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Abstract

This paper presents an unmanned surface vehicle (USV) equipped with a mapping system designed to map boreal freshwater
environments. The proposed system fuses satellite navigation, inertial measurements, and lidar data to provide accurate and precise
three-dimensional (3D) point clouds from the environment around the USV’s path. In order to achieve the required accuracy, we
present several calibration methods used including a novel cost function for optimizing a rotation between lidar and inertial frames
based on accelerometer measurements and point cloud registration. In the proposed positioning method, a post-processed high-end
satellite navigation and inertial fusion trajectory is used as an initial guess of the USV’s pose and for motion compensating lidar
data. Pose graph based simultaneous localization and mapping (SLAM) algorithm is used to further refine the map and trajectory
using normal distributions transform (NDT) distribution to distribution variant to compute lidar odometry and loop-closures offline
after data collection. A method for rating loop-closures is adopted to select scan registration results to add into the pose graph. A
factor graph is built using lidar odometry, detected loop-closures, and fused satellite navigation and inertial solution to optimize and
solve the optimal trajectory. The conducted experiment demonstrates that the proposed graph-SLAM method significantly improves
the overall consistency of the resulting 3D point cloud and the absolute trajectory error (ATE) of the optimized trajectory.

1. Introduction

Rivers play vital roles in their local ecology and economies
(Tomsett and Leyland, 2019). Active monitoring and research
on rivers is required adequately manage them. Lidars have en-
abled collecting high-density, high resolution (sub-centimetre
in some cases) digital models, however, data collection with
static human-operated systems is laborious and expensive (Har-
pold et al., 2015). Autonomous unmanned surface vehicles
(USV) can be deployed at decreased labour cost, offering longer
battery life, better visibility under bridges or tree canopies com-
pared with unmanned aerial vehicle. Additionally, they allow
deployment of sensors under water.

To successfully complete tasks autonomously USVs require ro-
bust means of positioning for mapping and to avoid collisions.
Global navigation satellite systems (GNSS) are commonly used
in open areas and in the air, but they might not work sufficiently
well near waterfront forests, in canyons, or near embankments,
even when fused with inertial navigation systems (INS) (see
e.g., Kaartinen et al. 2015).

In survey applications GNSS/INS post-processed trajectories
are a common solution used for mapping and geolocating point
cloud data, which first solves the localization problem to map
the environment (see e.g., Kukko et al. 2012; Di Stefano et al.
2021). However, the solutions often contain errors which are
visible in the final point cloud model. Many Nordic natural
freshwater environments are narrow rivers or small lakes with
forest growing along the waterfront, or even leaning over water,
which impedes GNSS signals. Consequently, the autonomous
USV should also be able to localize and map the environment
in these conditions.

Angular errors in the trajectory or calibration cause problem-
atic blurring or duplication in the final point cloud model.

Moreover, longer trajectories may also contain drift in the po-
sition solution further compounding errors into the point cloud
model.

In robotics simultaneous localization and mapping is a well
established field of research, which allows to use the map-
ping data to solve the localization problem and vice versa.
SLAM has been applied with great success in real-time sys-
tems in urban environments on ground based vehicles (Zhang
and Singh, 2014; Shan et al., 2020). However, these methods
still suffer from drift. Loop-closures can be added to remove
drift, but incorrect or erroneous loop-closures introduce error
or even cause a failure of the SLAM solution (Sunderhauf and
Protzel, 2012).

Research on USV application and methods is gaining increased
attraction. Application of SLAM in the context of Nordic boreal
freshwater environments is a less explored area. Most research
is focused on urban or semi-urban waterways or rivers (Cham-
bers et al., 2011; Wang et al., 2019). Understanding the chal-
lenges and limitations of lidar-based mapping in these environ-
ments will open up new application areas, for example, for re-
mote surveying and data collection. Additionally, robust map-
ping algorithms that do not rely solely on GNSS measurements
ensures useful data can be collected even if the GNSS/INS solu-
tion is inadequate.

In this work, we have developed a novel robotic mapping sys-
tem to be mounted on a USV, to enable the robot to position
itself precisely and map the environment around its trajectory.
In order to achieve the required accuracy, we present several
calibration methods including a novel cost function for optim-
izing the rotation between lidar and inertial frames based on
accelerometer measurements and point cloud registration. The
positioning and mapping is done by fusing inertial measure-
ments, satellite navigation, and point clouds produced by a ro-
tating lidar sensor. Graph optimization is used to fine-tune the
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map and trajectory. Planning and control of the USV is not
tackled in this work.

