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Abstract

A single sensor on unmanned aerial vehicles (UAVs) cannot provide stable and accurate trajectory prediction in outdoor low-altitude
environments. Moreover, most UAV datasets primarily focus on the low-altitude forward-facing view, with limited coverage of the
nadir view. To solve this problem, this study presents a multi-sensor fusion SLAM for UAV localization and mapping from the
nadir view in real-time. This method integrates monocular images, IMU measurements, and GNSS coordinates, combining the
advantages of each sensor to achieve accurate and reliable state estimation. First, the sensors are initialized and aligned to ensure
a consistent reference frame. Subsequently, tracking and local mapping are conducted to establish the system’s midterm stability.
Finally, the optimization function is formulated using a factor graph that integrates visual factor, inertial factor, GNSS factor,
keyframe proximity factor, and designed yaw factor. The system is evaluated using the MARS dataset, and the experimental results
demonstrate improved drift reduction and enhanced positioning accuracy.

1. Introduction

Real-time positioning of UAVs can be performed with the help
of simultaneous localization and mapping (SLAM) technology
to facilitate situational awareness (Huang et al., 2020). Among
various SLAM approaches, visual SLAM (VSLAM) has gained
significant attention due to its reliance on camera-based per-
ception. Depending on different types of cameras, VSLAM
has evolved into monocular SLAM (mono SLAM), when using
only image inputs, RGB-D SLAM, and stereo SLAM (Jiang et
al., 2021). Compared to depth or stereo cameras, monocular
cameras mounted on UAVs are small, flexible, and can perform
longer missions. They are more economical, do not require a
fixed baseline, and can easily be combined with other sensors.
Considering these advantages, mono SLAM serves as a prac-
tical technique for UAV positioning in complex environments.

However, relying solely on mono SLAM for positioning is in-
sufficient. It inherently suffers from scale ambiguity (Mur-Artal
and Tardós, 2017b). In addition, mono SLAM is susceptible
to illumination changes, lack of texture, and dynamic environ-
ments, resulting in reduced robustness. Multi-sensor fusion has
emerged as an effective solution to these challenges. By integ-
rating sensors such as depth cameras, inertial measurement unit
(IMU), global navigation satellite system (GNSS), and laser
radar (LiDAR), more robust pose estimation can be provided to
compensate for the scale drift of mono SLAM (Li et al., 2023).

Multi-sensor SLAM benefits from the fusion of diverse data
sources to boost localization and mapping accuracy, but it still
encounters many challenges. These include time synchroniza-
tion of various sensors, optimization of data fusion strategies,
and generalization capabilities in different application scen-
arios. Addressing these challenges requires accurate temporal
synchronization, robust and efficient sensor fusion algorithms,
and adaptive optimization strategies tailored to diverse environ-
ments.

In this paper, we fuse the visual, inertial, and GNSS measure-
ments to build a tightly-coupled Mono-Inertial-GNSS SLAM

system. The work of Cremona et al. (Cremona et al., 2023) that
constructed a GNSS-Stereo-Inertial fusion framework by intro-
ducing GNSS factors into the ORB-SLAM3 (Campos et al.,
2021) system, was also of inspiration for our work. To enhance
the versatility of the algorithm, our work employs a monocular
camera for experiments. We propose an improved initialization
method for the system by adding the GNSS information. In
addition to optimizing temporally adjacent keyframes as com-
monly done in SLAM, we also incorporate spatially nearby key-
frames—those that are close in 3D space but not necessarily ad-
jacent in time. This spatial proximity-based selection improves
both local and global consistency during optimization. Addi-
tionally, a designed yaw constraint is introduced to regulate the
UAV’s motion within the horizontal plane. The effectiveness
of the proposed method is assessed using public datasets. The
experimental results show that the proposed improved method
has higher accuracy and robustness than ORB-SLAM3 (Mono-
Inertial-GNSS).

This study offers the following key contributions:

1. A Mono-Inertial-GNSS framework is proposed for UAV
localization and mapping from the nadir view in real-time,
rather than the commonly used forward view. All sensors
are precisely time-synchronized and integrated within a
unified global reference frame, ensuring consistent and ac-
curate multi-sensor fusion.

