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Abstract

In this paper, a multi-stage perfusion calculation pipeline is suggested. It contains preprocessing algorithms for brain tissue seg-
mentation, input artery and output vein detection, a self-supervised neural network for CT image denoising, and regularization
deconvolution methods. SVD and TTV-based regularization methods were used at the last stage. The results of the comparison of
these methods to classical SVD and TTV ones show that the self-supervised method outperforms others both for simulation and real
data. For simulation, RMSE and SSIM metrics were used for comparison, and as for the real data, CNR metrics were compared for
lesion and normal white matter areas, and for the latter ones bias and standard deviation were calculated.

1. Introduction

Perfusion computed tomography or CT perfusion is a technique
for the dynamic study of blood flow parameters. When per-
forming computed tomography, a contrast agent is injected, and
then scanning is performed. The data obtained are then pro-
cessed to obtain perfusion maps with various parameters such
as CBV (Cerebral Blood Volume), CBF (Cerebral Blood Flow),
MTT (Mean Transit Time), and TTP (Time To Peak). This type
of research is used to diagnose acute ischemic cerebral circula-
tion disorders, which are one of the leading causes of morbid-
ity, mortality, and disability worldwide. Since the calculation of
perfusion map values is based on the problem of deconvolution,
which is ill-posed, it is necessary to use various regularization
methods.

While classical methods of noise filtration (See Section 5) may
be used for that, one could also use neural network approaches.
One way is to train a simple neural network using simulation
data. However, there is a limited number of high-quality sim-
ulations for brain perfusion, and the resulting neural network
may not work stable for unusual situations.

As perfusion data are essentially a 3D time-series data, with
contrast gradually passing in time, it is possible to use this fact
to train a neural network, if it is considered that most adjacent
images differ by small value of contrast concentration. Further
details of neural network proposed may be found in Section 6.

The described network is compared with well-studied classical
deconvolution methods of SVD and TTV.

2. Perfusion Model

Perfusion model and calculation details are described in (König,
2003), (Konstas et al., 2009a), (Konstas et al., 2009b). The
notations of the main model functions are shown in Table 1.

The difference between the intensities of the CT scan of a brain
with contrast agent and without it is considered to be propor-
tional to the concentration of the contrast agent. Several image

Description Variable Unit
Contrast concentration in artery cart g/ml
Contrast concentration in volume
of interest

cvoi g/ml

Average density in volume of in-
terest

ρvoi g/ml

Intermediate variable k(t) 1/s
Cerebral Blood Flow CBF ml/100g/s
Cerebral Blood Volume CBV ml/100g
Mean Transit Time MTT s

Table 1. Table of symbols.

voxels are marked as arterial ones. The concentration corres-
ponding to their mean value is denoted as cart(t). For each
voxel (volume of interest) the residual function k(t) is intro-
duced so that it is related to the concentration of the contrast
agent in the volume of interest in the following way:

cvoi(t) = (cart ∗ k)(t). (1)

Then, the values for perfusion maps are calculated as follows:

CBF =
1

ρvoi
max(k(t)), (2)

CBV =
1

ρvoi

∫ ∞

0

k(τ)dτ, (3)

MTT =
1

max(k(t))

∫ ∞

0

k(τ)dτ =
CBV

CBF
. (4)

Hence, the problem is reduced to calculating the function k(t).
To use this model for real data, the values are considered on a
discrete grid, and the final problem can be written as follows:

Ak = c, (5)

where A = ∆t ·


cart(t1) 0 ... 0
cart(t2) cart(t1) ... 0

...
...

. . .
...

cart(tN ) cart(tN−1) ... cart(t1)

,
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k = (k(t1), k(t2), ..., k(tN ))T ,
c = (cvoi(t1), cvoi(t2), ..., cvoi(tN )))T .

A number of studies ((Wittsack et al., 2008), (Sasaki et al.,
2009)) show that in order to reduce the effect of bolus delay
and make the solution independent of time shifts on the time
concentration curve in the tissue, a block-circulant matrix can
be used, with supplementing the vector cart(t) by zeros to the
desired size. The block-circulant matrix is as follows:

Ã =

(
A B
B A

)
(6)

where B = ∆t ·

 0 cart(tN ) ... cart(t2)
0 0 ... cart(t3)

...
...

. . .
...

0 0 ... 0

.

The new equation:
Ãk̃ = c̃. (7)

The notation (A, k, c) will be used further, since the following
is true for both cases.

3. Data

To test the algorithm, the phantom data (Aichert et al., 2013),
the ISLES2018 dataset ((Kistler et al., 2013), (Maier et al.,
2017)), and 18 CT brain images obtained from MultiVox com-
pany were used. Examples of slices are shown in Fig. 1.

