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Abstract 

Accurate geolocation of individual trees during forest harvesting operations is crucial for effective decision-making, yet traditional 

cut-to-length (CTL) harvesters often experience significant positional errors (0.5–10 m) due to unreliable GNSS performance under 

dense forest canopies. This uncertainty hampers the precise integration of harvester-generated data into operational forest 

management systems. To address this problem, we investigated the integration of high-resolution pre-harvest UAV LiDAR data with 

harvester-collected positional information. UAV laser scanning (DJI Matrice equipped with Zenmuse L2 LiDAR) was conducted 

over a dense, mixed-species boreal forest stand scheduled for its first thinning operation. Following harvesting, stump positions were 

precisely recorded using centimeter-grade GNSS as ground truth. Harvester-recorded tree positions were matched to tree crowns 

delineated from UAV LiDAR point clouds using Canopy Height Model (CHM) segmentation. For each crown, structural (height, 

crown size) and spectral (RGB statistics) features were extracted, and tree species (spruce, pine, birch) were classified using Random 

Forest (RF) and XGBoost models. Comparative positional error analysis revealed that mean harvester GNSS errors were 1.52 m, 

whereas UAV-derived tree positions showed significantly lower mean errors of 0.63 m. Integrating UAV data with harvester 

positions successfully reduced the mean positional error to 0.76 m. Species classification accuracy exceeded 91% overall for both RF 

and XGBoost models, with coniferous species (pine, spruce) classified at approximately 94% accuracy and deciduous birch slightly 

lower at around 71%. These results highlight the potential of integrating pre-harvest UAV scans to substantially enhance tree-level 

geolocation accuracy, enabling precise digital twins and improved real-time operational decision-making during harvesting. The 

study addresses a critical research gap by developing a practical workflow for combining UAV and harvester data, thereby 

facilitating precision forestry applications such as targeted tree selection, automated navigation, and enforcing environmental 

safeguards. 

1. Introduction

Advancements in unmanned aerial vehicles (UAVs) and remote 

sensing over the last decade have led to significant 

developments in forest monitoring and precision forestry. High-

resolution aerial imagery and laser scanning from UAVs enable 

detailed mapping of forest structure and composition at the 

individual-tree level, which is critical for modern “Forestry 4.0” 

digitalization efforts. Researchers have demonstrated UAV-

based methods for tree detection, species classification, and 

biomass estimation in various forest types (Li et al., 2022). 

These developments underscore the potential of UAVs to create 

detailed pre-harvest forest inventories or even real-time “digital 

twins” of forest stands, which can support operational decision-

making. 

CTL forest harvesters, on the other hand, provide an abundance 

of ground-truth data during operations. Modern harvesters 

record each felled tree’s diameter, length (bucking), and 

location via onboard GPS/GNSS and inertial sensors. This data 

is economically valuable for forest management and supply 

chain optimization. Studies have shown harvester data can serve 

as “ground truth” for remote sensing (Söderberg et al., 2021). 

However, a major challenge is that the geolocation of each tree 

from the harvester is often imprecise due to GNSS signal 

degradation under forest canopies. Typical standalone GNSS 

errors on harvesters range from sub-meter to several meters, 

depending on canopy density, terrain, and satellite visibility. 

Kaartinen et al. (Kaartinen et al., 2015) found that even high-

end GNSS under dense canopy could not reliably achieve sub-

meter accuracy, often yielding 2–5 m errors. More recent 

studies (Abdi et al., 2022; Lopatin et al., 2023) confirm that 

canopy occlusion, multipath, and terrain all contribute to 

degrading positional accuracy for forestry machinery. 

Despite these known issues, there is a lack of established 

operational workflows to fuse high-resolution UAV data with 

harvester-collected data. Bridging this gap is a key research 

need identified in precision forestry. If the detailed spatial data 

from UAV scans (e.g., tree positions from a pre-harvest point 

cloud) can be integrated with harvester data streams, it could 

enable real-time or near-real-time corrections to harvester 

GNSS positions. Some recent works (Faitli et al., 2024) have 

taken steps in this direction. They achieved an average 2.44 m 

real-time localization error (with GNSS-IMU-SLAM) which 

improved to 0.21 m after post-processing the trajectory. This 

shows the promise of integrating additional sensors on the 

harvester; however, mobile laser scanning (MLS) systems on 

every machine is costly and not yet commonplace. A more cost-

effective approach could leverage external UAV data. The 

forestry industry has begun exploring “smart” harvesting 

systems where pre-harvest remotely-sensed data is uploaded to 

harvesters for navigation and decision support (Faitli et al., 

2024), but practical implementation remains limited. In 

operational practice, harvester operators still largely rely on 

their own visibility and stand maps for decision-making, rather 

than dynamic sensor-fused data. 