2. To improve positioning accuracy, the data fusion optimiza-
tion framework is extended to integrate visual factor, iner-
tial factor, GNSS factor, yaw factor and keyframe proxim-
ity factor that are spatially close to the current keyframe.

3. The proposed algorithm is verified in multi-sensor fusion
datasets called MARS Dataset using the nadir view. The
results prove its effectiveness and superiority in challen-
ging environments, indicating the versatility of our al-
gorithm.

The remainder of this paper is organized as follows. Section II
describes the related literature on multi-sensor SLAM. Section
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III presents the methodology of the proposed framework. Sec-
tion IV discusses the experimental results and analysis. Finally,
Section V presents the conclusions and future work.

2. Related Works

VSLAM methods can be divided into indirect and direct ap-
proaches depending on how image information is processed
(Cheng et al., 2022). Indirect (feature-based) methods, such as
ORB-SLAM2 (Mur-Artal and Tardós, 2017a), ORB-SLAM3
(Campos et al., 2021), and VINS-Mono (Qin et al., 2018), de-
tect and match features between adjacent frames to estimate
camera motion and minimize the re-projection error for ac-
curate pose estimation. In contrast, direct methods, including
LSD-SLAM (Engel et al., 2014) and DSO (Engel et al., 2017),
infer camera motion using pixel intensity patterns in images
without explicitly extracting features.

Among the VSLAM methods, mono SLAM relies on a single
camera, making it cost-effective and easy to calibrate. However,
mono SLAM struggles to recover true scale due to the absence
of depth information and becomes unreliable in fast-motion or
low-texture environments.

To overcome these limitations, Visual-Inertial SLAM (VI-
SLAM) integrates IMU data to provide additional motion con-
straints that enhance scale observability, robustness, and local-
ization accuracy. VI-SLAM combines cameras and an IMU to
estimate motion states and reconstruct the surrounding envir-
onment (Song et al., 2024). By leveraging visual and inertial
data, VI-SLAM delivers high-frequency, continuous relative
positioning without dependence on external references. How-
ever, the absence of a global reference prevents VI-SLAM from
directly determining the absolute position, making it prone to
cumulative errors. Currently, many researchers are exploring
the integration of GNSS into VI-SLAM systems to reduce drift.
GNSS offers precise geolocalization in the global earth frame
without accumulating errors over time by providing absolute
measurement (Cao et al., 2022).

The multi-sensor fusion approach can leverage sensor com-
plementarity to enhance accuracy. To combine these sensors
information, there are two sensor fusion coupling methods:
loosely-coupled and tightly-coupled (Wang et al., 2024). In the
first approach, each sensor’s data is processed separately to es-
timate its position. The final pose is derived through the fusion
of estimates from multiple sensors, employing algorithms such
as extended Kalman filter (EKF), particle filter, and unscented
Kalman filter (UKF) (Lee et al., 2020). The tightly-coupled ap-
proach integrates data from multiple sensors to formulate mo-
tion and observation equations, enabling joint state estimation
with a unified optimization objective (Cadena et al., 2016).

Shen et al. proposed a loosely-coupled UKF framework (Shen
et al., 2014) that integrates multiple sensors, such as IMU and
a GNSS receiver for position estimation in several scenarios.
Based on VINS-Mono (Qin et al., 2018), Qin et al. integrated
GNSS into the global estimator to propose VINS-Fusion (Qin
et al., 2019). GNSS facilitated the estimation of IMU biases.
However, it’s a decoupled method for the GNSS and VINS es-
timators. Yu et al. extended VINS-mono with tightly integ-
rated visual and inertial information and presented a GNSS-
aided visual-inertial framework (Yu et al., 2019). Additionally,
GNSS measurements were included using a loosely-coupled

Figure 1. Overview of Mono-Inertial-GNSS framework.