Figure 1. Slices for different datasets before and after contrast
agent injection.

3.1 Phantom

Phantom is a simulation of brain CT perfusion, one series of 4D
data 256× 256× 256× 50 (in three spatial coordinates and in
time). For each slice areas of reduced perfusion can be marked
manually using MATLAB software.

50 slices (101-150) were used for training, 15 (156-170) for
validation. 5 slices between training and validation data were
not used to reduce the correlation between them.

Poisson and Gaussian noise were added to initial images to test
the work of algorithms. Noise was added to the x image using
the following formula:

Image (σ, γ) =
Poisson(γ ∗ (x+Gaussian(µ, σ)))

γ
(8)

For this work, the values µ = 0, σ = 10, γ = 0.1 were used.

In addition to the generated perfusion data, reference perfusion
maps (CBF, CBV, MTT) are also available.

3.2 ISLES2018

The ISLES2018 dataset contains 94 CT series, for each of the
patients CT scan of brain with dynamic contrast is available (4D
images n×256×256×49). 17 series were selected for network
training, and 5 for validation. Perfusion maps calculated for
each series are also available. However, unlike Phantom data,
these maps were not used as reference ones, since noise was
not generated on these data, and the maps are not absolutely
true, but represent data calculated using one of the described
methods (see 5.1).

3.3 MultiVox

18 CT scans are presented as examples of data that will need to
be processed by the Multivox software, using the implemented
code. Each scan is a set of images with the format of n×512×
512× t.

4. Data Preprocessing

4.1 Segmentation of Brain Tissues

Segmentation of brain tissues is performed using the informa-
tion about the characteristic values of density for various tissues
(Table 2).

Substance HU (Hounsfield Units)
Air -1000
Cerebrospinal fluid 15
Gray matter from 30 to 45
White matter 20 to 30
Blood from 30 to 70
Bone from 300 to 1000
Contrast agent (arterial phase) from 100 to 300
Contrast agent (venous phase) from 70 to 150

Table 2. Values for different substances.

Thresholds and classical mathematical morphological opera-
tions were used for segmentation maps calculation.

4.2 Arterial Input Function

The Venous Output Function (VOF) is calculated using the
method proposed in (Kao et al., 2014). The Arterial Input Func-
tion (AIF) is found by the method proposed in (Mouridsen et
al., 2006). They mainly involve analyzing area under curve,
first and second moment for curves of contrast agent concen-
tration for each voxel. As for AIF, this process is followed by
several iterations of clusterization, and the cluster with the min-
imal first momentum is chosen each time. As a result, several
voxels are selected as arterial ones.

Fig. 2 shows the obtained function values and marked voxels
for two slices from the datasets.
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Figure 2. Arterial Input Function.

5. Classical Methods

5.1 tSVD

Using the singular value decomposition of the matrix A (Equa-
tion 5), we obtain

A = UΣV T =

r∑
i=1

uiσiv
T
i , (9)

kls =

r∑
i=1

uic

σi
vi, (10)

kls = argmin(∥ Ak − c ∥22), k ∈ RN . (11)

However, in case of an ill-conditioned matrix A, such a solution
will be unstable to small changes in the vector c. To obtain a
numerically stable result, various regularization methods can be
used.

In order for the solution to be stable, the method of truncated de-
composition of singular values, tSVD (Fieselmann et al., 2011)
can be used. In this approach, small singular values are dis-
carded:

kλ =

r∑
i=1

(fλ,i
uic

σi
)vi, (12)

where fλ,i =

{
0, σi < λ, λ = λrel ∗ σ1,

1, σi > λ
.

To reduce the effect of noise, images are also pre-blurred with
a Gaussian filter.

5.2 Tensor Total Variation

Since CT scans of brain are usually quite noisy, the above
mentioned method may not give sufficient effect. One of the
common ways of regularization is also the use of Tensor Total
Variation, or TTV (Fang et al., 2015). In this method, strong
changes in the neighboring values of the desired function are
penalized, and thus its smoothness is achieved:

K = argmin
K

(
1

2
∥ AK − C ∥22 + ∥ K ∥TV ), (13)

where ∥ K ∥TV =
∑

t,i,j,k

(γ1|Kt+1,i,j,k −Kt,i,j,k|+

+γ2(|Kt,i+1,j,k −Kt,i,j,k|+
+|Kt,i,j+1,k −Kt,i,j,k|+
+|Kt,i,j,k+1 −Kt,i,j,k|)),

K ∈ RT×I×J×K .

In case of perfusion, one of the spatial coordinates is rather
sparse, so no regularization is performed on it:

∥ K ∥TV =
∑
t,i,j,k

(γ1|Kt+1,i,j,k −Kt,i,j,k|+

γ2(|Kt,i+1,j,k −Kt,i,j,k|+ |Kt,i,j+1,k −Kt,i,j,k|))
.

