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Abstract 

 

This paper addresses the actual problem of multiclass classification in large training sets. Classical Support Vector Machines (SVM) 

is a popular, convenient and well-interpreted classification method, but it has a high computational complexity of a training stage in 

a nonlinear case and a low data parallelism. The aim of this paper is to improve the scalability of nonlinear multiclass SVM.  

In the basis of this paper is Kernel-based Mean Decision Rule method with smart sampling (SS-KMDR) we previously proposed for 

fast solving large-scale binary SVM problems. In this paper we, at first, extend SS-KMDR for the multiclass classification problem. 

At second, we propose the modified algorithm of smart sample construction that allows to improve its characteristics and also extend 

it to possess the possibility to solve large-scale multiclass SVM problems. Experimental investigation of proposed methods was 

made on three large handwritten digit images data sets of different size and one large intrusion detection data set. Experiments show 

that both proposed multiclass methods allow to reach the quality near state-of-the-art SVC quality, but they essentially outperform it 

in the training time. The proposed Dual-Layer Smart Sampling SVM (DLSS-SVM method) allows additionally reduce training and 

test times in contrast to the basic smart sampling technique.  

 

 

 

1. Introduction  

Multiclass classification problem is one of the actual problems 

of machine learning. There are known a big number of applied 

problems of multiclass classification, among which are image 

search and text recognition, various tasks coming from medical 

systems, pharmacology, molecular biology, mining and oil 

industries, information security and many others socially 

significant areas. At that many modern real-world problems 

require processing large data sets to build a classification 

model, and these requirements may even exceed the capabilities 

of a single computer.  

 

Neural networks that have become widespread make it possible 

to solve problems of any scale, but do not provide the ability to 

explain the results obtained, which gives rise specialists mistrust 

to them (especially critical in expert and, in particular, medical 

systems) and in some cases serves as a basis for refusing their 

use in the benefit of explainable methods (Burkart et al., 2021; 

Charmet et al., 2022].  

  

In this regard, this work is based on the convenient and well-

proven Support Vector Machine method (SVM) (Vapnik, 

1995). In contrast to neural networks, it has strict mathematical 

geometrically interpretable problem formulation with a single 

decision, the ability to explain the obtained results, a small 

number of parameters (Emmert-Streib et al., 2020) and remains 

one of the most popular approaches in the machine learning 

arena (Benfenati et al., 2023).  

 

SVM is initially designed for binary classification problem. The 

dominant approach to extend it onto a multiclass problem is 

divide-and-combine one that combine decisions of 

independently trained binary classifiers. Two most popular 

strategies within this approach are “One-versus-Rest” (OvR) 

also known as “One-versus-All” (OvA) and “One-versus-One” 

(OvO) that is also called “All-versus-All” (AvA) (Hsu et al., 

2002; Duan et al., 2005; Malenichev et al., 2016). Its detailed 

description is provided in Section 3.2.  

 

Both OvR and OvA strategies require to train a number of 

binary SVM classifiers and so, efficiency of multiclass training 

is largely determined by efficiency of binary training.  

 

2. Related Work  

As to improving the performance of binary SVM, despite the 

massive amount of research in this area, a universal tool has not 

yet been found.  

 

In particular, for learning in large training sets that fit in the 

memory or there is data streaming, incremental methods have 

been proposed (Bottou, 2004; Hoi et al., 2018) and methods 

based on decomposition, such as chunking (Boser et al., 1992), 

Sequential Minimal Optimization (Platt, 1998) and others 

(Rivas-Perea et al., 2013). Decomposition methods form the 

basis of popular libraries such as SVMLight (Joachims, 1999), 

LibSVM (Chang and Lin, 2001) and SVMTorch (Collobert et 

al., 2001). The main disadvantage of all these methods is either 

the impossibility of using kernel functions (Aizerman et al., 

1970) to introduce nonlinearity, or the low efficiency of 

working with them. 