Another important gap is the development of real-time forest 

digital twins for harvesting. A digital twin is a live digital 

replica of the physical environment. In forestry, this could mean 

a continuously updated 3D model of the stand during 

harvesting, showing each tree’s status and location in real time. 

Such capability would support precision forestry by enabling 

tree-level decisions: for instance, selective harvesting of certain 
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species or sizes while avoiding protected trees or habitats, all 

guided by a live map. Recent reviews note that while digital 

twin concepts are emerging in agriculture and forestry, true real-

time integration is still in its infancy. Tagarakis et al. (Tagarakis 

et al., 2024) emphasize that full digital twins in forestry face 

challenges like data integration from multiple sources and the 

need for expert knowledge to interpret the data. Buonocore et al. 

(Buonocore et al., 2022) proposed a framework for a forest 

digital twin that integrates tree-level data (from IoT sensors or 

UAVs) with stand-level remote sensing, and highlights 

blockchain for data integrity. However, implementing such a 

system for real-time operations like harvesting requires solving 

the geolocation accuracy problem: the digital twin must reliably 

know which tree is being cut or moved at all times. Sub-meter 

or even centimeter-level accuracy is needed to distinguish 

individual neighboring trees and align machine actions with 

specific trees in the digital model. Current GNSS alone is 

insufficient, as noted, and thus the fusion of external data (e.g., 

UAV scans or ground sensors) is required to enhance 

positioning. Additionally, achieving these accuracies in real 

time is challenging due to computational and communication 

constraints in forest conditions (limited bandwidth in remote 

areas, processing large point clouds on the fly, etc.). 

This study addresses that gap by demonstrating how UAV 

LiDAR scans acquired before harvesting can enhance the spatial 

accuracy of harvester-reported tree locations. We focus on two 

key research questions:  

1. How to integrate UAV data with harvester systems in 

practice, including data alignment and error 

correction, and what improvements in positional 

accuracy result?  

2. How can such integration support precision forestry 

decision-making, and what challenges remain in 

achieving real-time, tree-level guidance (a step toward 

a functional forest digital twin)? 

We hypothesize that matching harvester data to UAV-derived 

tree positions can significantly reduce location errors, bringing 

them closer to the decimeter level needed for tree-level 

decisions. We also anticipate that UAV-derived data (LiDAR 

point clouds and imagery) can enhance tree species 

classification, complementing the harvester's data, where 

species identification relies exclusively on operator input for 

each felled stem. By integrating harvester and UAV datasets, 

we create a richer and more reliable per-tree dataset (accurate 

position, size, and species), which can directly support 

operational decision-making, including harvest planning, 

automated machine control, and environmental safeguards, such 

as precise identification and preservation of specific habitat 

trees.  

2. Materials and methods 

2.1 Study area and data collection 

The study was conducted on 30 September 2024 in a managed 

boreal forest stand located in southern Finland (61°13.141′N, 

25°6.660′E). Dominant species were Norway spruce (Picea 

abies), Scots pine (Pinus sylvestris), and birch (Betula spp.). 

Prior to harvesting, we conducted a UAV LiDAR survey using 

a DJI Matrice 300 drone equipped with the Zenmuse L2 LiDAR 

sensor (a lightweight airborne laser scanner). The UAV was 

flown in leaf-on conditions at ~70 m altitude with overlapping 

flight lines to ensure full coverage. The Zenmuse L2 captures 

high-density point clouds (up to ~240,000 points/sec with triple 

returns, yielding point densities >4000 pts/m² over the canopy 

in our flight). We also captured RGB imagery with the UAV’s 

integrated camera simultaneously (the Zenmuse L2 includes a 

synchronized camera), which was later used for extracting color 

features per each LiDAR point. 

After the CTL  harvesting operation, we recorded ground truth 

positions of the stumps of all harvested trees using Reach RS2+ 

Multi-Band RTK GNSS Receiver, species and stump diameter. 

