ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Integrating Pre-Harvest UAV Scans to Enhance Harvester Tree Localization Accuracy

Evgeny Lopatin', Kari Viitiinen!, Harri Kaartinen?, Heikki Hyyti%, Lauri Sikanen', Yrj6 Nuutinen', Mauricio Acuna'

"Natural Resources Institute Finland, Yliopistokatu 6 B, 80101, Joensuu, Finland — eugene.lopatin@luke.fi

“Finnish Geospatial Research Institute in National Land Survey of Finland, Vuorimiehentie 5, 02150 Espoo, Finland -
harri.kaartinen@nls.fi

Keywords: UAV LiDAR, precision forestry, GNSS error, harvester data, data fusion, digital twin, tree species classification

Abstract

Accurate geolocation of individual trees during forest harvesting operations is crucial for effective decision-making, yet traditional
cut-to-length (CTL) harvesters often experience significant positional errors (0.5-10 m) due to unreliable GNSS performance under
dense forest canopies. This uncertainty hampers the precise integration of harvester-generated data into operational forest
management systems. To address this problem, we investigated the integration of high-resolution pre-harvest UAV LiDAR data with
harvester-collected positional information. UAV laser scanning (DJI Matrice equipped with Zenmuse L2 LiDAR) was conducted
over a dense, mixed-species boreal forest stand scheduled for its first thinning operation. Following harvesting, stump positions were
precisely recorded using centimeter-grade GNSS as ground truth. Harvester-recorded tree positions were matched to tree crowns
delineated from UAV LiDAR point clouds using Canopy Height Model (CHM) segmentation. For each crown, structural (height,
crown size) and spectral (RGB statistics) features were extracted, and tree species (spruce, pine, birch) were classified using Random
Forest (RF) and XGBoost models. Comparative positional error analysis revealed that mean harvester GNSS errors were 1.52 m,
whereas UAV-derived tree positions showed significantly lower mean errors of 0.63 m. Integrating UAV data with harvester
positions successfully reduced the mean positional error to 0.76 m. Species classification accuracy exceeded 91% overall for both RF
and XGBoost models, with coniferous species (pine, spruce) classified at approximately 94% accuracy and deciduous birch slightly
lower at around 71%. These results highlight the potential of integrating pre-harvest UAV scans to substantially enhance tree-level
geolocation accuracy, enabling precise digital twins and improved real-time operational decision-making during harvesting. The
study addresses a critical research gap by developing a practical workflow for combining UAV and harvester data, thereby
facilitating precision forestry applications such as targeted tree selection, automated navigation, and enforcing environmental
safeguards.

1. Introduction canopy occlusion, multipath, and terrain all contribute to
degrading positional accuracy for forestry machinery.

Advancements in unmanned aerial vehicles (UAVs) and remote
sensing over the last decade have led to significant
developments in forest monitoring and precision forestry. High-
resolution aerial imagery and laser scanning from UAVs enable
detailed mapping of forest structure and composition at the
individual-tree level, which is critical for modern “Forestry 4.0”
digitalization efforts. Researchers have demonstrated UAV-
based methods for tree detection, species classification, and
biomass estimation in various forest types (Li et al., 2022).
These developments underscore the potential of UAVs to create
detailed pre-harvest forest inventories or even real-time “digital
twins” of forest stands, which can support operational decision-
making.

Despite these known issues, there is a lack of established
operational workflows to fuse high-resolution UAV data with
harvester-collected data. Bridging this gap is a key research
need identified in precision forestry. If the detailed spatial data
from UAV scans (e.g., tree positions from a pre-harvest point
cloud) can be integrated with harvester data streams, it could
enable real-time or near-real-time corrections to harvester
GNSS positions. Some recent works (Faitli et al., 2024) have
taken steps in this direction. They achieved an average 2.44 m
real-time localization error (with GNSS-IMU-SLAM) which
improved to 0.21 m after post-processing the trajectory. This
shows the promise of integrating additional sensors on the
harvester; however, mobile laser scanning (MLS) systems on
every machine is costly and not yet commonplace. A more cost-
effective approach could leverage external UAV data. The
forestry industry has begun exploring “smart” harvesting
systems where pre-harvest remotely-sensed data is uploaded to
harvesters for navigation and decision support (Faitli et al.,
2024), but practical implementation remains limited. In
operational practice, harvester operators still largely rely on
their own visibility and stand maps for decision-making, rather