The contribution of our work is the following: (1) the construc-
tion of a novel robotic mapping system for freshwater envir-
onments, (2) calibration of the setup based on Rényi quadratic
entropy measure, and (3) proposing a novel graph-SLAM vari-
ant for freshwater environments.

In the following sections, we first present the methods and ma-
terials, including the used sensors on the USV, and the three
different calibration methods needed in the work. Next, we
propose our graph-SLAM variant for freshwater environments
fusing post-processed GNSS/IMU and lidar measurements on
the rotating tilted platform. Then, we explain the performed ex-
periments done in in Oulanka National park, Finland, using the
USV and sensor payload additionally collecting reference pos-
ition measurements. In the results section we present the extent
to which the post-processed GNSS/IMU solution was improved
upon, which is commonly used as a reference in previous work,
using our calibration and graph-SLAM methods. Finally, we
discuss the gained improvements and conclude the paper.

2. Methods and materials

2.1 Notation

A point cloud X is defined as a set of points {xi}Ni=1, where
x ∈ R3 is the three-dimensional (3D) coordinates of a meas-
ured point in space, and N ∈ R is the number of points in X.
Likewise, a Scan Sj is defined as a set of points {xi}

Nj

i=1, where
Nj ∈ R is the number of points in scan Sj . In this work scans
refer to a set of points collected during one entire revolution of
the rotating platform. Unlike with some lidar systems, the size
of a scan varies depending on the number of returns.

A transformation T ∈ SE(3) is given by

T (x, y, z, γ, β, α) =

[
R(γ, β, α) t(x, y, z)

03×1 1

]
, (1)

d(T ) = ||t(x, y, z)||2, (2)

∠(T ) = arccos
(Tr(R)− 1

2

)
, (3)

where t = [x, y, z]T , R(γ, β, α) is a rotation matrix R ∈
SO(3), and γ, β, α are the yaw, pitch, and roll angles accord-
ing to the intrinsic Tait-Bryan Rzy′x′′ convention, d is the norm
of the translation component of T , and ∠ the magnitude of R.

2.2 Sensors and hardware

An unmanned surface vehicle (USV), The Otter by Maritime
Robotics is used as a platform in this study (see Figure 1). The
following sensors are mounted on top of it to map the surround-
ing environment.

A two-dimensional (2D) laser scanner, Riegl miniVUX-1UAV
is mounted on a rotating platform to collect three-dimensional
(3D) scans of the environment (see details in Mäki-Leppilampi
2024). The laser scanner measures at a rate of up to 100 scan
lines per second with up to 100 000 points per second with a
beam divergence of 1.6 × 0.5 mrad. The rotating platform is
capable of up to 90 revolutions per minute. The angle of the ro-
tating platform is measured using an encoder with a resolution

Figure 1. Picture of the USV equipped with the rotating
platform and Riegl’s miniVUX-1UAV. Photo by Ville Kankare.

of 0.0035◦. The lidar is angled at 50◦ from the normal resulting
in a scanning plane of 40◦ from the horizontal, which results in
a cross-hatch scan pattern. The combined system has a field of
view of 360◦ × 80◦.

A Novatel CPT7 (rev. 2) combined GNSS receiver and inertial
measurment unit (IMU), with a measurement rate of 400 Hz,
is used as the primary navigation device. Virtual GNSS base-
station data is downloaded along with satellite ephemeris data
from a service provider after performing measurements to com-
pute a differential tightly-coupled GNSS/INS trajectory. The
post-processing is done using NovAtel Inertial Explorer soft-
ware (NovAtel, 2023).

2.3 Synchronization and calibration

A pulse per second (PPS) signal and a serial NMEA data stream
is used for synchronizing the time between the GNSS receiver,
micro-controller, and lidar. The micro-controller receives the
pulse and serial data from GNSS, and sends a separate PPS
pulse and NMEA serial message to the lidar irrespective of the
GNSS receiver. This ensures that the two can be time synchron-
ized without a GNSS fix.

2.3.1 Extrinsic calibration of the 3D lidar The custom
setup necessitates calibration to determine the extrinsic trans-
formation between the laser scanner and the rotating platform
under which the IMU is mounted. The parametrized trans-
formation T (x, y, z, γ, β, α) given by Eq. (1) is used with the
translation in z axis set to 0, because the platform rotates around
z axis, thus not containing information for its calibration.