 

Papers aimed at improving performance in the nonlinear case 

propose the introduction of heuristics, for example, kernel 

matrix approximation (Drineas et al., 2005) (including 

generation of nonlinear features, whose inner product is 

approximately equal to the kernel values (Rahimi and Recht, 

2007; Rahimi and Recht, 2008), kernel caching and 

compression (Joachims, 1999; Zhu et al., 2009) and also taking 

into account feature sparsity (Joachims, 2006). However, an 

increase in the performance of these heuristic approaches is 
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usually accompanied by a noticeable decrease in the decision 

quality (Le et al., 2017).  

 

Many authors try to accelerate computations using parallel and 

distributed data processing technologies (Dekel et al., 2012; Niu 

et al., 2011; Agarwal et al., 2011; Zhao et al., 2011), including 

expression in MapReduce terms (Chu et al., 2006; Rizzi, 2016; 

Sleeman et al., 2021) and GPU applications (Wen et al., 2018). 

However, initial sequential algorithms have an iterative nature 

and between-iterations data dependencies, preventing effective 

parallelization. As a result, parallel and distributed processing 

only mitigates, but does not solve, the problem of high 

computational complexity. At that attempts to avoid data 

dependencies lead to a noticeable decrease in the decision 

quality (You et al., 2015).  

 

Our previously proposed Kernel-based mean decision rule 

method with smart sampling (SS-KMDR) (Makarova et al., 

2020) stands out from this group due to its intellectual way of 

forming subsamples, which allows to increase the method’s 

convergence speed compared to traditional random sampling 

(Chauhan et al., 2018; Byrd et al., 2016; Makarova et al., 2019), 

requires less intensive preparatory calculations in contrast to 

(Sadrfaridpour et al., 2019; Csiba et al., 2016; Zhao et al., 

2014), has a high degree of data parallelism and is suitable for 

nonlinear case.   
 

However, experimental study of the smart sampling technique 

that is proposed in (Makarova et al., 2020) has not a multi-class 

version and for binary problems has shown some limitations of 

its using for large training sets especially in a large-dimensional 

feature space.  

 

3. Contribution of the Paper  

In this paper we, at first, extend SS-KMDR for the multiclass 

classification problem. At second, we propose the modified 

algorithm of smart sample construction that allows to improve 

its characteristics and also extend it to possess the possibility to 

solve large-scale multiclass SVM problems.  

 

We made experiments in four large data sets to compare 

proposed approaches with different existing accurate and 

heuristic methods of solving multiclass SVM problems.  

 

4. Smart Sampling SVM for Multiclass Classification  

4.1 Multiclass and Binary Classification Problems  

Let 
*

 be a set of all possible objects  of some kind, each of 

which can be presented by n -length real-valued feature vector 

1( ) [ ,..., ]nx xx . We suppose that some finite subset of 

objects 
*{ , 1,..., }j j N  is oobservable through its 

representations ( ), 1,...,j j j Nx x  jointly with class 

labels ( ) {1,..., }, 1,...,j jy y m j N , 2m  and 

constitutes the training set [ , ] {[ , ], 1,..., }j jY y j N . 

The task is to make a decision function that for any new object 

 will estimate the unknown class-label ˆ( )y X .  

 

The dominant approach to solve multiclass SVM problem is to 

divide the initial multiclass problem onto a number of binary 

tasks with consequent their solving and combining the obtained 

decisions into decision of the initial multiclass problem.  

 

The binary problem is a special case of multiclass problem 

where the number of classes 2m .  

 

4.2 One-versus-the-Rest (OvR) and One-versus-All (OvA) 

Strategies for Multiclass Classification  

One-versus-the-Rest strategy consists in fitting one classifier 

per class, that is for m  classes m classifiers should be 

constructed. For each classifier, the class is fitted against all the 

other classes and, so, the full training set is used at each times.  

The resulting class label we select by the maximum value of 

class probability.   

 

One-vs-One strategy requires to train ( 1) / 2m m  classifiers 

for m  classes, i.e. 
2( )O m  in contrast to ( )O m  for OvR. But 

each individual OvO learning problem only involves a relatively 

small subset of the data whereas, with OvR, the complete 

dataset is used m  times. The resulted class label is determined 

by voting. 

