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Abstract 

 

Currently, deep neural networks have become one of the most effective tools in computer vision. However, in the field of 

hyperspectral remote sensing image analysis, their practical application is limited, as it requires manual labeling of a large amount of 

data. Since this process is time-consuming and expensive, an attractive option is the use of pre-trained neural networks designed to 

work with color images. However, to take advantage of hyperspectral images, such neural networks must be equipped with some 

mechanism to take into account the detailed spectral information contained in such images. 

In this work, we propose to combine deep features computed using pre-trained convolutional neural networks (specifically Resnet18) 

with spectral features of hyperspectral images. The proposed scheme works on the basis of combining the selected type of distances 

(Euclidean distance, spectral angle, Hellinger divergence) in spectral and embedding spaces with the subsequent synthesis of features 

in a space of a given dimensionality. The proposed scheme does not require any training, except for the selection of several 

parameters (spatial window size, dimensionality of the synthesized space, fusion coefficient). Experiments conducted on known 

hyperspectral scenes (Indian Pines, Salinas, Pavia University, Kennedy Space Center) show the advantages of the proposed 

approach. The issue of train-test sample splitting is considered. 

 

 

1. Introduction 

Hyperspectral images are an attractive source of remote sensing 

data. Unlike widely used multispectral data, hyperspectral 

images have increased spectral resolution. This makes it 

possible to solve applied remote sensing problems with 

improved quality. 

 

In recent years, artificial neural networks have been used in 

image analysis, particularly in the field of remote sensing data. 

Such networks are increasingly used in the processing of 

hyperspectral images. 

 

The most widely studied neural network architectures are those 

based on convolutional neural networks (CNN) [Le Cun et al. 

1989]. A one-dimensional CNN-based model for extracting 

spectral information was proposed [Hu et al. 2015]. However, 

neural network models that allow taking into account both 

spectral and spatial features are of greater interest, for example 

[Chen et al. 2018]. This joint consideration of spectral and 

spatial information can be implemented by increasing the 

dimension of convolutional networks. Such a 3D-CNN model 

was proposed in [Li et al. 2017]. Another method is information 

fusion, implemented, for example, in the form of two-channel 

fusion of spectral and spatial information (Two-CNN) [Yang et 

al. 2017] or multi-channel convolutional neural network 

(MCCNN) [Chen et al. 2018]. In addition to models that work 

with original spectral-spatial information, models have been 

proposed that also allow derived features to be used as input 

data [Gao et al. 2018]. 

 

In addition, methods have been proposed in which feature 

extraction is performed using ensembles of convolutional neural 

networks. The networks in ensembles can be of the same type 

(homogeneous), operating, for example, on random subspaces 

of the original spectral space [Chen et al. 2019, He and Chen 

2021], or of neural networks of various types (heterogeneous) 

[Nelepa et al. 2021]. 

 

Multiscale methods are being explored in which spectral-spatial 

features are calculated by neural networks for different scales 

(window sizes) followed by fusion and classification [Safari et 

al. 2021, Mohan and Venkatesan 2020, Kanthi et al. 2022]. 

 

Another class of neural network architectures being explored 

concerning hyperspectral images is based on graph neural 

networks (GNN). Such networks consider an image in the form 

of a graph, where the vertices represent some spatial regions of 

the image (in a particular case, the image pixels themselves), 

and the edges connect only adjacent regions. In the field of 

hyperspectral image analysis, various methods for constructing 

graphs have been proposed. In [Mou et al. 2020] individual 

pixels of an image were considered as vertices. [Ren and Zhou 

2021] used superpixels (uniform compact groups of pixels). In 

[Hong et al. 2020] authors used selected image fragments. 

 

In addition to the neural networks described above, other neural 

network architectures were also used to analyze hyperspectral 

images. Such architectures are networks with attention 

mechanisms [Li et al. 2020, Qu et al. 2021], recurrent neural 

networks (RNN) [Liang et al. 2022], deep belief networks 

(DBN) [Li et al. 2019], and others. 

 

Unfortunately, training neural networks, especially deep 

learning neural networks, requires a fairly large labeled sample 

size. Manual labeling of a large volume of data for training 

networks requires a lot of time and resources, as ground-based 

measurements should be carried out. 