(14)

In this method, it is necessary to vary the parameters of
γi, which in practice presents considerable complexity and
strongly affects the result of calculations, especially given the
lack of reference maps for real data. In case of using images
from different devices with different noise levels, it becomes
necessary to select these values manually.

Algorithm 1 Gradient descent algorithm using TTV.
Entrance: regularization parameters λ, γ.
Exit: function K ∈ RT×N1×N2 .
K0 = 0, t1 = r1 = K0

for n = 1, 2, ..., N do:
Gradient descent:

Q1 = AT · (A · rn − c), Q2 = λ× rn,

s =

∑
(Q1 +Q2)

2∑
(AQ2

1 + λQ2
2)

,

Kp = rn − s · (Q1 +Q2).
Regularization:

Kn = proxγ(2 ∥ K ∥TV )(Kg),
proxρ(g)(x) = argmin

u
{g(u) + 1

2ρ
∥ u− x ∥}.

Update t, r:

tn+1 =
1 +

√
1 + 4(tn)2

2
,

rn+1 = Kn + tn−1
tn+1 (K

n −Kn−1).

Stochastic gradient descent (Algorithm 1) is used to find the
matrices. The prox function is calculated using the proxtv lib-
rary ((Barbero and Sra, 2011), (Barbero and Sra, 2018)).

5.3 Other Classical Methods

In addition to Gaussian filters, there are other filtering meth-
ods that allow to remove noise from the image to some extent
(Gabor filtering, median filtering, etc.). An overview of such
methods is given in (El-Shafai et al., 2023).

In addition to TTV, other additional regularization parameters
for gradient descent can be used to calculate perfusion maps
using variation methods.

For example, in (Lyukov et al., 2019), in addition to the first
derivative, the second one is also involved (Total Generalized
Variation, TGV).

In (Zeng et al., 2016), (Wu et al., 2020), a Structure Total Vari-
ation (STV, (Lefkimmiatis et al., 2015)) is used. This method
uses information about the voxel environment obtained from
the eigenvalues of the structure tensor.
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6. Noise2Noise

The use of a Gaussian filter before applying tSVD significantly
reduces the local accuracy in calculating perfusion maps, and
cannot always effectively suppress noise. One of the alternat-
ives to solve the problems that arise is the use of neural network
methods to obtain less noisy images. In this paper, we consider
the Noise2Noise ((Lehtinen et al., 2018)) neural network based
on the classical UNet architecture (Fig. 3, Fig. 4). In addition to
the standard architecture, padding (image addition to preserve
dimension after applying convolution) and a Batch Normaliza-
tion layer were added.

Figure 3. Noise2Noise pipeline.

Figure 4. UNet architecture.

The method is proposed in (Wu et al., 2021). To use
Noise2Noise, noisy images x + n1, x + n2 (ni is noise) are
fed to both input and output, such that n1, n2 have zero mean
and do not depend on each other.

Contrast agent concentration is considered to be proportional to
c(t), where c(t) is as follows:

c(t) = x(t)−
T∑

t0=1

x(t0), (15)

where x(t) = slice at time t.

In this research T = 2 is taken. Since c(t) represents the
propagation of contrast agent over time with fixed time inter-
vals, then

c(t) ≈ c(t+ 1) + c(t− 1)

2
. (16)

To apply a neural network, it is necessary that the noise in the
original image be independent of the noise of the approximate
image, but if the noise for neighboring slices x(t − 1), x(t),
x(t + 1) can be considered independent, then the presence of

the same value
T∑

t0=1

x(t0) for each of c(t) gives noise with non-

zero correlation. Therefore, instead of the average value, slices
at different points in time t0 are used to obtain images:

x(t)− x(1) ≈ x(t− 1) + x(t+ 1)

2
− x(2). (17)

However, it is also necessary that the average noise value be
zero, so the following estimation is used:

xe(t) = k(t)
x(t− 1) + x(t+ 1)

2
, (18)

where k(t) = argmin
k

||k x(t−1)+x(t+1)
2

− x(t)||22.