approach. Cao et al. presented GVINS (Cao et al., 2022), a sys-
tem that tightly integrated GNSS raw measurements into VINS
for state estimation. It facilitated global localization in diverse
environments, including both indoor and outdoor settings. A
probabilistic factor graph framework was used to model the sys-
tem. The visual and inertial constraints were integrated along-
side the incorporation of GNSS pseudorange and doppler shift
measurements in the model. Although GVINS builds upon the
foundation of VINS-Mono, it is note worthy that no enhance-
ments were made to the visual processing component. Cre-
mona et al. proposed a tightly-coupled GNSS-Stereo-inertial
SLAM (Cremona et al., 2023) for agriculture work. The frame-
work extended the visual-inertial mode of ORB-SLAM3 with
GNSS measurements. Yu et al. proposed a GNSS/IMU/Vision
system (Yu et al., 2025). This system combines multi-sensor
data through factor graph optimization and introduces two key
improvements: an IMU-assisted optical flow method to sup-
press dynamic effects and excluding distant features to minim-
ize translation and scale errors.

There are also several aerial mapping approaches that utilize
multi-sensor fusion to enhance localization and mapping per-
formance. For example, Map2DFusion (Bu et al., 2016) and
OpenREALM (Kern et al., 2020) aim to integrate GNSS and
visual information for accurate localization. Map2DFusion
aligned 2D image-based SLAM trajectories with GNSS maps,
which may result in reduced accuracy due to delayed or incon-
sistent updates. OpenREALM incorporated global positioning
for georeferencing. However, it does not tightly integrate GNSS
data into the SLAM optimization process.

Many early methods use loosely coupled or filter-based meth-
ods, which limit the full utilization of individual sensor con-
straints. Recent advancements have incorporated raw GNSS
measurements into tightly coupled solutions. Furthermore,
these methods are limited to the forward view of vehicles and
UAVs, with little consideration from a nadir perspective. Our
method performs tightly-coupled multi-sensor fusion, integrat-
ing GNSS, IMU, and visual data directly within the SLAM
backend. By introducing GNSS measurements as direct con-
straints in the optimization, our system achieves improved loc-
alization accuracy and robustness.

3. Methodology

3.1 Overview of Mono-Inertial-GNSS framework

The overview of the proposed Mono-Inertial-GNSS framework
is presented in Figure 1, consisting of the following modules:
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1) Atlas: Atlas is a subsystem in ORB-SLAM3 (Campos et al.,
2021) used to manage and represent multiple maps, supporting
multi-map operations and map merging. In our work, we use
the original Atlas implementation provided by ORB-SLAM3.
This system contains several sub-maps that can be categorized
into two types: active maps and non-active maps. The tracking
thread uses active maps. New keyframes are added for continu-
ous optimization and growth of active maps. In contrast, the
non-active maps denote reserved maps, and they are not used
for tracking threads but are still saved in the Atlas. The system
builds a keyframe database in the Atlas using DBoW2 (Gálvez-
López and Tardos, 2012). This database can realize different
functions, such as relocalization, loop closure detection, and
map fusion.

2) Input: Images, IMU, and GNSS measurements serve
as inputs to the system. To ensure proper synchronization
among these data sources, measurements with closely matching
timestamps are selected for joint processing. In our implement-
ation, the Robot Operating System (ROS) framework (Quigley
et al., 2009) is used, where each sensor publishes its data as
a rostopic. Each message published to a rostopic includes a
timestamp indicating the exact time the data is captured. By
comparing these timestamps, the system aligns the data tem-
porally to ensure accurate sensor fusion.

Since the sensors operate at different sampling rates (e.g., the
IMU at 200 Hz, images at 10 Hz, and GNSS at 10 Hz), not every
measurement is used directly in the SLAM process. Instead,
we associate each image frame with the temporally closest
IMU and GNSS measurements within a predefined time win-
dow. Figure 2 shows this temporal alignment process. The data
within the orange boxes are aligned images, IMU, and GNSS
data within the time window.

3) GNSS-Inertial-Visual Initialization: The system first per-
forms visual initialization, which estimates the initial pose and
reconstructs the 3D structure of map points using visual data.
After that, IMU pre-integration accumulates inertial measure-
ments between consecutive keyframes, providing constraints
that are used to estimate velocity, gravity direction, and sensor
biases. These steps establish a local visual-inertial coordinate
system. Then, this coordinate system needs to be aligned with
the GNSS coordinate system to ensure consistency with global
positioning. The visual-inertial coordinates to the GNSS co-
ordinate system are converted based on the external parameters.
Finally, the rotation matrix is calculated to ensure the accurate
alignment of the two coordinate systems. It is illustrated in Fig-
ure 3, which will be discussed in more detail in Section 3.3.