CTL forest harvesters, on the other hand, provide an abundance
of ground-truth data during operations. Modern harvesters
record each felled tree’s diameter, length (bucking), and
location via onboard GPS/GNSS and inertial sensors. This data
is economically valuable for forest management and supply
chain optimization. Studies have shown harvester data can serve
as “ground truth” for remote sensing (Soderberg et al., 2021).
However, a major challenge is that the geolocation of each tree

from the harvester is often imprecise due to GNSS signal
degradation under forest canopies. Typical standalone GNSS
errors on harvesters range from sub-meter to several meters,
depending on canopy density, terrain, and satellite visibility.
Kaartinen et al. (Kaartinen et al., 2015) found that even high-
end GNSS under dense canopy could not reliably achieve sub-
meter accuracy, often yielding 2-5 m errors. More recent
studies (Abdi et al., 2022; Lopatin et al., 2023) confirm that

than dynamic sensor-fused data.

Another important gap is the development of real-time forest
digital twins for harvesting. A digital twin is a live digital
replica of the physical environment. In forestry, this could mean
a continuously updated 3D model of the stand during
harvesting, showing each tree’s status and location in real time.
Such capability would support precision forestry by enabling
tree-level decisions: for instance, selective harvesting of certain
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species or sizes while avoiding protected trees or habitats, all
guided by a live map. Recent reviews note that while digital
twin concepts are emerging in agriculture and forestry, true real-
time integration is still in its infancy. Tagarakis et al. (Tagarakis
et al., 2024) emphasize that full digital twins in forestry face
challenges like data integration from multiple sources and the
need for expert knowledge to interpret the data. Buonocore et al.
(Buonocore et al., 2022) proposed a framework for a forest
digital twin that integrates tree-level data (from IoT sensors or
UAVs) with stand-level remote sensing, and highlights
blockchain for data integrity. However, implementing such a
system for real-time operations like harvesting requires solving
the geolocation accuracy problem: the digital twin must reliably
know which tree is being cut or moved at all times. Sub-meter
or even centimeter-level accuracy is needed to distinguish
individual neighboring trees and align machine actions with
specific trees in the digital model. Current GNSS alone is
insufficient, as noted, and thus the fusion of external data (e.g.,
UAV scans or ground sensors) is required to enhance
positioning. Additionally, achieving these accuracies in real
time is challenging due to computational and communication
constraints in forest conditions (limited bandwidth in remote
areas, processing large point clouds on the fly, etc.).

This study addresses that gap by demonstrating how UAV
LiDAR scans acquired before harvesting can enhance the spatial
accuracy of harvester-reported tree locations. We focus on two
key research questions:

1. How to integrate UAV data with harvester systems in
practice, including data alignment and error
correction, and what improvements in positional
accuracy result?

2. How can such integration support precision forestry
decision-making, and what challenges remain in
achieving real-time, tree-level guidance (a step toward
a functional forest digital twin)?

We hypothesize that matching harvester data to UAV-derived
tree positions can significantly reduce location errors, bringing
them closer to the decimeter level needed for tree-level
decisions. We also anticipate that UAV-derived data (LiDAR
point clouds and imagery) can enhance tree species
classification, complementing the harvester's data, where
species identification relies exclusively on operator input for
each felled stem. By integrating harvester and UAV datasets,
we create a richer and more reliable per-tree dataset (accurate
position, size, and species), which can directly support
operational decision-making, including harvest planning,
automated machine control, and environmental safeguards, such
as precise identification and preservation of specific habitat
trees.

