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Abstract

This paper proposes a fully automatic method for the segmentation of foreground row trees in industrial apple orchard images. The
segmentation is based on analyzing a combination of a depth map constructed by the Marigold diffusion model and a model depth
map created using automatically detected vanishing lines. The output of the method is a binary mask of the selected foreground
trees. These masks can be used in subsequent stages of the image processing pipeline to discard false detections in the fruit counting
module. The proposed method was evaluated as a preprocessing step for an apple detection method using the OrchardAppleDet-
MSU dataset. Experiments showed that the proposed method can improve the quality of apple detection by 1-3%.

1. Introduction

In modern agriculture, many tasks that are currently performed
manually by people can be automated. The use of digital tech-
nology to automate agricultural processes leads to increased ef-
ficiency and improved product quality. In particular, this auto-
mated approach helps simplify apple harvest assessment. One
way to automatically analyze images of apple trees is by using
neural network methods. This significantly improves the ac-
curacy of crop size assessment (Wang et al., 2013) and reduces
production costs.

With the development of information technology, special sys-
tems have been created to automate precision agriculture (Zhao
et al., 2016). These systems include robots programmed to per-
form labor-intensive yet necessary tasks such as transplanting,
spraying, pruning, harvesting, and crop assessment. Performing
any of these tasks requires extracting information from vision
sensors. Accurate calculation of crop volume is essential, as
farmers base critical economic and industrial decisions on this
data. Therefore, one of the primary objectives in computerizing
farm and garden operations is the detection and segmentation of
fruits for quantitative analysis. To address this, numerous solu-
tions have been proposed, including both neural network-based
methods and classical mathematical approaches.

For example, in (Slaughter and Harrell, 1987), the authors de-
veloped a method based on determining the intensity threshold
to generate a binary image. In the resulting binary mask, large
segmented areas are recognized as fruits. This method is easy
to implement but highly dependent on varying light conditions.
In (Changyi et al., 2015), the authors propose using the Hough
transform to obtain binary images with extracted contours of
objects. This approach works well on a simple background but
is less applicable in complex, structured environments, such as
dense orchards. Another idea is to compare fruits by shape and
texture (Zhao et al., 2005). However, this method is also highly
sensitive to light conditions and tree overlaps.

A neural network solution to the problem of fruit detection was
proposed in (Tian et al., 2019). The authors use an improved

YOLO-V3 model (Jiang et al., 2022) to detect apples in orch-
ards at different stages of growth. The advantage of the model
is that YOLO transforms the detection problem into a regres-
sion problem. The network’s output generates the bounding
box coordinates and probabilities of each class directly using
regression. This significantly increases the detection speed.

Another neural network solution to the problem was presented
in (Nesterov et al., 2023). Apple detection is carried out using
the Mask R-CNN neural network (He et al., 2017). As a two-
stage detector, Mask R-CNN differs from single-stage detectors
(for example, YOLO) by providing higher prediction accuracy.

The above methods address the problem of detecting all avail-
able fruits in the image. However, to correctly estimate the
volume of the harvest, it is necessary to avoid counting some
apples twice and to exclude those that are wasted. To achieve
this, it is important to discard apple detections from background
trees and the ground. Accordingly, it is essential to solve the
problem of segmenting trees in the front row and selecting trees
located far from the camera. To tackle this problem, several
approaches can be used: the first is based on semantic segment-
ation methods, and the second is based on constructing a depth
map.

In (Chen et al., 2021), the authors proposed using three differ-
ent neural networks independently for semantic segmentation.
The first, Pix2P, is a modified generative adversarial network
(Creswell et al., 2018) that works well for pixel matching. The
second, U-Net (Ronneberger et al., 2015), is a convolutional
neural network designed for accurate semantic segmentation.
The third network, DeepLabV3 (Chen et al., 2017), is a con-
volutional neural network that employs a set of spatial pyram-
ids (ASPP - Atrous Spatial Pyramid Pooling) in combination
with an encoder-decoder methodology. As a result, the Dee-
pLabV3 network demonstrated the best accuracy, although its
accuracy drops significantly on trees that overlap with others.
A method for semantic segmentation of trunks and branches us-
ing the Kinect V2 sensor and the SegNet segmentation network
was proposed in (Majeed et al., 2018). The method showed
good results, but it requires depth information and is tailored
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Figure 1. Marigold architecture.

for specific sensor.