 

4.3 The Basic Idea of the Smart Sampling 

The basic idea of the Smart Sampling was originally proposed 

by us in (Makarova et al., 2020) for Kernel-based Mean 

Decision Rules method and was aimed to accelerate its 

convergence in contrast to traditional random samples. This 

idea consists in forming samples in a special way. It is based on 

the fact that the binary SVM decision function that is found in 

the form of an optimal separating hyperplane depends only on 

so called support objects of two classes situated near the 

hyperplane. As a result, excluding any of non-support objects 

from the training set does not change the decision. This fact 

allows to intellectually reduce the training set and so to decrease 

the training time.  

 

In (Makarova et al., 2020) we proposed to form a smart sample 

only from support objects that are obtained as a result of 

training for small simple random samples. Objects selected by 

such a way are good enough candidates to be support objects in 

the initial problem for the full training set. The formal definition 

of forming smart sample is given by the Algorithm 1.   

 

Algorithm 1. Basic algorithm for forming Smart Sample  

Parameters:  

SSize  – desired approximate size of smart sample  

RSize – size of random samples  

1:     set the smart sample as empty 
smart

.   

2:      take small random sample rnd    

3: train SVM with [ , ]rndY  to obtain support objects 

sup rnd   

4:       update the smart sample supsmart smart   

5: if the smart sample size is not enough 

| |smart SSize  then repeat steps 2-5.   

 

It should be noted that the resulted smart samples can be of 

different size, each of which is near the desired value SSize  in 

contrast to the size of random samples RSize . The actual 

number of random samples can also be different and depends on 

the desired smart sample size SSize  and on the number of 
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support objects for random samples, which in turn is determined 

by parameters of SVM-training (constant C  and coefficient  

of RBF kernel) and data properties. 

 

Figure 1 illustrates the idea of forming a smart sample. 

Figures 1a-1e present random samples and the results of SVM-

training for them. The Figure 1f shows the smart sample that 

consists of support object (circled at figures 1a-1e) obtained as 

a result of training for the respective random samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Results of training for random (a-e) and smart (f) 

sample (red) in contrast to the result of training for 

the full training set (blue)   

 

4.4 Double-Layer Smart Sampling with Early Stopping  

Experimental study of basic smart sampling technique that is 

described in Section 2.3 has shown that when increasing the 

training set size especially in large-dimensional feature space, to 

ensure the required decision quality, it is necessary to increase 

the size of the random and smart samples. However, this in turn 

leads to an increase in the operating time due to the nonlinear 

dependence of the training time on the number of objects (in the 

nonlinear case). In work (Makarova et al., 2020), to increase the 

quality with a limitation on the smart sample size, averaging of 

decision rules constructed over several smart samples is carried 

out. But in this case the quality increases slightly, and the 

operating time increases in proportion to the number of smart 

samples. 

 

In this connection we propose the modified algorithm to form a 

smart sample. At first, to cover more support objects of the full 

training set with limited smart sample size we propose double-

layer procedure to form a smart sample. It consists in 

constructing a number of first-layer (L1) smart samples, to train 

in them and to form the second-layer (L2) smart sample from 

support objects that obtained at the 1L-training.  

 

At second, if a smart sample from some moment fills slowly (a 

small number of new support objects are added), then to reduce 

the execution time it may be advantageous to stop the process of 

its formation early. With this purpose we introduce additional 

threshold .  

 

The proposed procedure of forming the double-layer smart 

sample with early stopping is given by Algorithms 2 and 

Algorithm 3.   