2. Materials and methods
2.1 Study area and data collection

The study was conducted on 30 September 2024 in a managed
boreal forest stand located in southern Finland (61°13.141'N,
25°6.660'E). Dominant species were Norway spruce (Picea
abies), Scots pine (Pinus sylvestris), and birch (Betula spp.).
Prior to harvesting, we conducted a UAV LiDAR survey using
a DJI Matrice 300 drone equipped with the Zenmuse L2 LiDAR
sensor (a lightweight airborne laser scanner). The UAV was
flown in leaf-on conditions at ~70 m altitude with overlapping
flight lines to ensure full coverage. The Zenmuse L2 captures
high-density point clouds (up to ~240,000 points/sec with triple
returns, yielding point densities >4000 pts/m? over the canopy
in our flight). We also captured RGB imagery with the UAV’s
integrated camera simultaneously (the Zenmuse L2 includes a

synchronized camera), which was later used for extracting color
features per each LiDAR point.

After the CTL harvesting operation, we recorded ground truth
positions of the stumps of all harvested trees using Reach RS2+
Multi-Band RTK GNSS Receiver, species and stump diameter.
A survey-grade RTK GNSS receiver was used for stump
mapping, achieving ~1-2 cm accuracy in the relatively open
post-harvest canopy (with short occupation times ~1 min per
stump). These high-accuracy stump locations serve as reference
coordinates for each felled tree. The Ponsse Scorpion
harvester’s onboard system provided a data log of cut trees with
each tree’s ID, species (as identified by the operator or preset
for stand), and the GNSS-derived coordinates of crane tip
position where the tree was cut. The harvester was a modern
CTL machine with a GNSS receiver with RTK correction.

2.2 UAYV Data Processing and Tree Delineation

The raw UAV LiDAR point cloud was processed to create a
Digital Terrain Model (DTM) and a Canopy Height Model
(CHM). First, ground points were classified (using for instance
the cloth simulation filter in LIDAR360) to interpolate a DTM.
The CHM was obtained by subtracting the DTM from the
highest canopy returns (within a 0.1 m grid), yielding a raster of
canopy heights. Individual tree crown delineation was
performed on the CHM using a watershed segmentation
approach in LiDAR360 v.6.0.6.0 software (“LiDAR360 Point
Cloud & Images Post-Processing and Industry Applications
Software - GreenValley International,” 2025). Local maxima in
the CHM (above a height threshold of ~5 m to exclude
understory) were identified as tree tops. The watershed
algorithm then segmented the CHM into distinct crown
polygons around those peaks. Each delineated crown’s centroid
(or highest point) provided the UAV-derived tree position. This
produced a set of tree positions and attributes from the UAV
data, representing the trees standing before harvest. We also
derived additional per-crown metrics: color features of points
for each crown (mean R, G, B values, variance, and normalized
indices like Excess Green, etc.) to assist in species
classification, since different species (spruce vs. pine vs. birch)
in September have distinguishing spectral signatures or
phenology (e.g., deciduous birch vs. evergreen conifers
(Kukkonen et al., 2024)).

2.3 Data Integration and Matching

To integrate the UAV and harvester datasets, we needed to
match each harvester-recorded tree to its corresponding UAV-
delineated tree/crown and stump. This was done through spatial
matching. Since we had accurate stump coordinates, we first
matched each harvester tree to a stump by nearest-neighbor
search within a threshold (all harvested stumps were known,
and the harvester data had one entry per felled tree including
species and stump diameter). This pairing allowed calculation
of the harvester GNSS error for each tree: the distance between
harvester-reported coordinates and the true stump location.
Next, we matched the UAV-delineated tree positions,
determined based on crown delineation and representing the
highest point within each crown, to the stump locations.
Because the UAV survey was pre-harvest, each stump should
correspond to a UAV-detected tree (assuming the UAV detected
all harvestable trees). We used a similar nearest-neighbor
approach: for each stump, find the closest UAV tree position
within a reasonable radius (e.g., 2 m). In almost all cases, the
nearest UAV tree matched the stump correctly given the high
UAV accuracy, but a few ambiguous cases (clusters) were
resolved manually by comparing tree heights and species. The
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distance between the UAV tree position and the stump gave the
UAV positioning error (mostly reflecting UAV georeferencing
error and segmentation centroid offset). Finally, we compared
harvester vs. UAV positions for each matched tree, which
indicates how far off the harvester’s location was from the
UAV’s estimation of that tree’s location. This harvester—UAV
positional discrepancy is effectively the error that could be
corrected by using the UAV data as reference.