A survey-grade RTK GNSS receiver was used for stump 

mapping, achieving ~1–2 cm accuracy in the relatively open 

post-harvest canopy (with short occupation times ~1 min per 

stump). These high-accuracy stump locations serve as reference 

coordinates for each felled tree. The Ponsse Scorpion 

harvester’s onboard system provided a data log of cut trees with 

each tree’s ID, species (as identified by the operator or preset 

for stand), and the GNSS-derived coordinates of crane tip 

position where the tree was cut. The harvester was a modern 

CTL machine with a GNSS receiver with RTK correction. 

 

2.2 UAV Data Processing and Tree Delineation 

The raw UAV LiDAR point cloud was processed to create a 

Digital Terrain Model (DTM) and a Canopy Height Model 

(CHM). First, ground points were classified (using for instance 

the cloth simulation filter in LiDAR360) to interpolate a DTM. 

The CHM was obtained by subtracting the DTM from the 

highest canopy returns (within a 0.1 m grid), yielding a raster of 

canopy heights. Individual tree crown delineation was 

performed on the CHM using a watershed segmentation 

approach in LiDAR360 v.6.0.6.0 software (“LiDAR360 Point 

Cloud & Images Post-Processing and Industry Applications 

Software - GreenValley International,” 2025). Local maxima in 

the CHM (above a height threshold of ~5 m to exclude 

understory) were identified as tree tops. The watershed 

algorithm then segmented the CHM into distinct crown 

polygons around those peaks. Each delineated crown’s centroid 

(or highest point) provided the UAV-derived tree position. This 

produced a set of tree positions and attributes from the UAV 

data, representing the trees standing before harvest. We also 

derived additional per-crown metrics: color features of points 

for each crown (mean R, G, B values, variance, and normalized 

indices like Excess Green, etc.) to assist in species 

classification, since different species (spruce vs. pine vs. birch) 

in September have distinguishing spectral signatures or 

phenology (e.g., deciduous birch vs. evergreen conifers 

(Kukkonen et al., 2024)). 

 

2.3 Data Integration and Matching 

To integrate the UAV and harvester datasets, we needed to 

match each harvester-recorded tree to its corresponding UAV-

delineated tree/crown and stump. This was done through spatial 

matching. Since we had accurate stump coordinates, we first 

matched each harvester tree to a stump by nearest-neighbor 

search within a threshold (all harvested stumps were known, 

and the harvester data had one entry per felled tree including 

species and stump diameter). This pairing allowed calculation 

of the harvester GNSS error for each tree: the distance between 

harvester-reported coordinates and the true stump location. 

Next, we matched the UAV-delineated tree positions, 

determined based on crown delineation and representing the 

highest point within each crown, to the stump locations. 

Because the UAV survey was pre-harvest, each stump should 

correspond to a UAV-detected tree (assuming the UAV detected 

all harvestable trees). We used a similar nearest-neighbor 

approach: for each stump, find the closest UAV tree position 

within a reasonable radius (e.g., 2 m). In almost all cases, the 

nearest UAV tree matched the stump correctly given the high 

UAV accuracy, but a few ambiguous cases (clusters) were 

resolved manually by comparing tree heights and species. The 
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distance between the UAV tree position and the stump gave the 

UAV positioning error (mostly reflecting UAV georeferencing 

error and segmentation centroid offset). Finally, we compared 

harvester vs. UAV positions for each matched tree, which 

indicates how far off the harvester’s location was from the 

UAV’s estimation of that tree’s location. This harvester–UAV 

positional discrepancy is effectively the error that could be 

corrected by using the UAV data as reference. 

 

2.4 Positional Error Analysis 

We computed summary statistics of the positional errors in 

three categories: (1) harvester GNSS error (harvester vs. stump), 

(2) UAV-derived error (UAV vs. stump), and (3) harvester vs. 

UAV. Error distances were calculated in horizontal XY plane. 

We report mean error, median, standard deviation, and RMSE 

for each. We also examined distributions and any trends (e.g., 

errors vs. tree size or canopy density). The expectation was that 

UAV errors would be small (on the order of <1 m) and that 

harvester errors would be larger and more variable. We 

visualized the error distributions with histograms (e.g., Figure 1 

shows the distribution of harvester GNSS errors) and spatial 

plots. Additionally, to understand if certain trees had 

systematically larger errors, we looked at whether error 

magnitude correlated with tree height (taller trees might have 

more GNSS blockage) or with the harvester’s distance from the 

tree (if the boom reached out, etc.), although detailed harvester 

path wasn’t fully reconstructed here. 