 

For this reason, an attractive option may be using neural 

networks trained on other types of data, such as color or 

multispectral remote sensing data. In this case, it is necessary to 
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create some mechanism that allows, firstly, to use of such 

networks with hyperspectral data, and secondly, to take 

advantage of the high spectral resolution of hyperspectral 

images. 

 

This work is devoted to the creation and study of such a 

mechanism. The work has the following structure. The second 

section describes the general scheme of the proposed 

mechanism for applying deep neural networks designed to work 

with RGB images to hyperspectral images. The section also 

discusses various methods for taking into account the detailed 

spectral information contained in hyperspectral images. The 

third section presents experimental results confirming the 

effectiveness of the proposed approach. Particular attention is 

paid to the way of splitting training and test sets in the solution 

of a classification problem. The paper ends with a conclusion. 

 

2. Methods 

This work is based on the feature fusion method described in 

[Myasnikov 2023]. This method uses an approach based on the 

fusion of distances between embeddings extracted using deep 

neural networks with dissimilarities between pixels in 

hyperspectral space. The obtained distances make it possible to 

synthesize a new feature space of reduced dimensionality, in 

which various applied problems can be solved, including pixel-

wise classification. 

 

2.1 General scheme of the method 

The general scheme of the proposed approach is shown in 

Figure 1. In this figure, hyperspectral image processing is 

performed in two independent branches. In the left branch, after 

selecting the channels corresponding to the natural colors of the 

input hyperspectral image, feature extraction is performed using 

the deep neural network (resnet18 in the figure). Such features 

are extracted for the spatial neighborhoods of each of the 

analyzed image pixels. After this, the Euclidean distance 

d(ei, ej) can be calculated between any two embeddings ei и ej 

corresponding to the neighborhoods of pixels i and j. 

 

 

Figure 1. General scheme of the method. 

 

In the right branch of the scheme, hyperspectral image pixels 

are used directly as spectral features. For any two pixels i and j 

with spectra si and sj, the distance (si, sj) in spectral space can 

be calculated in different ways. Following [Myasnikov 2023], 

in this paper, we used Euclidean distance (ED), spectral angle 

mapper (SAM) [Kruse et al. 1993], and Hellinger divergence 

(HD) [Hellinger 1909] as distances in hyperspectral space. 

 

The combined distance in the synthesized Euclidean space Y 

between pixels i and j can be calculated by the formula: 
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where   = the fusion coefficient determining the influence of 

deep or spectral features, 0≤≤1. 

 

Although the configuration (coordinates) of pixels Y={yi}i=1..N 

(N is the number of pixels) in the synthesized space of some 

given dimensionality m is unknown, these coordinates yi can be 

reconstructed by minimizing the error 
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Such minimization in this paper was carried out using the 

gradient descent method:  

 

  )1()( tYtY ,    (3) 

 

where   = the gradient descent coefficient (step size), 

   = the gradient of the objective function, 

 t = the iteration number of gradient descent. 

 

Thus, we applied here a nonlinear dimensionality reduction 

technique, suffering from high computational costs [Myasnikov 

2017]. To speed up the calculations, we used stochastic gradient 

descent with error control based on mini-batches, implemented 

for GPUs using the CUDA platform. 

 

2.2 Construction of the embeddings using a neural network 

As it was mentioned earlier, in this work, we used a fully 

trained neural network designed for analyzing color 

(multispectral) remote sensing images to calculate the 

embeddings. In particular, we used the pre-trained ResNet18 

network, which is part of the TorchGeo package [Stewart 2022]. 

We cut off the classification layers of the network to obtain the 

embeddings. 

 

To calculate the embedding corresponding to some particular 

pixel, we superimposed a rectangular window of a predefined 

size centered on the analyzed pixel. The contents of the window 

are fed to the input of the neural network, and the output of the 

cut network is considered as an output embedding. Due to the 

difference in the window size and the input dimension of the 

neural network, interpolation is required. Here we relied on 

recommendations from [Corley et al. 2023] and used bilinear 

interpolation. 