2.4 Positional Error Analysis

We computed summary statistics of the positional errors in
three categories: (1) harvester GNSS error (harvester vs. stump),
(2) UAV-derived error (UAV vs. stump), and (3) harvester vs.
UAV. Error distances were calculated in horizontal XY plane.
We report mean error, median, standard deviation, and RMSE
for each. We also examined distributions and any trends (e.g.,
errors vs. tree size or canopy density). The expectation was that
UAV errors would be small (on the order of <1 m) and that
harvester errors would be larger and more variable. We
visualized the error distributions with histograms (e.g., Figure 1
shows the distribution of harvester GNSS errors) and spatial
plots. Additionally, to understand if certain trees had
systematically larger errors, we looked at whether error
magnitude correlated with tree height (taller trees might have
more GNSS blockage) or with the harvester’s distance from the
tree (if the boom reached out, etc.), although detailed harvester
path wasn’t fully reconstructed here.

2.5 Tree Species Classification

We used two machine learning models to classify tree species
(spruce, pine, birch) for each tree, utilizing the UAV-derived
features. The ground truth species for each tree was known from
location of the stumps. We randomly split the dataset into a
training set (70% of trees) and testing set (30%), stratified by
species to maintain proportion. Two classifiers were trained: a
Random Forest (RF) with 100 trees and an XGBoost (Extreme
Gradient Boosting) model. Input features included: tree height,
crown area, crown shape metrics, LIDAR intensity (mean, std),
and RGB color features (mean R, G, B, and some indices like a
pseudo-NDVI). Pseudo-NDVI was computed from UAV-
derived RGB imagery as a normalized difference index between
the red and green channels: (Green - Red)/(Green + Red),
serving as a proxy indicator of vegetation health and vigor.
We also included the relative height to neighbors (to see if the
tree is emergent or suppressed) as this can sometimes help
distinguish species in mixed stands. Feature selection was done
via cross-validation on the training set — though in practice, the
models like XGBoost handle feature importance automatically
(XGBoost can ignore or down-weight less useful features).
Notably, XGBoost can handle missing values internally, but our
dataset had complete features for all trees so that was not an
issue. The trained models output a predicted species for each
tree. We evaluated the classification accuracy on the test set,
computing the overall accuracy (percent correctly classified)
and the confusion matrix for each model. We paid attention to
which species get confused — e.g., spruces vs. pines (both
evergreen conifers) might be confused with each other, whereas
birch (deciduous broadleaf) might be more distinct. The model
hyperparameters were tuned via grid search (for XGBoost, e.g.,
max_depth, learning_rate, etc., and for RF, the number of trees,
max_features, etc.) based on maximizing validation accuracy.

In an operational scenario, the above steps constitute a
workflow where a pre-harvest UAV scan provides a “digital
inventory” of the stand. During harvesting, the harvester’s

GNSS positions are corrected by matching to this inventory,
and additional attributes like species from the UAV inventory
can augment the harvester’s data. While our integration was
done in post-processing, it simulates what could eventually be a
real-time system (with UAV data collected just prior to or even
during harvesting and algorithms to do live matching). The
entire workflow was implemented in Python for data analysis
(pandas, numpy for matching, scikit-learn and XGBoost for
classification) and LiDAR360 for the initial segmentation. The
coordinate systems were all projected to the same system
(ETRS-TM35FIN), so no coordinate transformation error was
present in matching.

3. Results
3.1 Positional Accuracy Improvements

Our analysis included 162 harvested trees (those with complete
data: stump surveyed, harvester logged, and UAV detected).
The harvester’s onboard GNSS positions showed a horizontal
error ranging from 0.1 m up to about 6 m for most, with a few
extreme outliers up to ~30 m (these outliers likely correspond to
missed GNSS signals or the harvester recording a wrong
location, possibly when the machine was far from the tree). The
mean harvester GNSS error was 1.52 m, with a standard
deviation of 2.34 m. The distribution is right-skewed: the
median error was 1.31 m, indicating that half of the trees were
within ~1.3 m, but a long tail of larger errors raises the mean.
Figure 1 illustrates the distribution of harvester positional
errors. Most errors cluster in the 0.5-3.0 m range, and about
10% of the cases exceeded 3 m. A small number of points had
>10 m error (visible as the long tail in Figure 1).
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Figure 1: Distribution of harvester GNSS positional error
(distance between harvester-reported tree location and true
stump position). Most errors are within a few meters, but a
heavy tail extends to >10 m in some cases, illustrating the
unreliability of uncorrected GNSS under canopy.