To optimize the transformation, we use the Rényi quadratic en-
tropy measure

E(x) = − log2

∫
p(x)2dx, (4)

where p(x) is a probability density function (PDF) for con-
tinuous variables (Rényi, 1961). For discrete variables, such
as point clouds, the Rényi’s quadratic entropy (RQE) estimator
is solved using a Gaussian kernel to estimate the PDF around
each point (Principe and Xu, 1999). The RQE of a point cloud
X is thus given by

EG(X) = − log2
1

N2C

∑
i

∑
j

e

(
1
2
(xi−xj)

TΣσ(xi−xj)
)
, (5)

where xi and xj are points in X , N is the number of points
in X , C =

√
(2π)D|Σσ| is a normalizing constant, D is the
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dimension of x (here D = 3), Σσ = 2
σ2 I , and σ is a freely

chosen parameter. The entropy is a measure of point cloud co-
herence, and has been used as an objective function in literature,
for minimizing a set of parameters without manually specified
calibration targets (see e.g., Putkiranta 2020).

A downside of RQE is its expensive computational cost. How-
ever, since the effect of points several σ away are negligible on
Eq. (5), it is sufficient to use the immediate k nearest neighbors
(kNN), which can be efficiently found using kNN-search (Mad-
dern et al., 2012; Sheehan et al., 2012). Further, with a rotating
scanner, two redundant points sets SL and SR are measured,
consisting of points collected in the left and right halves of an
entire revolution, respectively. Exploiting the redundant point
sets, and using voxel downsampling the calibration is sped up
(Oberländer et al., 2015). Eq. (5) is modified to drop unneces-
sary constants to calculate the combined entropy of SL and SR

Q(SL,SR) = −
∑
i

∑
j

e

(
(xLi −xRj )TΣσ(xLi −xRj )

)
, (6)

where xL
i and xR

i are points belonging to SL and SR, respect-
ively.

Data for the extrinsic calibration was collected outdoors with
several surfaces in different directions around the scanner. The
rotating platform was mounted horizontally on a tripod and
the motor was rotated at a slow and constant angular velo-
city. The calibration parameters were optimized with MATLAB
fminsearch-function, which implements the Nelder-Mead sim-
plex search method (Lagarias et al., 1998). Table 1 presents the
initial parameters based on the CAD-model, and the final cal-
ibrated parameters. Total time taken was 511 seconds with pre-
processing taking 263 seconds, and optimization 248 seconds.

x (mm) y (mm) α (◦) β (◦) γ (◦) Q

init. 31.60 20.00 40.00 0.00 0.00 -32034
final 37.65 14.29 40.97 0.13 -0.18 -52284

Table 1. Initial and final parameters with their non-normalized
entropy values Q in Eq. (6) with σ = 0.05 and using 4 nearest

neighbors in the kNN search.

2.3.2 Rotation calibration between the lidar and IMU
Let B denote the Body (IMU) frame and L denote the 3D
Lidar frame (see Figure 2). We measure a point cloud at an
initial orientation of the Body frame B0 with a rigidly connec-
ted Lidar frame L0, and a gravity vector g0. Further measure-
ments gi are taken by tilting the rigidly connected lidar-IMU
setup at multiple different orientations Bi with an unknown ro-
tation RLi,L0 , which is a rotation from the rotated Lidar frame
Li back into L0. The measured gravity vectors in the rotated
Body frame Bi can be rotated into B0 via

ĝi,B0
= RL,BRLi,L0R

T
L,B gBi

, (7)

where RL,B is the rotation from Lidar to Body frame. Given
the rotations RLi, L0 and RL,B are correct, then g0 = ĝi,B0

.

Combining N measurements at different orientations, the grav-
ity residual EC and solution for R∗

L,B is given by

EC =

N∑
i=1

||g0 − ĝi,B0
||2

R∗
L,B = argmin

RL,B

EC ,

(8)

B0

L0

L1RT
L,B RT

L,B

RL,B
RL,BB1

Li

Bi

RL1, L0

RLi,L0

Figure 2. Link rotations of the Body and Lidar frames at
different orientation indices i used in the calibration.

where R∗
L,B is the optimized Lidar to Body frame rotation.

The rotation RLi,L0 can be found via scan registration of point
clouds PL0 and PLi that are measured in the Lidar frames L0

and Li, respectively. The minimization problem can then be
solved as a manifold optimization problem in the group SO(3)
using Manopt (Absil et al., 2007; Boumal et al., 2014).