 

We used ResNet18 SeCo trained using the Seasonal Contrast 

(SeCo) method [Manas et al. 2021] as a base deep learning 

model. In our preliminary studies, this model demonstrated 

higher accuracy compared to the ResNet18 MoCo model 

trained using the Momentum contrast method [He et al. 2020] 

(also included in the TorchGeo package [Stewart et al. 2022]).  
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3. Experiments 

The main goal of the experiments was to test the feasibility of 

using neural networks trained using color images to analyze 

hyperspectral data using the proposed approach to spectral 

feature fusion. 

 

3.1 Datasets 

For the study presented here, we used several well-known 

hyperspectral image scenes [Baumgardner 2015, Grupo de 

Inteligencia Computacional, 2021] equipped with groundtruth 

classification. A brief description of the images is given in 

Table 1. For brevity, we do not present here the images 

themselves, true classification masks, and class composition, 

since the reader can easily find this information using the 

references above. 

 

Scene Sensor 
Size 

(HxW) 
Bands 

Spatial 

resolut. 
Classes 

Indian pines AVIRIS 145x145 
220 

(200) 
20 m. 16 

Salinas AVIRIS 512x217 
224 

(204) 
3.7 m. 16 

Pavia 

University 
ROSIS 610x610 103 1.3 m. 9 

Kennedy 

Space 

Center 

AVIRIS 512x614 
224 

(176) 
18 m. 13 

Table 1. Test hyperspectral scenes 

 

3.2 Quality assessment methodology  

To evaluate the features synthesized using the proposed 

approach, we solve the most common applied problem, i.e. the 

problem of pixel-wise multiclass classification. Intuitively, a 

higher quality of the solution to this problem indicates a higher 

quality of synthesized features. 

 

To assess the quality of pixel-wise classification, we use the 

overall classification accuracy (Acc), defined as the proportion 

of correctly classified pixels in the test set. 

 

We use the nearest neighbor (NN) classifier. This choice is due 

to the following considerations: 

- this classifier has no parameters, which eliminates possible 

bias due to suboptimal classifier parameters for certain 

scenarios; 

- this classifier does not require training, which means there is 

no need to train or configure any parameters of the entire 

processing chain, except the size of the spatial window w for the 

neural network, the fusion coefficient  in expression (1), and 

the dimensionality of the synthesized space m. 

 

3.3 Sample split 

To solve the problem of pixel-wise classification, it is necessary 

to form training and test samples in one way or another. The 

data sets described above do not come with standard splits, so 

random splits are most often used. We propose that this 

approach may give overestimated quality indicators for methods 

that use spatial information in addition to spectral information, 

which is especially true for neural network methods. 

 

For this reason, in this paper, we used the following partitioning 

method. We took each groundtruth region belonging to one 

class, determined the most elongated axis (horizontal or 

vertical), and divided the region into two equal parts along this 

axis. Examples of the resulting partitions are shown in Figure 2. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Examples of partitioning into training and test samples 

for the Indian Pines (a), Salinas (b), Pavia University (c)  

and Kennedy Space Center (d) scenes.  

Images are scaled; images (b, c) are rotated. 

 

One of the resulting halves was used for training, and the other 

one was used for testing. Then the training and test samples 

were swapped, and the results were averaged. 
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3.4 Selection of the window size and dimensionality of the 

synthesized space 

The experiments were divided into several stages. In the first 

stage, we investigated how the size of the spatial window used 

in extracting deep features affects the classification quality. We 

varied the window size from 15 to 33 and measured the 

classification quality. For each window size, we extracted deep 

features and combined them with spectral features according to 

the proposed scheme. 

 

To estimate the difference in hyperspectral space, we used 

Euclidean distance (ED), spectral angle mapper (SAM), and 

Hellinger divergence (HD). For each of the spectral 

dissimilarity measures, the values of the fusion coefficient  

that were close to optimal were used (see subsection 3.5). The 

output dimension for the synthesized space was chosen as 

m=20. Figure 3(a) shows the experimental results for the Indian 

Pines scene. 

 

 
(a) 

 
 (b) 

Figure 3. Dependence of classification accuracy Acc on the size 

of the spatial window w used for the extraction of deep features 

for the Indian Pines scene (a) and for the Salinas scene (b). 

 

As can be seen in the figure, the classification quality Acc 

increases with the window size w for all spectral dissimilarity 

measures that is expected. Values w=29...31 seem optimal in 

the selected range. Similar graphs were obtained for Pavia 

University and Kennedy Space Center. 