 

2.5 Tree Species Classification 

We used two machine learning models to classify tree species 

(spruce, pine, birch) for each tree, utilizing the UAV-derived 

features. The ground truth species for each tree was known from 

location of the stumps. We randomly split the dataset into a 

training set (70% of trees) and testing set (30%), stratified by 

species to maintain proportion. Two classifiers were trained: a 

Random Forest (RF) with 100 trees and an XGBoost (Extreme 

Gradient Boosting) model. Input features included: tree height, 

crown area, crown shape metrics, LiDAR intensity (mean, std), 

and RGB color features (mean R, G, B, and some indices like a 

pseudo-NDVI). Pseudo-NDVI was computed from UAV-

derived RGB imagery as a normalized difference index between 

the red and green channels: (Green - Red)/(Green + Red), 

serving as a proxy indicator of vegetation health and vigor. 

We also included the relative height to neighbors (to see if the 

tree is emergent or suppressed) as this can sometimes help 

distinguish species in mixed stands. Feature selection was done 

via cross-validation on the training set – though in practice, the 

models like XGBoost handle feature importance automatically 

(XGBoost can ignore or down-weight less useful features). 

Notably, XGBoost can handle missing values internally, but our 

dataset had complete features for all trees so that was not an 

issue. The trained models output a predicted species for each 

tree. We evaluated the classification accuracy on the test set, 

computing the overall accuracy (percent correctly classified) 

and the confusion matrix for each model. We paid attention to 

which species get confused – e.g., spruces vs. pines (both 

evergreen conifers) might be confused with each other, whereas 

birch (deciduous broadleaf) might be more distinct. The model 

hyperparameters were tuned via grid search (for XGBoost, e.g., 

max_depth, learning_rate, etc., and for RF, the number of trees, 

max_features, etc.) based on maximizing validation accuracy.  

 

In an operational scenario, the above steps constitute a 

workflow where a pre-harvest UAV scan provides a “digital 

inventory” of the stand. During harvesting, the harvester’s 

GNSS positions are corrected by matching to this inventory, 

and additional attributes like species from the UAV inventory 

can augment the harvester’s data. While our integration was 

done in post-processing, it simulates what could eventually be a 

real-time system (with UAV data collected just prior to or even 

during harvesting and algorithms to do live matching). The 

entire workflow was implemented in Python for data analysis 

(pandas, numpy for matching, scikit-learn and XGBoost for 

classification) and LiDAR360 for the initial segmentation. The 

coordinate systems were all projected to the same system 

(ETRS-TM35FIN), so no coordinate transformation error was 

present in matching. 

 

3. Results 

3.1 Positional Accuracy Improvements 

Our analysis included 162 harvested trees (those with complete 

data: stump surveyed, harvester logged, and UAV detected). 

The harvester’s onboard GNSS positions showed a horizontal 

error ranging from 0.1 m up to about 6 m for most, with a few 

extreme outliers up to ~30 m (these outliers likely correspond to 

missed GNSS signals or the harvester recording a wrong 

location, possibly when the machine was far from the tree). The 

mean harvester GNSS error was 1.52 m, with a standard 

deviation of 2.34 m. The distribution is right-skewed: the 

median error was 1.31 m, indicating that half of the trees were 

within ~1.3 m, but a long tail of larger errors raises the mean. 

Figure 1 illustrates the distribution of harvester positional 

errors. Most errors cluster in the 0.5–3.0 m range, and about 

10% of the cases exceeded 3 m. A small number of points had 

>10 m error (visible as the long tail in Figure 1).  

 

 
Figure 1: Distribution of harvester GNSS positional error 

(distance between harvester-reported tree location and true 

stump position). Most errors are within a few meters, but a 

heavy tail extends to >10 m in some cases, illustrating the 

unreliability of uncorrected GNSS under canopy. 