The method was tested by measuring at four different orienta-
tions (B0 and {Bi}N=3

i=1 ) using a tripod. Scans were registered
using Distribution-to-Distribution (D2D) Normal Distributions
Transform (NDT) proposed by Stoyanov (2012), and further
developed by Kivioja (2022). The source and target cell sizes
were set to 1 m, and initial transformations were defined manu-
ally. Parameterized results for R∗

L,B are given in Table 2 along
with the initial (k = 0) and final (k = 70) cost values, in which
k is the number of iterations in the optimization. In total the
time taken was 421 seconds from which pre-processing took
416 seconds, registration 4 seconds, and optimization 1 second.

k α (◦) β (◦) γ (◦) EC

0 0.00 0.00 0.00 122.762
70 -0.01 0.22 0.33 0.005

Table 2. Initial and final rotation parameters between the Lidar
to Body (IMU) frame using parametrization defined in Eq. (1).
The minimized EC in Eq. (8) is shown along the parameters.

2.3.3 Heading correction for the post-processed
GNSS/IMU A bias in the rotations of the collected
post-processed trajectories was observed, especially w.r.t the
heading (yaw-axis) (Mäki-Leppilampi, 2024). We reason
that there is either systematic error in collecting, calculat-
ing the post-processed trajectory, or in the data due to the
environmental conditions (latitude, multi-path, or sensor
biases).

To correct for the biases, a small subset of N consecutive scans
starting from an index j, S∗ = {Si}j+N

i=j is selected, and used
to solve for an arbitrary rotation R by minimizing Eq. (5) of the
combined point cloud X̂ = {Si ∪ Si+1 . . . ∪ Si+N}. Individual
scans Si are transformed into their local coordinate frame, the
optimal rotation is applied, and the scans are transformed back
into the global frame

Si, = TiRoptT
−1
i Si, (9)

where T−1
i is the transformation into the local frame i, Ti is the

transformation back into the global frame, and Ropt is the op-
timal rotation matrix. Table 3 gives the initial (k = 0) and final
(k = 85) results of the parametrized trajectory rectifying rota-
tion. MATLAB fminsearch function was used as the optimizer.
Preprocessing took 3 seconds, and optimization 204 seconds.
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k α (◦) β (◦) γ (◦) EG

0 0.00 0.00 0.00 0.888
85 -0.01 0.27 2.64 0.801

Table 3. Calibration results to correct rotational bias in the
GNSS/INS trajectory using parametrization defined in Eq. (1).

The minimized EG in Eq. (5) is shown along with the
parameters.

2.4 Localization and Mapping

The post-processed GNSS/INS trajectory is used as the starting
point for refining the map and trajectory. A two-step process
is used to remove the motion from the collected lidar measure-
ments. First, the lidar data is projected from the rotating scan-
ner frame to the Body (IMU) frame (see Section 2.3). Second,
the post-processed differential GNSS/INS solution is used to
transform the measurements into the national ETRS-TM35FIN
reference frame into a point cloud.

Next, we split the georefrenced point cloud into consecutive
scans or frames such that one full revolution of the platform
defines a scan. Scan odometry, i.e., relative transformations
between consecutive frames TS

j,j+1 are measured with scan re-
gistration using the GNSS/INS trajectory as an initial guess by
calculating relative transformations

Ti,j = TT
j Ti, (10)

where transformations Ti and Tj are from frame i and j to the
global frame, respectively.

A sliding window submap Mk = {Si ∪ Ti−1,iSj−1 · · · ∪
Ti−m,iSi−m} of the previous m frames is used as the target
point set when computing scan odometry. Additionally, every
scan Si, where i mod m = 0 and i > 0, is chosen as a key-
frame to form a corresponding kth submap Mk.

A relative transformations Ti,j between between poses i and
j is obtained by solving the point clouds registration problem
of registering Sj (source) to Si (target) scans associated with
their respective poses. Different registration algorithms variants
exist, such as generalized iterative closest point (GICP) (Segal
et al., 2009), the NDT point to distribution (P2D by Magnusson
2009), and distribution to distribution (D2D by Stoyanov 2012)
variants.

Potential loop-closures Tj,i are computed between submaps
that are within a range of d ∈ R away from each other, as
measured using the GNSS/INS trajectory. Additionally, the
GNSS/INS trajectory is used as an initial guess for the scan
registration algorithm using Eq. (10). Thus we have a large set
of transformations between keyframes, TM = {Ti,j}, where
i = 1 . . .N and j = 1 . . .N. Furthermore, we limit to submap
indices i < j so that the same transformation is computed only
once.