The second method to identify trees in the front row is to ana-
lyze the depth predicted from the initial images. Existing depth
estimation methods can be divided into two types: classical
methods based on probabilistic graphical models (Saxena et al.,
2005), and methods based on convolutional neural networks
(Garg et al., 2016). Compared to classical methods, neural
network-based methods significantly increase the accuracy and
reliability of predictions. The models can be either supervised
or unsupervised. In the first case, the method requires a large
number of images equipped with the ground truth depth maps
(Ren et al., 2020; Saxena et al., 2007). Therefore, the super-
vised approach requires considerable time and specialized tech-
niques to create a training dataset with detailed depth informa-
tion. The unsupervised learning methods look more attractive
as they do not require ground truth depth data acquired with
depth sensors such as 3D cameras or LIDARs. For example,
such methods can utilize information about disparities and dif-
ferences between pixels in sequential frames.

One of the unsupervised methods is MonoDepth2 (Godard
et al., 2019). MonoDepth2 is based on calculating the loss
between the input image and the reconstructed one using out-
puts from subnets: a depth map and a transformation matrix
between frames. Another example of an unsupervised model is
Marigold (Ke et al., 2023). This is a diffusion model that, un-
like MonoDepth2, was trained on a much larger number of data-
sets. Marigold works by transforming an unknown distribution
of training data into a simple, already known distribution by
adding noise, and then using the U-Net Latent Diffusion model
(Ronneberger et al., 2015; Rombach et al., 2022) to obtain a
depth map from the simplified distribution.

In this work, we have developed a method for segmenting fore-
ground trees in images of apple orchards. The segmentation is
based on the joint analysis of the depth map estimated using the
Marigold model and a model depth map constructed using auto-
matically detected vanishing lines. The method was evaluated
on the OrchardAppleDet-MSU dataset1 as a preprocessing step
for the apple detection approach (Nesterov et al., 2023). The
results showed that utilizing the segmentation masks obtained
by the proposed method to filter detection results improves the
quality metrics of apple detection by 1-3%.

1 https://imaging.cs.msu.ru/en/research/apples

2. Methods

In this section, we describe the pipeline for segmenting fore-
ground row trees. Given the input image I , we construct the
binary segmentation mask Mfinal. First, we estimate the depth
map of the image (Section 2.1). Then, the model depth map
is estimated (Section 2.3) using the automatically detected van-
ishing lines (Section 2.2). Finally, the binary mask is created by
thresholding the depth map using the model depth map (Section
2.4).

(a) Input image (b) Estimated depth map

Figure 2. The result of depth map estimation.

2.1 Depth estimation

We estimated the depth map using the Marigold model (Ke et
al., 2023). Marigold is a diffusion model, which means it trans-
forms noise into a representative sample of data. The architec-
ture of the model is shown in Fig. 1. The basic idea is to trans-
form the unknown distribution of the training data into a simple,
known distribution, and then reverse the process. At each step,
the original image is gradually degraded by adding noise and
then passed through a neural network to reconstruct the image.
As a result, the model learns to estimate both the original data
distribution and the added noise. The trained network, starting
with a simple noise distribution, can then create a new image
that represents the original training dataset. Marigold uses the
Latent Diffusion U-Net model (Ronneberger et al., 2015; Rom-
bach et al., 2022) as the neural network for working with noise.
We used the pretrained on Virtual KITTI 2 (Cabon et al., 2020)
Marigold model to estimate the depth for our images.

Fig. 2 shows an example of the result from the Marigold model,
where warm colors indicate areas close to the camera, and cold
colors indicate areas farther from the camera.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W1-2024 
International Workshop on “Photogrammetric Data Analysis” – PDA24, 7–9 October 2024, Moscow, Russia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W1-2024-25-2024 | © Author(s) 2024. CC BY 4.0 License.

 
26



Figure 3. PSPNet architecture.