 

 

 

Algorithm 2. First-layer Smart Sample with early stopping 

Parameters:  

SSize1 - desired size of first-layer smart sample  

RSize – size of random samples  

1
- the threshold for early stopping  

1:     set the 1-layer smart sample as empty 
1L

smart
 and    

         its actual size as zero 1 0actSSize  

2:      take small random sample rnd  of size RSize  

3: train SVM with [ , ]rndY  to obtain support objects 

         sup rnd   

4:       update the smart sample 
1 1

sup

L L

smart smart   

5: if the smart sample size is not enough  

                | | 1smart SSize  and early stopping criterion  

                
1

1| | 1L

smart actSSize  does not hold true then 

                 upgrade 
11 | |act

L

smartSSize   and repeat steps 2-5.   

 

 

Algorithm 3. Second-layer Smart Sample with early 

stopping 

Parameters:  

SSize1, SSize2 - desired sizes of first-layer and second-layer 

            smart samples, respectively  

 RSize – size of random samples  

1 2, - thresholds for early stopping at the 1-st and 2-nd  

            levels, respectively 

 

1:  set the 2-layer smart sample as empty 
2L

smart
 and  

     its actual size as zero 2 0actSSize .  

2:  form the 1-layer smart sample 
1

1( 1, , )smart

L SSize Rsize     

     (Algorithm 2)  

3: train SVM with 
1[ , ]L

smartY  to obtain support objects 

    
1 1

sup

L L

smart   

4:  update the smart sample 
2 2 1

sup

L L L

smart smart   

5: if the smart sample size is not enough 
2| | 2L

smart SSize   

    and early stopping criterion 
2

2| | 2L

smart actSSize   

    does not hold true then upgrade  
22 | |act

L

smartSSize   

     and repeat steps 2-5.   

 

5. Experiments 

5.1  Data description   

In experiments of this paper 3 large MNIST data sets and the 

KDDcup data set are used.  

 

Originally MNIST is the data set of 60000 handwritten digit 

images for the training and 10000 images for the testing.  In 

these experiments the basic data set was extended by addition 

synthetic images obtained as pseudo-random deformations and 

translations of original MNIST images. Synthetic images were 

generated using infiMNIST program by Leon Bottou that is 

available at https://leon.bottou.org/projects/infimnist.  

 

decision rule for the full training set 

decision rules for random samples (a-e) and for the smart sample (f) 

d 

a b 

e f 

c 
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Main characteristics of obtained data sets are presented at the 

Table 1. 

  

Training sets Objects  

(original / synthetic) 

features 

MNIST60k 60 000  (60 000 / 0) 784 

MNIST200k 200 000 ( 60 000 / 140 000) 784 

MNIST500k 500 000 ( 60 000 / 440 000) 784 

Test set    

MNIST10k 10 000 (10 000 / 0) 784 

Table 1. MNIST data sets characteristics 

Feature values of all MNIST data sets have the meaning of 

image pixel brightness and are in the range of 0…255. Before 

training and testing all MNIST data are normalized by dividing 

by 255.  

 

KDDcup data set contains a standard set of data to be audited, 

which includes a wide variety of intrusions simulated in a 

military network environment. It contains 4 898 431 objects for 

the training and 311 029 objects for test. The original KDDcup 

data set with data description can be downloaded at 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.  

 

Each object of KDDcup data set is initially represented by 38 

numerical and 3 categorical features. Each categorical feature 

was encoded through the One-Hot-Encoding procedure. As the 

result of encoding 122 numerical features were obtained.  

 

Originally KDDcup data set contains 5 class labels: normal (no 

attack) and 4 types of attacks: dos, u2r, r2l and probe. But since 

3 last of them contain a very small number of samples, in this 

experiment we combined them into one class, thus obtaining 

three classes: "no attack", "dos attack" and "other types of 

attacks".  

 

5.2 Computational System Characteristics   

Experiments described in the paper were carried out on a 

computational system with the following characteristics: Intel 

Core i7- 9700k, RAM 16 Gb. Due to the space consumed by the 

operating system, the available memory that we can use is about 

14 Gb. The reading speed of the disk is about 100 Mb/sec.   

 

5.3 Related Approaches    

This section describes popular approaches and open-access 

tools for solving the binary SVM classification problem. Each 

of them is considered below as the basis for construction the 

multiclass SVM classifier.  