Since scan registration is prone to getting stuck in local minima,
thus returning an erroneous transformation estimate, a strategy
of finding successful estimates, according to some measure,
is employed. Different potential measures exist to measure
point clouds alignment, such as the NDT score-function or root-
mean-square between the source and target clouds (Almqvist
et al., 2018). Alternatively, the entropy of point clouds before
and after registration can be compared (Adolfsson et al., 2021).
In the aforementioned methods a threshold level needs to be

set, for example, by training a classifier via machine learning
to classify registration results as failed or successful. How-
ever, this necessitates having labeled results to train the model
parameters. Additionally, different environments and varying
degrees of overlap between source and target clouds limits the
transferability of the models to different environments or sensor
configurations.

Instead of the aforementioned, we adopted the method by Shen
et al. (2025). The authors use loops of closed transformations
from i through indices j and k back to i to rate each graph edge
for consistency

T̂i,i := Ti,jTj,kTk,i. (11)

All loops are searched from the set of registrations between
submaps. A loop is considered a success if the transla-
tion component d(T̂i,i) Eq. (2) and angular deviation ∠(T̂i,i)
Eq. (3) between the start and end location are within a distance
threshold dthr ∈ R and ∠thr ∈ R, respectively. The successes
and failures for each edge are counted and individual edges are
accepted if their ratio of successes to occurrences exceeds a
given ratio rthr ∈ R.

To further refine the map and trajectory estimates, the prob-
lem is solved as a pose graph-SLAM problem of finding an
optimal graph, consisting of nodes describing the sensor pose
Pi ∈ SE(3) associated with scans Si, and edges corresponding
to constraints on the nodes derived from measurements, i.e., the
GNSS/INS solution and scan registration results TM . To form
loops from TM , the inverse transformations T−1 are added to
the set as well.

The accepted scan matching results, scan odometry, and GNSS
measurements are combined in a factor graph depicted in Fig-
ure 3 with pre-defined covariances (Dellaert and Kaess, 2017;
Dellaert, 2021). The first pose in the graph is constrained with
T1 given by the GNSS/INS solution. The prior position-only
GNSS factors Gi = ti are added to every n keyframes to con-
strain the elevation of the solution.

Mk

Odometry  Loop closurePrior factor

Scan Submap GNSS priorKey frame

Tm,2m

Tm,i

M1

T2m,i

M2

Tm,m+1

SiSi-m ... Si-1
... ...

G1 Gi

S2mSm+1 ... S2m-1SmS1 S2 ...

Figure 3. Structure of the factor graph used to solve for the
trajectory given GNSS priors, and scan registration estimates.

2.5 Performed experiments

Measurements were collected next to the Oulanka National
Park in eastern Finland in September 2024. The USV used in
the experiment is a Maritime Robotics Otter provided by the
University of Turku, which was controlled to cover the river
bend. The measurement lasted 43 minutes during which the
USV travelled a distance of 2.2 km moving at a mean speed
of 0.84 ms−1. The river was non-turbulent with a flow speed
of approximately 0.7 ms−1. A reference trajectory of the USV
was collected with a total station and reflector prism installed
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Figure 4. Orthophoto of the survey area with the reference
trajectory projected on top. The trajectory is colored based on

time. Orthophoto by National Land Survey of Finland.

underneath the GNSS antenna. An orthophoto with the refer-
ence trajectory projected on top is shown in Figure 4.

The laser scanner was set to measure at its maximum ≈ 100
lines per second, and the rotating motor was set to 30 RPM.
Points xk were partitioned into scans Si every full rotation of
the scanner. A sliding window and submap length of m = 5
was used. GPS measurements were added every n = 10 key-
frames.

Scan registrations were computed with the NDT D2D variant.
Cell sizes of 1.5 m and 1 m, were used for scan odometry and
computing the exhaustive matches between submaps, respect-
ively. The point density was not sufficient for smaller cell sizes,
especially when registering individual scans due the sparseness
of the data. Consequently, the minimum amount of points to
create a NDT cell was set to 4, which is the theoretical min-
imum. Iteration of the algorithm was terminated after reaching
either the maximum number of iterations, 20 for scan odometry
and 10 for matching submaps, or a tolerance of 0.001 in the
change in the transformation parameters.

Georgia Institute of Technology Smoothing and Mapping lib-
rary (GTSAM) was used to optimize the graph-SLAM prob-
lem with a Levenberg-Marquardt optimizer with default set-
tings (Dellaert and Contributors, 2022). Loops were considered
to be consistent with parameters dthr = 0.03 m and ∠thr = 0.5◦.
Consecutive edges and edges with a ratio r ≥ 0.7 were added
into the factor graph.