In contrast, the UAV-derived tree positions were far more
accurate. The UAV positioning error (distance from UAV-
delineated tree position to stump) had a mean of 0.63 m (median
0.58 m). Essentially, using the UAV point cloud and CHM
segmentation, we could locate trees to sub-meter accuracy
relative to ground truth. The distribution of UAV errors was
approximately normal and tightly clustered; the maximum UAV
error observed was about 1.5 m, and >90% of UAV-derived
positions were within 1 m of the true location. This indicates the
quality of the UAV survey and the segmentation: nearly every
harvested tree was correctly identified and its crown delineated
to give a good centroid position. Minor positional discrepancies
could result from the natural growth patterns of trees, as they
often do not grow perfectly upright but rather lean towards
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available sunlight, typically downslope in sloped regions or
towards open sky gaps in competitive environments.
Consequently, the highest point of a crown may not align
precisely with the stump center measured at ground level.
Additional minor errors might also arise from residual
inaccuracies in georeferencing processes.

By integrating the datasets, we computed the discrepancy
between harvester-recorded and UAV-derived positions for
each tree, effectively quantifying the residual positional error
remaining after adjusting harvester locations with UAV data.
The mean positional discrepancy between harvester and UAV-
derived tree locations was 0.76 m (median 0.62 m), a substantial
improvement over the original harvester GNSS positions, which
exhibited a mean error of 1.52 m. Although the harvester-UAV
errors appear considerably smaller compared to the harvester-
stump (ground truth) errors, this difference can largely be
attributed to the significantly larger sample size—over four
times greater—for harvester—UAV matches, thereby providing a
more stable and representative estimate.

In fact, for many trees, the UAV “correction” brought the
harvester position to within ~0.5-1.0 m of truth (Fig.3). The
harvester—UAV error distribution is only slightly broader than
the UAV’s own error distribution, implying that most of the
harvester’s bias was removed (Fig 2.). In numerical terms,
positional RMSE improved from 1.60 m (harvester GNSS vs
truth) down to 0.80 m when using UAV-corrected positions —
roughly a 50% reduction in error magnitude. The improvement
was greatest for those trees where harvester error was large
(e.g., a tree that was 4 m off via GNSS might end up ~1 m off
after matching to UAV). Trees that were already very close
(sub-meter) saw little change (they matched their UAV
counterparts closely anyway), in Fig.4.
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Figure 2: Error distribution before correction (harvester vs.

stumps positions)
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Figure 3: Error distribution after UAV-based correction
(harvester vs. stumps positions)

We noted that harvester error tended to increase slightly with
tree height: the tallest trees (>25 m) had mean error ~2.0 m,
whereas trees <15 m had mean error ~1.0 m. This aligns with
the notion that taller trees cause more signal obstruction.
However, after correction with UAV data, this dependence
largely disappeared — tall and short trees alike were ~0.7 m off
on average, as the UAV’s vantage point captured all heights.
Another observation was related to species: spruce trees (with
dense conical crowns) had slightly higher GNSS error (mean
~1.7 m) than pines (~1.4 m) or birches (~1.3 m). This might be
because spruce crowns caused more multipath or the harvester
had to reach in for some spruces. Regardless, after correction,
all species had similar accuracy (~0.7-0.8 m).
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Figure 4: Maps of tree positions (part of the data used).
Harvester GNSS mean error 1.52 m vs. UAV-corrected 0.76 m,
and classification accuracy ~91%.

To contextualize these results, previous studies have reported
harvester positioning errors in similar ranges. Lopatin et al.
(2023) noted 2—4 m errors commonly without corrections. Faitli
et al. (2023) achieved 2.44 m average in real-time using
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GNSS/IMU, improved to 0.21 m with full post-processing. Our
approach, using external UAV data, achieved ~0.8 m without
requiring on-machine SLAM, which is quite promising for
operational use since it doesn’t mandate extra hardware on the
harvester. The residual ~0.7-0.8 m error comes from the UAV
data limitations (centroid vs. trunk base differences). In
principle, if we had scanned from directly above each tree
(nadir), the crown apex might align directly over the stump for
symmetric crowns. In practice, some horizontal offset can exist
if the tree is leaning or has an asymmetric crown. Nonetheless,
sub-meter accuracy is a major improvement and could be
sufficient for many precision forestry applications (e.g.,
marking exactly which tree was cut on a map).