4) Tracking: In the tracking thread, the oriented fast and ro-
tated brief (ORB) (Rublee et al., 2011) algorithm is utilized to
identify point features. The relationship between images is ob-
tained by matching the point features. The tracking thread per-
forms real-time localization using the active maps and decides
whether to create new keyframes. By including the inertial re-
siduals in the optimization, the body velocity and IMU biases
are estimated. Upon losing track, the tracking thread attempts
to relocalize the current frame in all the maps of the Atlas. If
the relocation is successful, the process will continue. Other-
wise, the currently active map will be saved as an inactive map,
and a new active map will be recreated. In the tracking thread,
only information obtained from adjacent frames or keyframes
is used, and the current frame’s pose is optimized.

5) Local Mapping: The tracking thread provides keyframes to
the local mapping module, then it performs local bundle adjust-

Figure 2. The temporal alignment between different sensor
data. The blue circles represent keyframes, green inverted tri-
angles represent IMU measurements, and purple squares repres-
ent GNSS measurements. The horizontal axis represents time.

ment (BA) and culls keyframes. This module also sends optim-
ized keyframes to the loop closing thread. The visual factor,
inertial factor, GNSS factor, keyframe proximity frame factor,
and designed yaw factor are added to the optimization process
for refinement. Each factor contains a residual quantifying the
error between the predicted and observed values. The optimiz-
ation process then adjusts the variable values to minimize the
sum of these residuals, weighted by their corresponding uncer-
tainties.

The visual residual is based on the reprojection error between
image feature points. The pose and map points are optimized
by minimizing the observation error between keyframes and
map points. The IMU residual uses a pre-integration model
to convert the acceleration and gyroscope velocity information
between consecutive frames into pose constraints. GNSS re-
sidual provides global pose constraints to reduce cumulative er-
rors. Keyframe proximity residual uses information from spa-
tially adjacent frames to constrain poses. Yaw residual is spe-
cifically designed to improve the unobservable yaw ambiguity.
A detailed discussion will be provided in Section 3.4. Further,
the local mapping adds and deletes keyframes, as well as maps,
to the active map, which can reduce the size and amount of
local BA. Finally, it constructs a more reliable map and shows
an environment more explicitly.

6) Loop closing & map merging: This module is to correct
the accumulated pose errors by detecting the loop. In our scen-
ario, the drone takes off and lands at approximately the same
location, naturally creating spatial overlap between the begin-
ning and end of the flight. Moreover, the drone follows a strip-
based flight trajectory, which results in repeated observations
of overlapping areas along adjacent flight lines. These over-
laps provide opportunities for loop closure, allowing the sys-
tem to detect similarities between keyframes recorded at dif-
ferent times and locations. Then, it will optimize the pose and
map to eliminate accumulated errors. In addition, the map fu-
sion processes information from multiple maps to provide more
comprehensive scene information.

7) Full bundle adjustment: The full bundle adjustment is per-
formed to refine and enhance maps. This module connects mul-
tiple sub-maps into an accurate global map with highly accurate
pose estimation, which can greatly reduce the overall pose and
map errors.

3.2 Frames and Notations

The proposed Mono-Inertial-GNSS framework involves the fol-
lowing coordinate system: the world frame {W} is represents
the global positions and map points, imu (body) frame {B} rep-
resents the body frame where the IMU sensor is located, the
monocular camera frame {C} takes the camera optical center
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as the origin, the GNSS antenna frame {G} indicates the in-
stallation position of the GNSS antenna and the East-North-Up
(ENU) frame {E}. The {W} is a global reference coordinate
system defined in the SLAM system, which is first defined by
the initialization frame. In this paper, it is recorded as the refer-
ence coordinate system of the visual-inertial trajectory (VI tra-
jectory). GNSS outputs latitude, longitude, and altitude values
in the geodetic coordinate frame, and these will be transformed
into the local Cartesian ENU frame. The first GNSS measure-
ment is typically used as the reference point. The GNSS result
in the {E} coordinate system is recorded as ei, i represents the
i th keyframe. The transformation between all frames is usually
completed through an extrinsic matrix to ensure that all sensor
data are optimized and fused in a unified world coordinate sys-
tem.