 

5.3.1 SVC and LinearSVC. First of all, we consider 

implementations that allow to obtain an accurate decision of the 

SVM problem. In this study we use implementations that are 

based on the traditional state-of-the-art LibSVM 0 library and 

included in python scikit-learn package: 

sklearn.svm.LinearSVC (optimized for linear problems) and 

universal sklearn.svm.SVC that is used for construct nonlinear 

decisions.   

 

5.3.2 RBFSampler + LinearSVC. This is one of popular 

heuristic approaches aimed to accelerate SVM training in the 

nonlinear case. It combines generation of nonlinear features 

whose inner product is approximately equal to the kernel values 

(Rahimi and Recht, 2008). 

 

We use python scikit-learn implementation here sklearn. 

kernel_approximation.RBFSampler with consequent well-

scalable linear training by sklearn.svm.LinearSVC. 

 

5.3.3 Smart Sampling Kernel-based Mean Decision Rule 

method (SS-KMDR).  This approach for binary SVM problem 

was proposed in (Makarova et al., 2020) for fast solving both of 

linear and nonlinear binary SVM problems. It is based on 

averaging individual SVM decisions obtained for smart samples 

of the initial training set. In this paper we firstly extend it to the 

multiclass SVM problem.  

 

5.4 Experimental Setup     

Each of methods for solving binary SVM problem described in 

Section 4.3, was coupled with both OvR and OvO strategies for 

extending binary SVM to multiclass one and applied to each of 

training sets from the Table 1.   

 

In all experiments we set the SVM parameter C=10 and for all 

nonlinear methods (including RBFSampler) the RBF kernel 

with 0.01  was used.  

 

For LinearSVC (as a separate classifier and after RBFSampler 

transformation) default parameters were set in (except of C=10).  

 

The main parameter of RBFSampler, named nc (number of 

components that corresponds to the dimensionality of the 

computed feature space) was taken equal to 1000, 2000 and 

3000.   

 

For SS-KMDR method three parameters were varied: the 

random sample size (rs), the smart sample size (sz) and the 

number of smart samples (ns).  

For the proposed Dual-Layer Smart Sample SVM (DLSS-

SVM) method next parameters were varied: the random sample 

size (rs), the 1-st and 2-nd layer smart sample size (ss1 and ss2, 

respectively). The early stopping thresholds for the 1-st and 2-

nd layers were set in as 100 in all experiments.   

 

5.5 Experimental Results     

Tables 2-5 contain training and testing times and accuracy 

averaged through 3 runs. Standard deviations of accuracy for 

MNIST60k and MNIST200k does not exceed 0.001, for 

MNIST500k does not exceed 0.002, and for KDDcup does not 

exceed 0.005.  

 

As we can see from the Tables 2-5, the accurate state-of-the-art 

LinearSVC method is scalable well enough. Its accuracy is 

higher for OvO strategy in contrast to OvR one, but absolute 

values are much less then SVC because binary SVM 

subproblems are as a rule linear inseparable and nonlinear 

decision functions are required.  

 

The accurate state-of-the-art SVC method is nonlinear, but 

despite the use of a number of heuristics to speed up the work 

with kernels, its scalability is very low and for MNIST500k the 

training time for OvR strategy as well as for KDDcup for both 

OvR and OvO strategies exceeds 10 hours. Applying OvO 

strategy essentially reduces the training time due to decreasing 

size of binary problems, but the absolute values remain to be 

very large.  
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An attempt to replace work with kernels with a specially 

generated feature space using RBFSampler allows to reduce 

training time, but leads to loss of information and consequent a 

noticeable loss of accuracy.  