 

It is interesting to note that for the Salinas image, the 

classification quality increased with the window size (Figure 

3(b), red line “1”) when we used the random split. When we 

used the fixed partition (subsection 3.3), on the contrary, 

increasing the window size led to a decrease in classification 

accuracy (Figure 3(b), blue line “2”). For this reason, a window 

size of 5 was further used for the Salinas image. 

 

The dependence of classification accuracy Acc on 

dimensionality m of the synthesized space is shown in Figure 4. 

As can be seen, the quality of classification increases with 

increasing dimensionality for all the hyperspectral scenes. The 

greatest changes occur in the range of dimensions m=3…20, 

and after m=25 the classification accuracy practically does not 

change.  

 

Therefore, further in the paper we report the results for 

dimensions m=3..15 in graphical form (so that the graphs do not 

mix). Also, we present the stable results for m=30 in text form. 

 

 

Figure 4. Dependence of classification accuracy Acc on the 

dimensionality m of the synthesized space for different 

hyperspectral scenes. 

 

3.5 Selection of the fusion coefficient 

In the second stage of experiments, we investigated the 

influence of the fusion coefficient  of deep and spectral 

features on the quality of classification. Here, for four selected 

scenes from Table 1, we varied the fusion coefficient  from 0 

to 1 with a step of 0.1 and measured the classification quality 

for different dimensions m of the synthesized space. The results 

of the experimental study are shown in Figures 5-8. 

 

Each figure corresponds to a different hyperspectral image, and 

each individual part of a figure (a-c) corresponds to a particular 

measure of spectral dissimilarity (ED, SAM, or HD). Each part 

of a figure contains three curves corresponding to three different 

dimensionalities of the synthesized space. For example, in 

Figure 5, the dimensionality m takes the values 3, 5, and 15. 

The horizontal axis in each figure shows the fusion coefficient 

, and the vertical axis shows the classification accuracy Acc. 

Let's take a closer look at the results. 

 

For the Indian Pines image, the classification performance using 

purely spectral features for each dimension is slightly higher 

than for deep features. For example, for dimensionality m=30 

(not shown in the figure), the classification accuracy using deep 

features was 63.5% versus 64.7%, 65.8%, and 65.8% for ED, 

SAM, and HD, respectively. 

 

The fusion according to the proposed scheme led to the 

expected significant improvement in the classification quality. 

The best-achieved values for dimensionality m=30 were 82.8%, 

83.5%, and 83.2% for ED, SAM, and HD, respectively, which 

is 17-18% higher than the results obtained using only spectral 

features. 

 

The optimal values of the fusion coefficient  were different for 

different spectral dissimilarity measures. A more detailed study 

with a step  of 0.01 for m=10..30 made it possible to identify 

the following ranges: for ED opt[0.77, 0.79], for SAM opt 

[0.8, 0.83], for HD opt [0.92, 0.94]. Due to space limitations, 

we do not include the corresponding graphs. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W1-2024 
International Workshop on “Photogrammetric Data Analysis” – PDA24, 7–9 October 2024, Moscow, Russia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W1-2024-31-2024 | © Author(s) 2024. CC BY 4.0 License.

 
34



 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Dependence of the classification accuracy Acc  

on the fusion coefficient  of deep and spectral features  

for the Indian Pines scene.  

 

The results for Salinas and Pavia University are shown in 

Figures 6, 7. For the Salinas scene, the best values for 

dimensionality m=30 obtained using the proposed approach 

were 87.3%, 88.0%, and 88.2% for ED, SAM and HD, 

respectively. This is 3.3-4.2% better than the deep features, and 

1.2-1.5% better than pure spectral features. For the Pavia 

University scene, the best values for dimensionality m=30 

obtained using the proposed approach were 92.7%, 91.3%, and 

90.8% for ED, SAM, and HD, respectively. This is 14.2-16.1% 

better than deep features and 7.9-9.5% better than pure spectral 

features. In general, the results for the Salinas and Pavia 

University scenes are similar to the results for Indian Pines. 