2.2 Vanishing lines detection

To construct the model depth map we first need to detect van-
ishing lines. Vanishing lines are identified using the Pyramid
Scene Parsing Network (PSPNet) (Zhao et al., 2017). The net-
work was trained on the labeled OrchardAppleDet-MSU data-
set. The labeling was performed by indicating the endpoints
of the vanishing lines corresponding to the tree trunks and tree
tops. Than the lines were converted to the ground truth seg-
mentation masks with three classes: sky, ground, background
(see Fig. 5). The dataset was divided into 3 parts: training set
(127 images), validation set (10 images), testing set (10 im-
ages). The images were cropped and downsampled to 384x384.
Also, the dataset was augmented (Cubuk et al., 2019) with us-
ing the functions ColorJitter, RandomPerspective, RandomRo-
tation. ColorJitter performs arbitrary changes in brightness,
contrast, saturation and hue of an image. RandomPerspective
performs a random transformation of an image’s perspective
with a given probability. RandomRotation rotates an image by
a random angle from a specified range. The presence of aug-
mentation allows the network to be used for datasets taken at a
different angle and in other light conditions.

The PSPNet architecture (Fig. 3) includes two components:
the main convolutional network and the pyramid module. The
main network, which uses a ResNet architecture (Koonce and
Koonce, 2021), extracts features from the input image, resulting
in feature maps that are 1

8
the size of the original image. The

pyramid module is needed to combine information from dif-
ferent image scales. It creates a four-level pyramid that covers
the entire image, half the image, and smaller parts of it. Each
level is processed by additional convolutional layers to obtain a
more complete representation of the image at different scales.
Information from the pyramid is integrated into a global level
and then combined with the original feature map from the Res-
Net model. The combined information is then passed through a
convolutional layer to create the final prediction map.

The network segments the sky and ground regions on the left
side of the image. An example of a trained network’s prediction
can be seen in Fig. 4(b).

All small regions in the prediction were removed using mor-
phological post-processing (Sreedhar and Panlal, 2012). The
vanishing lines were estimated using linear regression (Mont-
gomery et al., 2021) over the points defined by the boundaries
between the segmented classes. The resulting vanishing lines
are depicted in Fig. 4(c).

(a) Input image (b) Network prediction

(c) Vanishing lines extracted with
linear regression

(d) Ground truth

Figure 4. Vanishing lines detection.

2.3 Model depth map

The trees in the depth image have an unstructured appearance,
and the depth map is relatively high frequency. Additionally,
there is a strong perspective in the image, making direct depth
thresholding insufficient for segmenting the trees in the fore-
ground row. However, we can leverage the fact that the trees in
the orchards are planted in straight lines. Thus, we can roughly
model the depth map of the nearest planted tree row as a flat
surface (as if it were a fence) and use the model depth map in
conjunction with the estimated depth map for a joint analysis.

A model depth map is constructed using previously detected
vanishing lines. We assume that the depth value decreases uni-
formly along the straight line passing through a point in the
image and the vanishing lines’ intersection point O (see Fig. 5).
The pixels that fall into the triangular areas cut off by the van-
ishing lines are filled with zeros. For each pixel in the remain-
ing region, the depth value I is determined using the following
formula:
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I =
ρ(O,P )

ρ(O,M)
k , (1)

where P is the point where it is necessary to determine the
depth, M is the intersection point of the line passing through
O and P and the vertical line, ρ(O,P ) and ρ(O,M) are the
lengths of the segments OP and OM , respectively, and the
coefficient k represents the depth value at the right edge of the
model depth image. The k value is individual for each image,
and the method for obtaining it is described below.

Figure 5. Geometric constructions.

The value of k affects the surface slope of the model depth map.
To accurately highlight areas where the values on the real and
model depth maps differ the most, k should be selected such
that the surface of the model depth map deviates as little as
possible from the actual surface of the estimated depth map.
Therefore, in selecting k, it is necessary to solve the following
minimization problem:

∑
i

d2i −→ min, (2)

where di is the difference for each ith pixel between the model
depth values on the estimated depth values.

Figure 6. The result of constructing a model depth map.

2.4 Foreground Tree Segmentation and Postprocessing

To summarize, the foreground row tree segmentation algorithm
contains the following steps for each image:

1. Estimation of the image depth map;

2. Vanishing lines detection;

3. Construction of a model depth map for the foreground
row trees based on the estimated depth map and vanish-
ing lines;

4. Creation of a binary mask by choosing the threshold para-
meters;

5. Post-processing the mask to remove high-frequency in-
formation.

Fig. 7 shows two surfaces of the model and estimated depth
maps. Both surfaces are plotted on the same graph, making
areas where the value of the estimated depth map is signific-
antly less than the value on the model depth map clearly visible.
These areas correspond to parts of the image where pixels are
not included in the foreground row tree mask.

Figure 7. Surfaces of model and real depth maps.