 

In contrast, the UAV-derived tree positions were far more 

accurate. The UAV positioning error (distance from UAV-

delineated tree position to stump) had a mean of 0.63 m (median 

0.58 m). Essentially, using the UAV point cloud and CHM 

segmentation, we could locate trees to sub-meter accuracy 

relative to ground truth. The distribution of UAV errors was 

approximately normal and tightly clustered; the maximum UAV 

error observed was about 1.5 m, and >90% of UAV-derived 

positions were within 1 m of the true location. This indicates the 

quality of the UAV survey and the segmentation: nearly every 

harvested tree was correctly identified and its crown delineated 

to give a good centroid position. Minor positional discrepancies 

could result from the natural growth patterns of trees, as they 

often do not grow perfectly upright but rather lean towards 
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available sunlight, typically downslope in sloped regions or 

towards open sky gaps in competitive environments. 

Consequently, the highest point of a crown may not align 

precisely with the stump center measured at ground level. 

Additional minor errors might also arise from residual 

inaccuracies in georeferencing processes. 

 

By integrating the datasets, we computed the discrepancy 

between harvester-recorded and UAV-derived positions for 

each tree, effectively quantifying the residual positional error 

remaining after adjusting harvester locations with UAV data. 

The mean positional discrepancy between harvester and UAV-

derived tree locations was 0.76 m (median 0.62 m), a substantial 

improvement over the original harvester GNSS positions, which 

exhibited a mean error of 1.52 m. Although the harvester-UAV 

errors appear considerably smaller compared to the harvester-

stump (ground truth) errors, this difference can largely be 

attributed to the significantly larger sample size—over four 

times greater—for harvester–UAV matches, thereby providing a 

more stable and representative estimate. 

 

In fact, for many trees, the UAV “correction” brought the 

harvester position to within ~0.5–1.0 m of truth (Fig.3). The 

harvester–UAV error distribution is only slightly broader than 

the UAV’s own error distribution, implying that most of the 

harvester’s bias was removed (Fig 2.). In numerical terms, 

positional RMSE improved from 1.60 m (harvester GNSS vs 

truth) down to 0.80 m when using UAV-corrected positions – 

roughly a 50% reduction in error magnitude. The improvement 

was greatest for those trees where harvester error was large 

(e.g., a tree that was 4 m off via GNSS might end up ~1 m off 

after matching to UAV). Trees that were already very close 

(sub-meter) saw little change (they matched their UAV 

counterparts closely anyway), in Fig.4.  

 

 
Figure 2: Error distribution before correction (harvester vs. 

stumps positions) 

 

 
Figure 3: Error distribution after UAV-based correction 

(harvester vs. stumps positions) 

 

We noted that harvester error tended to increase slightly with 

tree height: the tallest trees (>25 m) had mean error ~2.0 m, 

whereas trees <15 m had mean error ~1.0 m. This aligns with 

the notion that taller trees cause more signal obstruction. 

However, after correction with UAV data, this dependence 

largely disappeared – tall and short trees alike were ~0.7 m off 

on average, as the UAV’s vantage point captured all heights. 

Another observation was related to species: spruce trees (with 

dense conical crowns) had slightly higher GNSS error (mean 

~1.7 m) than pines (~1.4 m) or birches (~1.3 m). This might be 

because spruce crowns caused more multipath or the harvester 

had to reach in for some spruces. Regardless, after correction, 

all species had similar accuracy (~0.7–0.8 m).  

 

 
 

Figure 4: Maps of tree positions (part of the data used). 

Harvester GNSS mean error 1.52 m vs. UAV-corrected 0.76 m, 

and classification accuracy ~91%. 

 

To contextualize these results, previous studies have reported 

harvester positioning errors in similar ranges. Lopatin et al. 

(2023) noted 2–4 m errors commonly without corrections. Faitli 

et al. (2023) achieved 2.44 m average in real-time using 
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GNSS/IMU, improved to 0.21 m with full post-processing. Our 

approach, using external UAV data, achieved ~0.8 m without 

requiring on-machine SLAM, which is quite promising for 

operational use since it doesn’t mandate extra hardware on the 

harvester. The residual ~0.7–0.8 m error comes from the UAV 

data limitations (centroid vs. trunk base differences). In 

principle, if we had scanned from directly above each tree 

(nadir), the crown apex might align directly over the stump for 

symmetric crowns. In practice, some horizontal offset can exist 

if the tree is leaning or has an asymmetric crown. Nonetheless, 

sub-meter accuracy is a major improvement and could be 

sufficient for many precision forestry applications (e.g., 

marking exactly which tree was cut on a map). 

