V and
edge set E , where each node corresponds to the image area.
Than the task of image segmentation can be formulated as the
task of grouping the nodes basing on their similarity, or, other
word, to divide the graph into a sets of disjointed homogenious
parts.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W1-2024 
International Workshop on “Photogrammetric Data Analysis” – PDA24, 7–9 October 2024, Moscow, Russia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W1-2024-1-2024 | © Author(s) 2024. CC BY 4.0 License.

 
4



Figure 6. The framework architecture. Firstly, the pre-trained visual transformer retrieves deep features from the input aerial image
basing on attention mechanism. Secondly, graphical neural network performs clustering of these deep features into homogeneous

segmented parts.

Figure 7. Attention maps from multiple heads of ViT-S/8 for
[CLS] token query.

This task can be formulated as follows (Aflalo et al., 2023). It is
required to divide the graph into the k disjoint sets A1, A2...Ak

such that ∪iAi = V and ∀j 6=iAi ∩ Aj = ∅. This partition can
be expressed as a binary matrix S ∈ {0, 1}n×k where Sic = 1
if i ∈ Ac.

As a criterium of correct partitioning we consider the partition
that maximizes the number of connections within the partition,
and minimizes the connections between the partitions. The
number of the connections between a part A and a part B of
a given graph is given by the cut cut(A,B) of the graph G:

cut(A,B) =
∑

u∈A,v∈B

w(u, v). (2)

From this follows the definition of a normalized cut
Ncut(A,B) of the graph G:

Ncut(A,B) =

∑
u∈A,v∈B

w(u, v)∑
i∈A,j∈V

w(i, j)
+

∑
u∈A,v∈B

w(u, v)∑
i∈B,j∈V

w(i, j)
, (3)

So, to perform image segmentation using graph approach we
have to define how to establish the similarities between image
areas. We characterize the correspondence between image areas
by n×n matrix W , the elements wij representing the similarity
between image area i and image area j, i, j = 1 . . . n. For these

purpose we construct similarity matrix W using output deep
feature vector Z from Vision Transformer.

W = zzT ∈ Rk×k. (4)

3.2.3 Graph Neural Network Clustering Let X̂ be the
matrix of node representations yielded by one or more layers
of GNN convolution on a graph G with an adjacency matrix A.

Using the patch-wise correlation matrix from the extracted ViT
features and a single-layer Graph Convolution Neural Network,
we build a graph and then compute the cluster assignment of
nodes using a multilayer perceptron (MLP) with softmax at the
output layer:

X̂ =GNN(X,A,ΘGNN ), (5)

S =MLP (X̂,ΘMLP ), (6)

where ΘMLP and ΘGNN are trainable parameters. The soft-
max activation of the multilayer perceptron guarantees that
sij ∈ [0, 1] and enforces the constraints S1K = 1N .

The Graph Convolution Neural Network is optimized using the
normalized-cut relaxation proposed in (Bianchi et al., 2020).

The loss function is:

LNcut = − Tr(STAS)

Tr(STDS)
+ ‖ STS

‖STS‖F
− I3√

3
‖F , (7)

where ‖ · ‖F indicates the Frobenius norm and D is the degree
matrix of A. The number 3 denotes the number of disjoint sets
we aim to partition the graph into, and I3 is the identity matrix.

The first term of the objective function promotes the clustering
of strongly connected components together, while the second
term encourages the cluster assignments to be orthogonal and
have similar sizes.

For segmenting an image into more than two clusters, the pro-
posed technique is performed iteratively several times. At each
phase the previously selected background is claustered into new
background and new objects of given class by the developed
technique.
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Figure 8. Iterative clustering.

The results of the iterative semantic segmentation of an aerial
image is shown in Figure 8.

Such approach allows performing semantic segmentation for
the given set of classes.

4. Results

The evaluation of our unsupervised segmentation was
performed on developed SVAI dataset. We compare our un-
supervised approach to state-of-the-art unsupervised methods.
Mean Intersection-over-Union (mIoU) metric has been used as
a measure of the accuracy of segmentation. The comparison of
the numerical values of the mIoU for each of the methods is
shown in Table 1.

Method SVAI dataset
OneGAN (Benny and Wolf, 2020) 57.48
Voynov (Voynov et al., 2021) et al. 69.12
Spectral Methods (Melas-Kyriazi et al., 2022) 75.81
TokenCut (Wang et al., 2022) 72.36
Our method 77.83

Table 1. Values of the mIoU (mean Intersection-over-Union)
metric on the developed dataset for various algorithms.

The qualitative results of segmentation by the proposed frame-
work are shown in Figure 9.

The results of the framework evaluation on the SVAI dataset
shows that the proposed technique demontstrates the state-of-
the-art performance in the task of aerial images semantic seg-
mentation.

5. Conclusion

The framework for accurate aerial image segmentation, based
on graph neural network is developed.

We use graph neural network for retrieving semantic and vector
information about a captured area from its aerial image. The
developed framework at first phase utilizes visual transformer
for retrieving deep features from the input aerial image. The
graph neural network then performs clustering of the extracted
deep features to obtain semantic segmentation of the image.

To train and evaluate the developed framework, a special data-
set is collected and annotated. It contains more than 10k aerial

Figure 9. Semantic part segmentation. Top: original image;
middle: ground truth; bottom: proposed method.

photographs representing various types of objects taken in dif-
ferent years and seasons. The evaluation results on the created
dataset proved the state-of-the-art performance of the developed
framework.
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