3.2 Tree Species Classification Performance

A total of 148 out of the 162 trees had confident species labels:
21 birch, 77 pine, 64 spruce. Using the UAV-derived features,
our classification models attained high accuracy (Fig. 3). The
Random Forest classifier achieved an overall accuracy of 91.2%
on the test set, while the XGBoost was very similar at 90.5%.
Given the small difference, and considering standard deviations
from cross-validation (~+2%), we consider their performance
equivalent for practical purposes. We focus on the RF results
for clarity. The confusion matrix for the RF model showed: out
of 21 birch trees, 15 were correctly identified as birch, while 6
were misclassified (all 6 misclassified birches were predicted as
pine; none as spruce). For pine, out of 77, the model got 73
correct; it misclassified 1 pine as birch and 3 pines as spruce.
For spruce, out of 64, it got 60 correct; 1 spruce was
misclassified as birch, and 3 as pine. These errors make sense in
that the model occasionally confused birch vs. pine (perhaps
due to some birch having an evergreen understory or color
similar to pine in the images) and pine vs. spruce (both conifers,
sometimes hard to distinguish from above). Notably, birch and
spruce were rarely confused with each other, which is logical
given their stark differences (leaf-on birch has a bright green
broad crown, vs. dark green conical spruce). The XGBoost
confusion matrix was similar, with perhaps one extra birch
classified as pine. Overall, the per-species accuracies were:
Birch ~71%, Pine ~95%, Spruce ~94% in RF. Birch had the
lowest accuracy partly due to the small sample size and possibly
more variability in birch crown appearance (some birches had
no leaves at the time due to being felled early or being minor

components).
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These accuracies are quite high for 3-class tree species mapping
from a single UAV survey (Fig. 4). In an operational sense, this
means the UAV scan not only provides positions but also a
reliable species identification for each tree. That information
could be used by harvesters — for example, to verify or even

determine species if the harvester operator was unsure or if
species need to be documented for downstream processing.
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Figure 4: Confusion matrix in RF Model

We also examined feature importance in the RF model: the most
important features for species discrimination were the color
indices and crown size (Fig. 3). Specifically, an index capturing
leaf-on deciduousness (e.g., birch leaves being lighter green —
high green reflectance — compared to the darker needles of
conifers) was top-ranked. Mean Green minus Blue (a simple
proxy for leaf greenness) was high, effectively separating birch
from conifers. These nuances allowed the models to distinguish
pine vs. spruce reasonably well (which can be challenging from
true orthophotos alone). XGBoost’s internal feature importance
metrics mirrored RF’s, giving confidence in these patterns.

4. Discussion

This study demonstrated that integrating pre-harvest UAV
LiDAR scans with harvester-collected data can substantially
improve the spatial accuracy of tree locations, primarily because
UAV-derived tree positions exhibited considerably smaller
positional errors relative to the ground-truth stump locations
compared to the harvester GNSS positions. As a result,
harvester-recorded and UAV-derived stems could be reliably
matched, significantly enhancing per-tree data accuracy and
enabling richer attribute information (e.g., species) to be
associated with each tree. Our findings align with and extend
those of previous researchers who have highlighted GNSS
limitations and proposed sensor integration in forestry
machines. For instance, our observed harvester GNSS error
(~1.5 m mean) is consistent with ranges reported by Kaartinen
et al. (2015) and Lopatin et al. (2023) under similar canopy
conditions. We improved upon previous approaches by applying
an external correction resource (UAV data), specifically by first
matching harvester-recorded crane-tip positions and UAV-
derived tree crown positions separately to their respective
closest stump locations (ground truth), and then subsequently
aligning these matched harvester and UAV positions, ultimately
adopting the UAV-derived positions as corrected locations for
harvested stems. While Faitli et al. (2023) achieved an
impressively low ~0.21 m error through post-processed SLAM
on the harvester, that requires specialized equipment; our
approach offers an alternative path using widely available UAV
technology. In practical terms, a forest company could fly a
drone before (or even during) harvesting to map the stand, and
then use that data to calibrate the harvester positions. This could
be done post-harvest (as we did with stumps) for improving
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databases, or ideally in real-time to aid the operator. Real-time
implementation would require fast data processing — perhaps the
UAV data is processed just prior and loaded into the harvester’s
onboard computer. The harvester could then find itself within
that map via its own GNSS (with some initial error) and then
snap each reported tree location to the nearest tree in the UAV
map, effectively correcting it. This is analogous to how GNSS
map-matching works for vehicle navigation in cities (snapping
to a road network when GNSS is noisy).