 

3.2 Tree Species Classification Performance 

A total of 148 out of the 162 trees had confident species labels: 

21 birch, 77 pine, 64 spruce. Using the UAV-derived features, 

our classification models attained high accuracy (Fig. 3). The 

Random Forest classifier achieved an overall accuracy of 91.2% 

on the test set, while the XGBoost was very similar at 90.5%. 

Given the small difference, and considering standard deviations 

from cross-validation (~±2%), we consider their performance 

equivalent for practical purposes. We focus on the RF results 

for clarity. The confusion matrix for the RF model showed: out 

of 21 birch trees, 15 were correctly identified as birch, while 6 

were misclassified (all 6 misclassified birches were predicted as 

pine; none as spruce). For pine, out of 77, the model got 73 

correct; it misclassified 1 pine as birch and 3 pines as spruce. 

For spruce, out of 64, it got 60 correct; 1 spruce was 

misclassified as birch, and 3 as pine. These errors make sense in 

that the model occasionally confused birch vs. pine (perhaps 

due to some birch having an evergreen understory or color 

similar to pine in the images) and pine vs. spruce (both conifers, 

sometimes hard to distinguish from above). Notably, birch and 

spruce were rarely confused with each other, which is logical 

given their stark differences (leaf-on birch has a bright green 

broad crown, vs. dark green conical spruce). The XGBoost 

confusion matrix was similar, with perhaps one extra birch 

classified as pine. Overall, the per-species accuracies were: 

Birch ~71%, Pine ~95%, Spruce ~94% in RF. Birch had the 

lowest accuracy partly due to the small sample size and possibly 

more variability in birch crown appearance (some birches had 

no leaves at the time due to being felled early or being minor 

components).  

 

 
Figure 3: Feature importance for species classification using 

Random Forest 

 

These accuracies are quite high for 3-class tree species mapping 

from a single UAV survey (Fig. 4). In an operational sense, this 

means the UAV scan not only provides positions but also a 

reliable species identification for each tree. That information 

could be used by harvesters – for example, to verify or even 

determine species if the harvester operator was unsure or if 

species need to be documented for downstream processing.  

 

 
Figure 4: Confusion matrix in RF Model 

 

We also examined feature importance in the RF model: the most 

important features for species discrimination were the color 

indices and crown size (Fig. 3). Specifically, an index capturing 

leaf-on deciduousness (e.g., birch leaves being lighter green – 

high green reflectance – compared to the darker needles of 

conifers) was top-ranked. Mean Green minus Blue (a simple 

proxy for leaf greenness) was high, effectively separating birch 

from conifers. These nuances allowed the models to distinguish 

pine vs. spruce reasonably well (which can be challenging from 

true orthophotos alone). XGBoost’s internal feature importance 

metrics mirrored RF’s, giving confidence in these patterns. 

 

 

4. Discussion 

This study demonstrated that integrating pre-harvest UAV 

LiDAR scans with harvester-collected data can substantially 

improve the spatial accuracy of tree locations, primarily because 

UAV-derived tree positions exhibited considerably smaller 

positional errors relative to the ground-truth stump locations 

compared to the harvester GNSS positions. As a result, 

harvester-recorded and UAV-derived stems could be reliably 

matched, significantly enhancing per-tree data accuracy and 

enabling richer attribute information (e.g., species) to be 

associated with each tree. Our findings align with and extend 

those of previous researchers who have highlighted GNSS 

limitations and proposed sensor integration in forestry 

machines. For instance, our observed harvester GNSS error 

(~1.5 m mean) is consistent with ranges reported by Kaartinen 

et al. (2015) and Lopatin et al. (2023) under similar canopy 

conditions. We improved upon previous approaches by applying 

an external correction resource (UAV data), specifically by first 

matching harvester-recorded crane-tip positions and UAV-

derived tree crown positions separately to their respective 

closest stump locations (ground truth), and then subsequently 

aligning these matched harvester and UAV positions, ultimately 

adopting the UAV-derived positions as corrected locations for 

harvested stems. While Faitli et al. (2023) achieved an 

impressively low ~0.21 m error through post-processed SLAM 

on the harvester, that requires specialized equipment; our 

approach offers an alternative path using widely available UAV 

technology. In practical terms, a forest company could fly a 

drone before (or even during) harvesting to map the stand, and 

then use that data to calibrate the harvester positions. This could 

be done post-harvest (as we did with stumps) for improving 
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databases, or ideally in real-time to aid the operator. Real-time 

implementation would require fast data processing – perhaps the 

UAV data is processed just prior and loaded into the harvester’s 

onboard computer. The harvester could then find itself within 

that map via its own GNSS (with some initial error) and then 

snap each reported tree location to the nearest tree in the UAV 

map, effectively correcting it. This is analogous to how GNSS 

map-matching works for vehicle navigation in cities (snapping 

to a road network when GNSS is noisy). 