3.3 GNSS-Inertial-Visual Initialization

The initial VI-SLAM system has four unobservable directions
(Lee et al., 2020). Without external references, the system
cannot determine its absolute position and its rotation around
the vertical axis. To address the VI-SLAM system initializa-
tion problem, the GNSS measurements are incorporated into
the visual-inertial initialization process, which estimates the un-
known transformation between the VI reference frame and the
global frame.

The relative displacement between the current and initial frames
is computed using GNSS during monocular camera initializa-
tion. The ratio of the GNSS displacement to the camera dis-
placement is obtained as a scale factor. The scale factor is used
to adjust the translation part to keep it consistent with the true
scale of the GNSS data. Finally, the system updates the frame’s
pose and creates an initial map to complete the initialization
process.

To estimate motion, the system conducts IMU pre-integration
on the collected data based on the IMU kinematic model. Un-
like traditional IMU kinematic integration, IMU pre-integration
accumulates inertial measurements over a time interval to con-
struct relative motion constraints between keyframes. During
the nonlinear optimization process, if the initial state (such as
velocity, orientation, or bias) changes, traditional integration
methods require re-integrating all raw IMU data from the be-
ginning, which is computationally expensive. In contrast, the
pre-integration approach processes the IMU data in advance
and only applies corrections when certain states are updated,
thereby significantly improving optimization efficiency (Forster
et al., 2016).

The calculation formulas are as follows:

pj = pi + vi∆t+
1

2
Ri (âi − ba)∆t

2 (1)

vj = vi +Ri (âi − ba)∆t (2)

Among them, pi and pj represent the position of the start frame
and target frame, respectively. The start frame refers to the key-
frame at the beginning of the pre-integration interval, while the
target frame refers to the keyframe at the end of that interval.
vi and vj correspond to their velocities of the start frame and
target frame. âi represents the acceleration measurements. ba

Figure 3. The alignment process.

represents the accelerometer bias. The rotation matrix of the
start frame and the target frame are denoted as Ri and Rj .

Rj = Ri exp ((ω̂i − bg)∆t) (3)

ω̂i represent angular velocity measurements. bg represents the
gyroscope bias.

The inertial initialization process not only corrects the direc-
tion of gravity, but also optimizes the IMU parameters, such as
velocity, gravity, and bias.

Figure 3 shows the alignment process. When the visual-inertial
initialization process is done, the VI coordinates should be
aligned with the global world coordinates. By constraining the
time offset between the VI-estimated trajectory and the GNSS
trajectory, around 30 poses are selected for matching during
the takeoff phase of the drone. Then, the transformation mat-
rix TE0

W is calculated, which represents the spatial relationship
between the VI coordinate frame and the GNSS coordinate
frame. E0 denotes the coordinate system E evaluated at the
initial time (t = 0). The RE0

W will be extracted from TE0
W for the

subsequent alignment and optimization.

3.4 Multi-sensor Fusion

For feature extraction, the images are divided into small grids to
realize the distribution of feature points uniformly. To increase
the feature extraction rate, the system implements a dynamic
adjustment mechanism that decreases the threshold if an insuf-
ficient number of features are extracted.

The fusion process is performed within the local bundle ad-
justment framework, including keyframes in a sliding window
along with their corresponding observed 3D points. The sensor
state xi at the i-th time is

xi =
[
RW
Bi , t

W
Bi ,v

⊤
i ,b

⊤
ai ,b

⊤
gi

]
(4)

where RWBi ∈ SO(3), which represents the rotation matrix of
the i th frame with respect to {W}. The translation of the i-
th frame with respect to the world frame W is represented by
tWBi ∈ R3. vi ∈ R3 represents its corresponding velocity. bai
∈ R3 represents accelerometer bias of the i th frame. bgi ∈ R3

represents gyroscope bias of the i th frame.

lj =
[
XW , YW , ZW

]⊤ ∈ R3 are the landmarks in the
{W}. The sensor states within a sliding window denote
as XB = [x1, . . . ,xi, . . . ,xN ]. The collection of sensor
states spans the most recent N keyframes. Similarly, let
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L = [l1, . . . , lj , . . . , lM ] denote landmark states observed dur-
ing these N keyframes. The optimization objective is X =
{XB ,L}.