One challenge observed is ensuring one-to-one matching
between UAV-detected trees and harvested trees. In very dense
or more structurally complex stands, UAV crown delineation
might merge or miss some trees (Li et al., 2022), complicating
the matching. Advanced individual tree detection algorithms,
such as deep learning-based point cloud segmentation, could
further improve the reliability of the UAV inventory. Another
challenge is temporal: if there is a long delay between the UAV
scan and the harvesting operation, changes such as windthrow,
tree growth, or GNSS drift in coordinate systems could
introduce positional errors. Wind itself represents a potential
limitation, as it may shift tree crowns relative to their original
surveyed positions. Additionally, tree leaning in any direction
could further exacerbate positional discrepancies, since UAV-
derived crown centroids may not directly align with stump
positions. Future research could explore methods to detect and
account for leaning trees using high-resolution UAV data or
even drone surveys conducted beneath the canopy, thereby
providing more accurate tree-level positioning.

The implications of achieving ~0.5-0.8 m accuracy at tree-level
are significant. It approaches the threshold where tree-level
decision support becomes feasible. For example, consider
selective harvesting: a forester may digitally mark certain trees
to preserve (habitat trees or seed trees). If the harvester had a
digital map of those from the UAV and accurate positioning, it
could warn the operator when they are near a protected tree,
even if it’s not obvious by sight (imagine a small habitat sign or
a digital designation). Similarly, the system could optimize
machine path — knowing exactly where each remaining tree is,
the harvester’s onboard route planning (if available) could
minimize damage by steering around trees at appropriate
distances. These are elements of an operational forest digital
twin: a continuously updated map reflecting the current state
(trees cut or left) and guiding decisions. Our work provides a
stepping stone by ensuring the digital twin’s alignment with
reality is accurate.

In terms of species information, having an automated
classification from UAV data could enhance inventory and
sorting. Harvesters do identify species via stem appearance and
operator input, but an independent check is useful. It could even
enable estimating certain properties like wood quality or
biomass by combining species with dimensions. Our
classification results (91% accuracy) are comparable to other
recent UAV-based species mapping efforts in temperate forests.
Faitli et al. (2023) primarily focused on localization and stem
measurement, not species, but one could imagine adding a small
multispectral sensor on harvesters or using pre-harvest UAV
imagery as we did, to get species data into the mix of a
harvester’s dataset.

Comparing our approach to Faitli et al. (2023) more directly:
they integrated a LIDAR on the harvester head to measure stems
and used a total station for ground truth, achieving sub-
decimeter mapping of stems post-processed. That is a very high
precision but in a research setting. Operationally, drones are

easier to deploy widely than equipping every machine with
expensive LIDAR+IMU setups. However, Faitli’s approach has
the advantage of capturing data on the fly without a prior flight
and can work even under canopy (since the sensor is amidst the
trees). A hybrid approach could emerge in the future, where a
UAV initially performs an overview scan, while the harvester
utilizes simpler onboard sensors that, guided by the UAV-
derived map, achieve comparable accuracy. Additionally, future
UAV systems could integrate sensors previously deployed on
harvesters, enabling drones to fly directly beneath the forest
canopy to further improve tree positioning accuracy and
operational decision-making.