 

The graphs for the Kennedy Space Center scene are somewhat 

different (see Figure 8). Here, firstly, the classification quality 

using deep features (at =0) turns out to be significantly higher 

than the quality using purely spectral features (at =1). So, with 

m=30 (not shown in the figure), the quality of classification 

using deep features was 96.5% versus 86.6%, 87.9%, and 

88.3% for ED, SAM, and HD, respectively. The best values for 

dimensionality m=30 achieved by fusing deep and spectral 

features were 98.0%, 98.2%, and 98.2% for ED, SAM, and HD, 

respectively, which is 1.5-1.7% higher than the results obtained 

using deep features only. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Dependence of the classification accuracy Acc  

on the fusion coefficient  of deep and spectral features  

for the Salinas scene.  

 

The optimal values of the fusion coefficient varied significantly 

among different spectral dissimilarity measures. A more 

detailed study with a step  of 0.01 for m=10..30 made it 

possible to identify the following ranges: for ED opt[0.92, 

0.96], for SAM opt[0.18, 0.2], for HD opt[0.28, 0.36]. Due 

to space limitations, we do not include the corresponding 

graphs here. 

 

It is worth noting that it is difficult to make a clear choice in 

favor of one of the spectral dissimilarity measures (ED, SAM, 

or HD). We conclude that the choice of the optimal spectral 

dissimilarity measure depends on the data. The difference 

between the achieved results was not so significant compared to 

the effect of feature fusion. 

 

3.6 Dependence of results on the splitting method  

As a final experiment, we compared the classification accuracy 

values obtained using deep features for the fixed split used in 

this paper and the random split in the same 50:50 ratio. The 

results are presented in Table 2.  
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(a) 

 
(b) 

 
(c) 

Figure 7. Dependence of the classification accuracy Acc  

on the fusion coefficient  of deep and spectral features  

for the Pavia University scene.  

 

The first column of the table shows the results obtained for a 

random split using only deep features calculated with =0 and 

m=30. The second column shows the results for a fixed split, 

described in subsection 3.3. In the third column, for 

comparison, we give a range of best accuracy values obtained 

with the proposed fusion technique for different spectral 

dissimilarity measures. 

 

As can be seen from Table 2, with random split, the use of only 

deep features makes it possible to achieve almost error-free 

classification. When compared to the split used in this paper 

(split in subsection 3.3), the results seem to be greatly 

overestimated.  

 

Although the neural network is completely pretrained and is not 

familiar with the test images, the features it generates for the 

neighborhood regions are close to each other in the embedding 

space due to the almost identical (overlapped) spatial context. 

The use of the split 3.3 reduces the possibility of spatial context 

overlap. It affects classification accuracy and makes the results 

less overestimated.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Dependence of the classification accuracy Acc  

on the fusion coefficient  of deep and spectral features  

for the Kennedy Space Center scene.  

 

Let's pay attention to the results for the Kennedy Space Center 

scene. Here, even using a fixed split (subsection 3.3), the 

classification accuracy remains quite high for the deep features. 

We believe that the reason for this is the small-sized regions in 

the ground-truth classification (see Figure 2(d)). Neural network 

features with a sufficient window size describe the spatial 

context well and show good results in this case. 

 

Scene 

Random 

split, deep 

features 

Split 3.3 

deep 

features 

Split 3.3, 

proposed 

technique 

Indian pines 99.4 63,5 82.8-83.5 

Salinas 99.9 83,9 87.3-88,2 

Pavia University 99.9 76,6 90.8-92.7 

Kennedy Space 

Center 
100 96,5 98.0-98.2 

Table 2. Train-test split comparison for deep and fused features 

 

4. Conclusions 

In this paper, we proposed to combine deep features calculated 

using convolutional neural networks pretrained on color images 

with spectral features of hyperspectral images. The proposed 

technique is an example of a feature fusion approach based on 
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classical methods, although it uses neural networks to extract 

part of the features. The proposed technique does not require 

any training or fine-tuning neural networks other than selecting 

the size of the spatial window, the dimensionality of the 

synthesized space, and the fusion coefficient.  

 

We conducted a study on four known hyperspectral scenes and 

determined the parameters of the proposed technique. Using the 

fusion according to the proposed technique, we obtained a 

notable increase in the classification quality for all the test 

images. 

 

In addition, we showed the importance of the train-test splitting 

procedure for methods that take into account spatial context, 

since random splitting can produce overestimated results. 
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