Thus, the following main loss function is used:

Ln2n(Θ) =
1

2N

N∑
i=1

1

Ti − 2

Ti−1∑
t=2

2∑
t0=1

||f(xi(t), xi(t0);Θ)−

− (xie(t)− xi(3− t0)||22.
(19)

But using xe(t) shifts the noise distribution, so additional reg-
ularization needs to be used. Since noise is usually high-
frequency information, the following loss function is used to
save low-frequency information (after applying strong Gaus-
sian filtering, the image submitted to the input and one obtained
using a neural network are compared):

Lbias(Θ) =
1

2N

N∑
i=1

1

Ti − 2

Ti−1∑
t=2

2∑
t0=1

||G ∗ f(xi(t), xi(t0);Θ)−

−G ∗ (xi(t)− xi(t0)||22.
(20)

The final loss function is calculated as

Θ∗ = argmin
Θ

(Ln2n(Θ) + βLbias(Θ)). (21)

The use of xe(t) has the greatest impact at time points close to
the peak concentration of the contrast agent, since the approx-
imation by neighboring slices at this time is the least accurate.
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At the same time, these points carry out important information
for the final calculation of perfusion parameters, but their per-
centage in the training data is not so large. Therefore, it is also
proposed to choose the time interval unevenly, and use more
slices near the peak concentration during the training process.
The peak concentration time is calculated using the formula

tpeak = argmax
t

(x(t)). (22)

After obtaining the concentration of the contrast agent, it is also
necessary to solve the problem of deconvolution. In this paper,
we consider the combination of Noise2Noise with the above
described methods of tSVD and TTV.

7. Results

The results of calculations using various deconvolution meth-
ods for Phantom data are shown in Fig. 5. Without filtering,
the resulting maps turn out to be completely uninformative.
The usage of TTV method results in a large number of block
artifacts, as borders of zones with different values tend to be
straight lines. Maps obtained using Gaussian filtering lack ac-
curacy in comparison with Noise2Noise. A visual comparison
of the residual function k(t) in one of the voxels confirms that
the neural network method allows one to get the desired func-
tion in the closest way to the original one.

Figure 5. Results, Phantom.

The same is shown when comparing the obtained maps with the
reference ones (Fig. 6) according to the RMSE and SSIM met-
rics. For all perfusion maps, the RMSE metric decreased sig-
nificantly compared to other methods, and the SSIM increased
when using Noise2Noise with tSVD. At the same time, for the
neural network method with TTV, the metrics for CBF show a
slightly worse result, and for MTT significantly better. Accord-
ing to the residual functions, the use of the first derivative in
this case may have led to excessive smoothing. This may be
due to the fact that for Phantom data, neural network training
took place on homogeneous noise and similar data, as a result

Figure 6. Metrics, Phantom.

of which Noise2Noise itself coped well with the task, and the
use of additional regularization was not needed.

In Fig. 7, 9 the results of map calculations for ISLES2018
and MultiVox data, respectively, are presented. The results are
mostly the same as for Phantom data - maps are unreadable
without filtering, using TTV leads to block artifacts, which is
most noticeable for MultiVox data. Noise2Noise copes best
with calculating maps and greatly increases resolution. How-
ever, after applying regularization by the method of tSVD, the
residual function is still subject to noise, which is especially no-
ticeable on MultiVox data. Using the TTV allows one to further
denoise the residual function.

For ISLES dataset, CNR metric (23) was calculated for lesion
area compared to normal white matter for MTT maps (See 3).
It shows that neural network methods cope significantly better
with the task of distinguishing the areas, and confirm the con-
clusion that using TTV after denoising may lead to unnecessary
smoothing.

CNR =
Slesion − Snormal

σnormal
, (23)

where Slesion = mean value of voxel intensities for MTT
map in lesion area,
Snormal = mean value of voxel intensities for MTT
map in normal white matter area,
σnormal = standard deviation of voxel intensities for
MTT map in normal white matter area.

Method Contrast Noise CNR
No filtration 0.218 8.448 0.026
Gaussian 1.317 1.436 0.917
TTV 3.077 24.137 0.127
N2N+SVD 1.779 1.106 1.609
N2N+TTV 3.038 2.448 1.241

Table 3. Values for different substances.

Bias and standard deviation for normal white matter were also
calculated for both ISLES2018 and MultiVox. Bias was cal-
culated by averaging values of obtained concentration maps at
each time point and subtracting same value for initial noisy con-
centration maps. The use of neural network significantly re-
duces bias, and standard deviation mainly stays on the same
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level. It should be noted that these values cannot be calculated
for TTV-based methods, as TTV does not provide denoised
concentration maps.

Figure 7. Results, ISLES2018.

8. Conclusions

Algorithms have been developed for pre-processing CT series:
finding the mask of brain tissues using mathematical morpho-
logy, and finding the arterial input function using cluster curve
analysis. Two deconvolution algorithms were also implemented
to obtain perfusion maps using tSVD and TTV.

Using the Noise2Noise architecture, a neural network was
trained to reduce noise in images before applying deconvolu-
tion, and its operation on various datasets using both of the
above mentioned algorithms was investigated.

The resulting algorithm has significantly improved the resolu-
tion of perfusion maps and the quality of their calculation. It has
shown best results for simulation data when compared by MSE
and SSIM metrics, and for ISLES2018 data, with significantly
better CNR metric.
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