To create the binary mask, the triangular areas highlighted by
the vanishing lines are initially zeroed, as there are obviously
no trees with apples in them. Then, all areas for which the
difference between the value of the real and model depth map
is less than ε (Fig. 7), or the value of the real depth map is less
than 30 (representing very distant trees), are set to zero.

The resulting mask contains many small, noisy dark and bright
regions, so it needs post-processing to fill holes, remove noise,
and smooth the mask contours. To post-process the binary mask
M , we convert it to a real-valued image, blur it with a Gaussian
kernel, and threshold the blurred image with a value of 0.5.

Mfinal =

{
1, M ∗Gσ > 0.5 ,

0, M ∗Gσ < 0.5 ,
(3)

where
Gσ =

1

2πσ
exp−(x2+y2)/2σ2

. (4)

The example of a constructed binary mask before and after post-
processing is shown in Fig. 8.

Figure 8. Initial image and binary masks before and after
post-processing.

3. Results

The proposed approach was evaluated on the
OrchardAppleDet-MSU dataset, which consists of 147
images 3000 × 4000 pixels of apple orchards collected by the
Faculty of Biology, Lomonosov Moscow State University. An
example of the resulting depth maps and masks can be seen in
Fig. 9.
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(a) Image 7 (b) Depth map (c) Mask

(d) Image 26 (e) Depth map (f) Mask

(g) Image 348 (h) Depth map (i) Mask

(j) Image 46 (k) Depth map (l) Mask

(m) Image 90 (n) Depth map (o) Mask

Figure 9. Results of the method.

Fig. 9(d) shows an example of an image where a background
tree is visible in the gap between the foreground trees. This tree
is not segmented in the resulting binary mask.

Some masks contain a large number of small areas that do
not carry semantic information and can spoil further results
when these masks are used on the apple detection stage of the
pipeline. Examples of such masks are shown in Fig. 9(l,o). This
flaw mainly appears on masks where there are large areas of sky
on the right side of the image.

In the mask in Fig. 9(o) not only the nearest trees were high-
lighted, but also all the trees in the front row. This happened
because the foreground of the image was obscured by a branch,
so Marigold highlighted this area as close in the depth map
(Fig. 9(n)). This inaccuracy in the mask is not critical, since
the branches of nearby trees cover distant trees, therefore all
detected apples on the trees will meet the requirements.

As a result, despite the presence of a small number of errors,
the majority of the resulting binary masks correctly segment
foreground row trees.

To evaluate the performance, the method was used to discard
false detections of the Mask R-CNN model (Nesterov et al.,
2023). Fig. 10(a) shows the detected apples predicted by the
neural network. In Fig. 10(b) the foreground row trees mask

obtained by the proposed method is overlaid with the detection
results. It can be seen that the apples on the second row trees
and the apples that fell to the ground are outside of the obtained
foreground row trees mask. Therefore, in Fig. 10(c) these detec-
tions have been discarded, that correspond to the ground truth
data for apple detection Fig. 10(d).

(a) Apple detection (b) Applied mask

(c) Removing unnecessary (d) Ground truth

Figure 10. Example of applying the method to discard false
detections of apples.

In addition, we carried out a quantitative assessment of the ef-
fectiveness of the proposed solution. To assess its quality, we
calculated the mAP (mean Average Precision) (Varsadan et al.,
2009) and IoU (Intersection over Union) (Rezatofighi et al.,
2019) metrics for apple detection algorithm with and without
application of the foreground row trees mask. The average val-
ues of the mAP and IoU metrics without applying the masks
were 0.395 and 0.881, respectively. After applying the fore-
ground tree masks, the metric values increased to 0.405 and
0.887. Thus, the quality metrics for fruit detection increased by
2.5% and 0.7% after using the constructed masks. In the ex-
ample shown in Fig. 10, before applying the mask the metrics
were mAP = 0.4664, IoU = 0.873, and after applying the mask
the metrics became mAP = 0.4695, IoU = 0.883.

4. Consclusion

In this paper, we have developed a fully automatic method for
the segmentation of foreground row trees. The segmentation
relies on the joint analysis of the depth map estimated with the
Marigold model and the model depth map constructed using
automatically detected vanishing lines. The proposed approach
was evaluated on the OrchardAppleDet-MSU dataset. The res-
ults showed that incorporating this method as a preprocessing
step in the apple detection pipeline improves the quality metrics
(mAP and IoU) by 1-3%. The code is publicly available2.
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