To solve this optimization problem efficiently, a factor graph
is utilized. In this framework, the sensor states and landmarks
are treated as variables, and the sensor measurements are en-
coded as factors that connect the variables. Each factor encodes
a residual that measures the prediction error, and optimization
seeks variable values that minimize the weighted sum of all
such residuals.

The visual residual refers to the distance between the pixel co-
ordinates uij obtained by observation and those obtained by
projecting the 3D point of j th landmark according to the cur-
rent estimated pose at i th keyframe. π represents the projection
model of the pinhole camera. TB

C is the homogeneous trans-
formation matrix from camera frame {C} to body frame {B}.
Then, the visual residual rvij can be expressed as:

rvij = uij −Π
(
TB
CT

W
B

−1hlj
)

(5)

where hlj is the homogenous form of landmark.

The pre-integration of IMU measurements is carried out
between adjacent visual keyframes, denoted by i and i + 1.
The preintegrated measurements of position, rotation, velocity,
and covariance are expressed as follows, ∆pi,i+1, ∆Ri,i+1,
∆vi,i+1, and ΣIi,i+1 . They represent accumulated relative ro-
tation, velocity, and position inferred from inertial data captured
between the two keyframes. The inertial residual rIi,i+1 can be
expressed as follows:

rIi,i+1 =
[
r∆Ri,i+1 , r∆vi,i+1 , r∆pi,i+1

]
(6)

The rotation residual, velocity residual, and position residual
can be expressed as follows:

r∆Ri,i+1 = log
(
∆RT

i,i+1R
T
i Ri+1

)
r∆vi,i+1 = RT

i (vi+1 − vi − g∆ti,i+1)−∆vi,i+1

r∆pi,i+1 = RT
i

(
pj − pi − vi∆ti,i+1 −

1

2
g∆t2

)
−∆pi,i+1

(7)

In addition to the visual residual, inertial residual, the GNSS
measurement residual is also implemented. rGi is described as:

rGi = ei −RE0
W

(
RW
Bit

B
E + tWBi −

(
RW
B0

tBE + tWB0

))
(8)

where B0 and E0 are the coordinate system states of {B} and
{E} at time 0. RE0

W is the alignment matrix calculated in sec-
tion 3.3.

The relative position between keyframes is also taken into ac-
count. Let Tiw, Tjw denote the pose of keyframe KFi, KFj .
Tij denotes the relative transformation between KFi and KFj .
Their corresponding GNSS positions are ei and ej . The GNSS
distance can be expressed as:

eij = ∥ei − ej∥ (9)

The threshold is set to dth. If eij exceeds this threshold, both ei
and ej are discarded.

The relative pose Tij is computed as:

Tij = T−1
iw · Tjw (10)

Where T−1
iw is the inverse of the pose of KFi.

Therefore, the keyframe proximity residual rpij is defined as:

rpij = eij − T ij (11)

Since yaw angle errors accumulate over time and affect the tra-
jectory’s direction, the designed yaw angle residual is incorpor-
ated into the optimization function for correction. The ”current
orientation” (similar to the yaw) can be estimated by the vec-
tor between the current and initial positions as a soft constraint
on the yaw during optimization. If the trajectory is relatively
straight, the estimated heading will be more stable and can sig-
nificantly enhance the observability of the yaw. Since we use
raw GNSS information, the yaw angle remains unobservable.
The designed yaw angle calculated roughly by GNSS is used
to constrain the yaw angle estimated by the pose graph. The
designed global yaw is defined as:

ψgi = arctan

(
eiy
eix

)
(12)

The designed yaw residual rψi can be expressed:

rψi = ψgi − ψesti (13)

The final optimization cost function is:

X̂ = argmin
X

(
M∑
j=1

∑
i∈Kj

ρ

(∥∥rVij∥∥Σ−1
Vij

)

+

N∑
i=1

∥∥rIi−1,i

∥∥2
Σ−1

Ii−1,i

+
∑
i∈N∗

ρ

(
∥rGi∥Σ−1

Gi

)
+
∑
i∈N∗

∑
j∈Ki∈N∗

ρ

(∥∥rPij∥∥Σ−1
Pij

)

+
∑
i∈N∗

ρ

(
∥rψi∥Σ−1

ψi

))
(14)

To maintain real-time performance, our system performs op-
timization over a sliding window. For the first term, M rep-
resents the number of frames within the local sliding window.
Kj represents the set of keyframes related to the j th frame.
ρ(·) is a robust kernel to suppress outlier effects. Σvij is the
covariance matrix of the visual residual. It is set to represent
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(a) (b) (c) (d)

Figure 4. The process of feature extraction and map construction for the airport. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Map.

(a) (b) (c) (d)

Figure 5. The process of feature extraction and map construction for the island. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Map.

Method Airport Island
ATE(m) Drift(%) Processing time (s) ATE(m) Drift(%) Processing time (s)

ORB-SLAM3 (Mono-Inertial-GNSS) 1.3287 0.065 476.375 1.0256 0.056 477.253
Our Method 1 1.1056 0.054 474.458 0.9152 0.050 476.189
Our Method 2 0.8945 0.044 474.724 0.7582 0.041 476.693

Table 1. The result of MARS Dataset

1-pixel isotropic observation noise. For the second term, N
is the sum of IMU samples. ΣIi−1,i is the covariance mat-
rix of the inertial residual. It is obtained by propagating the
sensor noise model during the pre-integration process. For the
third term, N ∗ is a collection of keyframe indexes with GNSS
coordinates. ΣGi is the covariance matrix of the GNSS resid-
ual. ΣGi is set according to the position accuracy in each dir-
ection. For the fourth term, Ki is a set of adjacent keyframes
that have relative pose constraints with keyframe i and satisfy:
Ki =

{
j |
∥∥rPij∥∥ < dth

}
. ΣPij is the covariance matrix of

the keyframe proximity residual. For the fifth term, Σψi is the
covariance matrix of the designed yaw residual, which is set to
a constant.

4. Experiments

In this study, ORB-SLAM3 (Mono-Inertial) was modified to
ORB-SLAM3 (Mono-Inertial-GNSS) and used as a benchmark
for comparison. For comparison, we evaluate three methods:
(1) ORB-SLAM3 (Mono-Inertial-GNSS), a baseline method
combining monocular visual frames, IMU, and GNSS meas-
urements.; (2) Our method 1 — an extended approach that
integrates four types of factors: visual factor, inertial factor,
GNSS factor, and a keyframe proximity factor that connects
spatially close keyframes to improve local consistency.; and (3)
Our method 2 — a further refinement of Method 1, which adds
a yaw factor to constrain the heading direction explicitly.

In summary, Our Method 1 includes four residuals that contrib-
ute to minimizing errors in the system. Our Method 2, as the
final version of our framework, builds upon Method 1 by incor-
porating the yaw constraint, leading to more stable trajectory
estimation.

4.1 Dataset

The MARS dataset (Li et al., 2024) is used to evaluate the pro-
posed algorithm. The majority of UAV datasets are designed for
frontal or 360-degree perspectives. There are almost no UAV
datasets collected from nadir view. MARS dataset makes up
for these shortcomings and collects data from the downward-
looking view. Data are collected using a DJI M300 RTK quad-
rotor installed with LIVOX Avia LiDAR, a Hikvision CA-050
RGB camera, and a ZED F9P raw GNSS message receiver.
It captures diverse large-area environments, such as an island,
a rural town, and a valley. The input data consist of com-
pressed camera images, IMU measurements, and raw GNSS
readings. The ground truth is obtained from the high-precision
RTK sensor of DJI M300 RTK.