One challenge observed is ensuring one-to-one matching 

between UAV-detected trees and harvested trees. In very dense 

or more structurally complex stands, UAV crown delineation 

might merge or miss some trees (Li et al., 2022), complicating 

the matching. Advanced individual tree detection algorithms, 

such as deep learning-based point cloud segmentation, could 

further improve the reliability of the UAV inventory. Another 

challenge is temporal: if there is a long delay between the UAV 

scan and the harvesting operation, changes such as windthrow, 

tree growth, or GNSS drift in coordinate systems could 

introduce positional errors. Wind itself represents a potential 

limitation, as it may shift tree crowns relative to their original 

surveyed positions. Additionally, tree leaning in any direction 

could further exacerbate positional discrepancies, since UAV-

derived crown centroids may not directly align with stump 

positions. Future research could explore methods to detect and 

account for leaning trees using high-resolution UAV data or 

even drone surveys conducted beneath the canopy, thereby 

providing more accurate tree-level positioning. 

The implications of achieving ~0.5–0.8 m accuracy at tree-level 

are significant. It approaches the threshold where tree-level 

decision support becomes feasible. For example, consider 

selective harvesting: a forester may digitally mark certain trees 

to preserve (habitat trees or seed trees). If the harvester had a 

digital map of those from the UAV and accurate positioning, it 

could warn the operator when they are near a protected tree, 

even if it’s not obvious by sight (imagine a small habitat sign or 

a digital designation). Similarly, the system could optimize 

machine path – knowing exactly where each remaining tree is, 

the harvester’s onboard route planning (if available) could 

minimize damage by steering around trees at appropriate 

distances. These are elements of an operational forest digital 

twin: a continuously updated map reflecting the current state 

(trees cut or left) and guiding decisions. Our work provides a 

stepping stone by ensuring the digital twin’s alignment with 

reality is accurate. 

In terms of species information, having an automated 

classification from UAV data could enhance inventory and 

sorting. Harvesters do identify species via stem appearance and 

operator input, but an independent check is useful. It could even 

enable estimating certain properties like wood quality or 

biomass by combining species with dimensions. Our 

classification results (91% accuracy) are comparable to other 

recent UAV-based species mapping efforts in temperate forests. 

Faitli et al. (2023) primarily focused on localization and stem 

measurement, not species, but one could imagine adding a small 

multispectral sensor on harvesters or using pre-harvest UAV 

imagery as we did, to get species data into the mix of a 

harvester’s dataset. 

Comparing our approach to Faitli et al. (2023) more directly: 

they integrated a LiDAR on the harvester head to measure stems 

and used a total station for ground truth, achieving sub-

decimeter mapping of stems post-processed. That is a very high 

precision but in a research setting. Operationally, drones are 

easier to deploy widely than equipping every machine with 

expensive LiDAR+IMU setups. However, Faitli’s approach has 

the advantage of capturing data on the fly without a prior flight 

and can work even under canopy (since the sensor is amidst the 

trees). A hybrid approach could emerge in the future, where a 

UAV initially performs an overview scan, while the harvester 

utilizes simpler onboard sensors that, guided by the UAV-

derived map, achieve comparable accuracy. Additionally, future 

UAV systems could integrate sensors previously deployed on 

harvesters, enabling drones to fly directly beneath the forest 

canopy to further improve tree positioning accuracy and 

operational decision-making. 

Our study also addresses the first research gap identified: 

integration workflows. We showed a concrete way to fuse the 

data (segmentation, matching, error correction). We did note 

that an established workflow would need to handle more edge 

cases (e.g., missing trees, false positives in UAV data, outlier 

GNSS points). No standard software pipeline currently exists 

for forestry contractors to do this, which is a barrier. We 

envision integrating this into existing forest planning software. 