 

Method Time (s) Accuracy 

train test 

SVC OvR 2738 101.90 0.9735 

SVC OvO 203.50 232.50 0.9694 

LinearSVC OvR 79.75 0.44 0.8744 

LinearSVC OvO 21.99 1.28 0.8839 

R
B

F
S

am
p

le
r 

+
 

L
in

ea
rS

V
C

 

 

nc = 1000 OvO 84.65 0.9284 0.9284 

nc = 1000 OvR 78.79 14.67 0.9399 

nc = 2000 OvO 142.71 1.70 0.9471 

nc = 2000 OvR 113.09 30.85 0.9560 

nc = 3000 OvO 249.44 2.79 0.9547 

nc = 3000 OvR 180.89 49.50 0.9590 

S
S

-

K
M

D
R

 rs=ss=3000  ns = 1 56.46 94.95 0.9656 

rs=ss=6000 ns = 1 333.42 148.53 0.9720 

rs=ss=10000  s = 1 1050.45 167.10 0.9725 

rs=ss=10000  s = 2 1980.14 310.17 0.9728 

D
L

S
S

-S
V

M
 

rs=3000  

ss1=ss2=1000 

51.20 77.02 0.9607 

rs=3000  

ss1=ss2=2000 

151.20 109.41 0.9679 

rs=5000  

ss1=ss2=3000 

476.82 146.03 0.9726 

rs=6000 ss1=1000 

ss2=10000 

874.07 288.25 0.9736 

Table 2. Experimental results for MNIST60k  

 

Method Time (s) Accuracy 

train test 

SVC OvR 20688 302.2 0.987 

SVC OvO 2686 504.9 0.9854 

LinearSVC OvR 1098 0.184 0.8869 

LinearSVC OvO 297.6 0.639 0.9144 

R
B

F
S

am
p

le
r 

+
 

L
in

ea
rS

V
C

 

 

nc = 1000 OvO 320.6 1.73 0.9487 

nc = 1000 OvR 282.7 10.81 0.9545 

nc = 2000 OvO 521.47 1.75 0.9631 

nc = 2000 OvR 509.34 31.73 0.9672 

nc = 3000 OvO 787.28 2.68 0.9694 

nc = 3000 OvR 688.08 45.87 0.9743 

S
S

-

K
M

D
R

 rs=ss=3000  ns = 1 101.45 110.37 0.9737 

rs=ss=6000 ns = 1 321.16 242.12 0.9800 

rs=ss=10000  s = 1 1035.12 286.59 0.9837 

rs=ss=10000  s = 2 2017.92 466.15 0.9838 

D
L

S
S

-S
V

M
 

rs=3000  

ss1=ss2=1000 

80.00 

 

87.59 0.9673 

rs=3000  

ss1=ss2=2000 

164.05 

 

133.20 0.9744 

rs=5000  

ss1=ss2=3000 

304.71 

 

194.08 0.9811 

rs=6000 ss1=1000 

ss2=10000 

854.75 

 

280.09 

 

0.9839 

Table 3. Experimental results for MNIST200k 

Both SS-KMDR and DLSS-SVM, firstly proposed here for 

multiclass classification, allow to reach accuracy values near 

SVC and essentially outperform LinearSVC and 

RBFSamler+LinearSVC in accuracy. At that they are essentially 

more computationally efficient in contrast to SVC. As we can 

see from the Table 4, MNIST500k data set, 14x speedup is 

achieved for SS-KMDR and almost 20x speedup for DLSS-

SVM compared to state-of-the-art SVC method.  

 

Moreover, the advantage in the training speed grows 

exponentially with increasing data volume.  

 

Method Time (s) Accuracy 

train test 

SVC OvR >36000 - - 

SVC OvO 17133 784.5 0.9876 

LinearSVC OvR 2457 0.174 0.8839 

LinearSVC OvO 729.5 0.641 0.916 

R
B

F
S

am
p

le
r 

+
 

L
in

ea
rS

V
C

 