The HKairport GNSS02 and HKisland GNSS02 sequences are
selected because their corresponding rosbags contain image,
IMU, and GNSS rostopics. Additionally, both sequences have
suitable cruising altitudes and speeds for our evaluation. The
durations of the HKairport GNSS02 and HKisland GNSS02
rosbags are 462 seconds and 465 seconds, respectively.

4.2 Evaluation Indicators

The Absolute Trajectory Error (ATE) [unit: m] is used as the
evaluation metric. ATE will be calculated by comparing the
provided RTK ground truth trajectories with the position tra-
jectories generated by different multi-sensor fusion algorithms.
Umeyama’s algorithm was applied to register the estimated tra-
jectories to the ground truth (Umeyama, 1991).

ATE serves as a metric for assessing the accuracy and overall
consistency of trajectory. Assume that the estimated trajectory
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(a)

(b)

Figure 6. The trajectory from airport. (a) 2D plane trajectory. (b)
3D trajectory.

is denoted by Test,i and the ground truth is denoted by Tgt,i.
Then, RMSE of ATE [unit: m] can be obtained by:

ATE =

√√√√ 1

N

N∑
i=1

∥∥(T−1
gt,i, Test,i

)∥∥2
2

(15)

The Drift is defined as the ratio of ATE to the total trajectory
length. The path lengths of the airport and island are 2.040 km
and 1.846 km, respectively.

4.3 Results and Discussion

Figure 4 and Figure 5 show the process of feature extraction
and map construction for the airport and island. We randomly
selected three scenes from the dataset to showcase the extracted
feature points, and the final figure displays both the trajectory
and the constructed sparse point maps. The black point cloud
represents stable map points, while the red point cloud repres-
ents newly observed temporary points in the current frame. The
mono-inertial mode of ORB-SLAM3 is prone to failure, and
sometimes exhibits significant deviations during turns.

The experiments were performed on a computer equipped
with an Intel i7 CPU, NVIDIA GeForce RTX2070MxQ GPU
(8GB), and 16GB RAM. Figures 6 and 7 show the traject-
ories of these algorithms. Table 1 lists the ATE , Drift
and Processing time for the airport and island. In the
airport sequence, for ATE, Our Method 1 reduces the error
by 16.79% compared to ORB-SLAM3 (Mono-Inertial-GNSS),

(a)

(b)

Figure 7. The trajectory from island. (a) 2D plane trajectory. (b)
3D trajectory.

and Method 2 reduces it by 32.68%. In the island sequence,
for ATE, Our Method 1 reduces the error by 10.76% compared
to ORB-SLAM3 (Mono-Inertial-GNSS), and Our Method 2 re-
duces it by 26.07%. These results demonstrate that our pro-
posed method achieve significantly better localization accuracy
than ORB-SLAM3 (Mono-Inertial-GNSS), highlighting the ef-
fectiveness of our multi-sensor fusion strategy. In terms of
runtime performance, all methods process the data at near real-
time speed. Considering that the HKairport GNSS02 and
HKisland GNSS02 rosbags have durations of 462 seconds
and 465 seconds respectively, and the average processing times
are close to these durations, the system demonstrates practical
feasibility for real-time applications.

5. Conclusions and Future Work

This paper proposes a Mono-Inertial-GNSS multi-sensor
SLAM using monocular camera, imu and GNSS based on
ORB-SLAM3, aiming to solve the positioning in the outdoor
environment from the nadir view. An efficient initialization and
alignment method for the coordinate system is proposed, which
can rapidly transform various coordinate systems into a unified
frame for subsequent processing. A factor graph is construc-
ted to perform state optimization, incorporating five factors:
visual, inertial, GNSS, keyframe proximity, and designed yaw
factors. These residuals collectively enhance the optimization
process, ensuring robust and accurate state estimation by integ-
rating multi-modal sensor data and spatial-temporal constraints.
The proposed algorithm is verified on the MARS dataset and
the results show that it can achieve higher positioning accuracy
than ORB-SLAM3 (Mono-Inertial-GNSS).
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In the future, field experiments will be conducted to evaluate
the system’s performance in real-world conditions. To further
improve localization accuracy, RTK-based GNSS positioning
will be incorporated into the multi-sensor fusion SLAM.
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