For example, stand maps could come with georeferenced tree 

positions from UAV; the harvester’s onboard computer could 

ingest that, and when felling, log tree ID and maybe adjust 

coordinates by referencing the nearest known tree point. Some 

initial research into harvester onboard data integration has 

begun (e.g., using harvester as a data collection tool for 

inventories), but not much on using external data to inform 

harvesting. Lopatin et al. (2023) suggested that viewshed 

analysis could let an operator know where GNSS might be 

poor; building on that, our work suggests even if GNSS is poor, 

another data source can fix it. 

The second gap was precision forestry and decision support. As 

discussed, the improved accuracy directly supports finer 

decision making. However, achieving centimeter-level accuracy 

consistently (as the gap mentions) is still tough without special 

hardware. Our UAV approach got to sub-meter; to get to a few 

centimeters, one might need a combination of RTK on the 

harvester, UAV data, and perhaps local wireless positioning 

(some research has looked at ultra-wideband, UWB, tags on 

trees for localization (Liu et al., 2025)). Whether centimeter 

precision is needed can be debated – for most ecological and 

operational purposes, decimeter might suffice. For instance, to 

avoid a specific buffer around a habitat, knowing tree positions 

within 0.5 m is usually enough. Still, cm-level could become 

relevant if doing automated cutting of marked trees (robotic 

target identification). 

Our experiment was relatively small scale (one stand, one 

machine). Further validation in different forest types (e.g., 

broadleaf-dominated, or very dense young stands) is necessary. 

Also, the timing was such that UAV and harvesting were back-

to-back; if UAV data is stale, errors might creep in (trees can 

move or be cut by other events). We also did not test real-time 

implementation – everything was done post-hoc. The latency 

and computing required to do this live need investigation. One 

potential issue is the UAV itself under canopy: we flew above 

canopy; if a real-time update was needed during harvesting (like 

after some trees removed, to update the map), an under-canopy 

drone flight would be challenging due to GNSS denied 

environment, though techniques like visual-inertial odometry 

are being explored. A more practical approach is to rely on one 

good pre-harvest scan and not update during the operation 

(since the positions of remaining trees don’t change, just some 

get removed). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-117-2025 | © Author(s) 2025. CC BY 4.0 License.

 
122



 

Despite these challenges, our results clearly indicate operational 

benefit. An average error of ~0.7 m means a digital system can 

know almost exactly which tree in the pre-harvest map 

corresponds to the stump/machine in the field. This could also 

improve post-harvest analytics: e.g., combining harvester’s 

yield data with exact locations allows precise mapping of how 

much volume was removed at each spot, informing future 

management or even carbon accounting with high resolution. 

Lastly, this integration is a step toward autonomous or semi-

autonomous harvesting. If a machine has an accurate map of 

trees and knows its position precisely, it opens the door to 

robotics – the machine can plan paths and select trees with 

minimal human input, guided by an algorithm that maximizes 

some objective (like thinning certain trees) while avoiding 

others. Of course, full autonomy is a big leap requiring more 

sensors (for safety, obstacle detection), but precision 

localization is a foundation for that future. 

In conclusion, the fusion of UAV and harvester data addresses 

critical gaps in current precision forestry practice. It enhances 

the value of the data we already collect (harvester data) by 

anchoring it to a more accurate spatial framework. It also 

leverages the strengths of new technology (UAV LiDAR) to 

solve an old problem (GNSS in forests). As UAVs become 

more routine in forest operations and perhaps as harvester 

manufacturers consider data integration, workflows like the one 

demonstrated here can be adopted operationally. Further 

research should scale this to larger areas, integrate it with real-

time systems, and evaluate the cost-benefit: e.g., is the extra 

step of flying a UAV justified by the gains in accuracy and 

decision outcomes? Early signs, including our study, suggest 

that for high-value operations or where precision is paramount 

(like selective logging near protected areas), the benefit will be 

higher than costs. Future research should focus on developing 

real-time registration methods that fuse pre-harvest UAV-

derived tree positions directly into harvester navigation systems. 

For instance, machine-learning-based matching algorithms or 

lightweight onboard SLAM solutions utilizing UAV scans as 

spatial reference points could dynamically correct GNSS 

discrepancies caused by larger tree crowns. 
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