Our study also addresses the first research gap identified:
integration workflows. We showed a concrete way to fuse the
data (segmentation, matching, error correction). We did note
that an established workflow would need to handle more edge
cases (e.g., missing trees, false positives in UAV data, outlier
GNSS points). No standard software pipeline currently exists
for forestry contractors to do this, which is a barrier. We
envision integrating this into existing forest planning software.
For example, stand maps could come with georeferenced tree
positions from UAV; the harvester’s onboard computer could
ingest that, and when felling, log tree ID and maybe adjust
coordinates by referencing the nearest known tree point. Some
initial research into harvester onboard data integration has
begun (e.g., using harvester as a data collection tool for
inventories), but not much on using external data to inform
harvesting. Lopatin et al. (2023) suggested that viewshed
analysis could let an operator know where GNSS might be
poor; building on that, our work suggests even if GNSS is poor,
another data source can fix it.

The second gap was precision forestry and decision support. As
discussed, the improved accuracy directly supports finer
decision making. However, achieving centimeter-level accuracy
consistently (as the gap mentions) is still tough without special
hardware. Our UAV approach got to sub-meter; to get to a few
centimeters, one might need a combination of RTK on the
harvester, UAV data, and perhaps local wireless positioning
(some research has looked at ultra-wideband, UWB, tags on
trees for localization (Liu et al., 2025)). Whether centimeter
precision is needed can be debated — for most ecological and
operational purposes, decimeter might suffice. For instance, to
avoid a specific buffer around a habitat, knowing tree positions
within 0.5 m is usually enough. Still, cm-level could become
relevant if doing automated cutting of marked trees (robotic
target identification).

Our experiment was relatively small scale (one stand, one
machine). Further validation in different forest types (e.g.,
broadleaf-dominated, or very dense young stands) is necessary.
Also, the timing was such that UAV and harvesting were back-
to-back; if UAV data is stale, errors might creep in (trees can
move or be cut by other events). We also did not test real-time
implementation — everything was done post-hoc. The latency
and computing required to do this live need investigation. One
potential issue is the UAV itself under canopy: we flew above
canopy; if a real-time update was needed during harvesting (like
after some trees removed, to update the map), an under-canopy
drone flight would be challenging due to GNSS denied
environment, though techniques like visual-inertial odometry
are being explored. A more practical approach is to rely on one
good pre-harvest scan and not update during the operation
(since the positions of remaining trees don’t change, just some
get removed).
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Despite these challenges, our results clearly indicate operational
benefit. An average error of ~0.7 m means a digital system can
know almost exactly which tree in the pre-harvest map
corresponds to the stump/machine in the field. This could also
improve post-harvest analytics: e.g., combining harvester’s
yield data with exact locations allows precise mapping of how
much volume was removed at each spot, informing future
management or even carbon accounting with high resolution.

Lastly, this integration is a step toward autonomous or semi-
autonomous harvesting. If a machine has an accurate map of
trees and knows its position precisely, it opens the door to
robotics — the machine can plan paths and select trees with
minimal human input, guided by an algorithm that maximizes
some objective (like thinning certain trees) while avoiding
others. Of course, full autonomy is a big leap requiring more
sensors (for safety, obstacle detection), but precision
localization is a foundation for that future.

In conclusion, the fusion of UAV and harvester data addresses
critical gaps in current precision forestry practice. It enhances
the value of the data we already collect (harvester data) by
anchoring it to a more accurate spatial framework. It also
leverages the strengths of new technology (UAV LiDAR) to
solve an old problem (GNSS in forests). As UAVs become
more routine in forest operations and perhaps as harvester
manufacturers consider data integration, workflows like the one
demonstrated here can be adopted operationally. Further
research should scale this to larger areas, integrate it with real-
time systems, and evaluate the cost-benefit: e.g., is the extra
step of flying a UAV justified by the gains in accuracy and
decision outcomes? Early signs, including our study, suggest
that for high-value operations or where precision is paramount
(like selective logging near protected areas), the benefit will be
higher than costs. Future research should focus on developing
real-time registration methods that fuse pre-harvest UAV-
derived tree positions directly into harvester navigation systems.
For instance, machine-learning-based matching algorithms or
lightweight onboard SLAM solutions utilizing UAV scans as
spatial reference points could dynamically correct GNSS
discrepancies caused by larger tree crowns.
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