 

nc = 1000 OvO 782.8 1.958 0.9464 

nc = 1000 OvR 750.41 1.047 0.9478 

nc = 2000 OvO 1616.53 1.999 0.9647 

nc = 2000 OvR 1407.64 3.769 0.9641 

nc = 3000 OvO 2548.19 2.243 0.9693 

nc = 3000 OvR 2266.32 3.371 0.9716 

S
S

-

K
M

D
R

 rs=ss=3000  ns = 1 132.84 114.22 0.9737 

rs=ss=6000 ns = 1 331.00 191.71 0.9797 

rs=ss=10000 ns =1 1216.11 327.24 0.9843 

rs=ss=10000  s = 2 2440.73 410.88 0.9844 
D

L
S

S
-S

V
M

 
rs=3000  

ss1=ss2=1000 

135.05 99.71 0.9719 

rs=3000  

ss1=ss2=2000 

250.08 142.41 0.9744 

rs=5000  

ss1=ss2=3000 

379.87 184.67 0.9781 

rs=6000 ss1=1000 

ss2=10000 

861.32 308.2 0.9853 

Table 4. Experimental results for MNIST500k 

 

Method Time (s) Accuracy 

train test 

SVC OvR >36000 - - 

SVC OvO >36000 - - 

LinearSVC OvR 3335.13 0.308 0.7967 

LinearSVC OvO 860.58 0.624 0.7840 

R
B

F
S

am
p

+
 

L
in

ea
rS

V
C

 

 

nc = 100 OvO 822.26 3.399 0.8620 

nc = 100 OvR 447.54 1.686 0.8506 

nc > 100 OvO 
Internal error 

nc > 100 OvR 

S
S

-

K
M

D
R

 rs=ss=3000 ns = 1 455.19 83.89 0.883 

rs=ss=6000 ns = 1 604.31 133.49 0.888 

rs=ss=10000  s = 1 835.17 206.34 0.888 

rs=ss=10000  s = 2 1715.22 245.11 0.889 

D
L

S
S

-S
V

M
 rs=3000  

ss1=ss2=2000 

11.98 14.69 0.830 

rs=5000  

ss1=ss2=3000 

475.63 91.68 0.891 

rs=6000 ss1=2000 

ss2=10000 

1740.70 192.40 0.893 

Table 5. Experimental results for KDDcup 

 

Though in a number of cases (for some parameters) SS-KMDR 

and DLSS-SVM allows to reach similar accuracy values, but 

DLSS-SVM is faster in contrast to SS-KMDR and so gives the 

possibility to train in larger data sets. Besides, it should be 

noted training and testing times for both of proposed algorithms 

can be additionally decreased via using parallel and distributed 
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computing technologies. So, the proposed algorithms improve 

multiclass SVM scalability.   

 

Figures 1 and 2 present training times (in seconds) and accuracy 

values respectively for main methods under compare for 

MNIST data sets. It should be noted, that the upper row (for 

SVC) does not fully displayed due to very large value that 

equals to 17133 second.  

 

 

Figure 1. Training times (s) for main methods under compare. 

 

Figure 2. Accuracy for main methods under compare.  

 

Conclusion  

In this paper we extend the existing SS-KMDR method that was 

initially proposed for binary SVM problems to efficient solve 

large multiclass SVM problems. In addition, we upgrade the 

algorithm to form smart samples that underlies SS-KMDR and a 

new Dual-Layer Smart Sample SVM (DLSS-SVM) method for 

large-scale multiclass problems was proposed on the basis of 

the respective new smart sampling approach.  

 

Both SS-KMDR and DLSS-SVM, firstly proposed here for 

multiclass classification, allow to reach accuracy values near 

state-of-the-art SVC method (that is based on libsvm) and 

essentially outperform LinearSVC and RBFSamler+LinearSVC 

in accuracy. At that they are essentially more computationally 

efficient in contrast to SVC. So, for MNIST500k data set, 14x 

speedup is achieved for SS-KMDR and almost 20x speedup for 

DLSS-SVM compared to state-of-the-art SVC method.  

 

The proposed approaches give the possibility to train in large 

data sets, have inner data parallelism, allow to reach near state-

of-the-art libsvm quality in much less time in contrast to SVC. 

So, both of them improve multiclass SVM scalability, but 

DLSS-SVM is more efficient in the training and test stages.  
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