Table 4 gives the standard deviations of the diagonal covariance
matrices of the factors added to the graph. The scan-to-scan
odometry covariance is denoted by ΣTi,i+1 . The covariances
of the submap loop closure factors ΣTM are set to ∠thr, and
dthr accordingly. The total processing time was 562 seconds
from which pre-processing took 45 seconds, scan registration
506 seconds, loop-searching 10 seconds, and graph optimiza-
tion 1 second.

Reference position of the USV was measured using Leica Nova
TS60 total station. It automatically follows and measures the
distance and angles to a prism mounted under the GNSS an-
tenna in the USV. The Cartesian coordinates of the target are

α (◦) β (◦) γ (◦) x (m) y (m) z (m)
ΣT1 0.57 0.57 0.57 0.01 0.01 0.01
ΣTi,i+1 5.00 5.00 5.00 0.30 0.30 0.30
ΣTM 0.50 0.50 0.50 0.03 0.03 0.03
ΣG - - - 5.00 5.00 0.05

Table 4. Diagonal elements of the covariance matrices of the
factors added to the factor graph.

obtained by the total station from its own known location and
orientation, and its measurements are transformed into ETRS-
TM35FIN and UTC time. The system can only track one prism
and thus we only have reference position measurements and no
knowledge about the reference orientation.

2.6 Evaluation metrics

The performance of the methods was evaluated numerically
with ground truth values from a total station. The position ac-
curacy of the aligned GNSS and SLAM solutions are compared
against each other to evaluate overall consistency of the solution
with absolute trajectory error (ATE)

ATE =

√√√√ 1

N

N∑
i=1

||pi − p̂i||2, (12)

where N is the length of pi and p̂i, {p̂i}M1 is the set of posi-
tions in the trajectory being evaluated, and {pi}M1 is the set of
reference positions given by the total station. Positions pi are
3D vectors of Easting, Northing, and Elevation in a global co-
ordinate system in which Easting and Northing are according to
ETRS-TM35FIN (EPSG:3067) and Elevation is the ellipsoidal
elevation (EPSG:224). The equation is a position only version
ATE of the one presented in (Zhang and Scaramuzza, 2018) as
the rotations of the reference positions are unknown. A delay
of 0.155 s was estimated and corrected for in the reference tra-
jectory.

As a second evaluation metric, the consistency of the gener-
ated point cloud models are evaluated numerically with Rényi’s
quadratic entropy measure in Eq. (5) using 10 nearest neighbors
in the kNN search, and σ = 0.05. Finally, the generated point
cloud models are evaluated qualitatively.

3. Results

We compared the post-processed GNSS/INS (shortened as
GNSS) and graph-SLAM (shortened SLAM) solutions using
the experiment conducted at Oulanka river. For both, we used
all other calibrations, but compared the results with and without
the heading correction. Table 5 gives the quantitative results,
in which experiments with postfixes A correspond with data
without heading correction, and B with the heading correction.
As shown in the table, the position only ATE measure used in
this work is unaffected by the rotation correction when compar-
ing the two GNSS trajectories. However, GNSS B trajectory
has smaller entropy values due to the optimized Ropt rotation
which suggests the bias remains constant throughout the tra-
jectory.

SLAM A increased the ATE by 21.5% relative to the GNSS tra-
jectory. Conversely, SLAM B decreased the ATE by 2.8%. The
only difference is the initial guess provided by the GNSS tra-
jectory, which has been corrected for bias in rotations in case of
SLAM B. As a result, the scan registration benefits from better

GNSS A GNSS B SLAM A SLAM B
ATE (m) 0.191 0.191 0.232 0.186
EG 1.861 1.271 1.220 1.169

Table 5. Quantitative results in which B uses optimized Ropt in
Eq (9), and A does not. EG is the entropy in Eq. (5).
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Figure 5. Box and whisker plots of the errors in the GNSS and
SLAM trajectories with respect to error in East, North, and
Elevation coordinates. The distribution of the data is drawn

behind the box and whisker plots.

initialization, which is reflected in the final ATE and entropy
EG values.

Figure 5 depicts box and whisker plots of the element-wise er-
rors of the GNSS and SLAM trajectories. The SLAM solutions’
Easting error means have shifted away from the mean, but the
maximum errors have decreased. Likewise the Northing mean
errors are slightly shifted, and the maximum errors have de-
creased. SLAM B Elevation errors are less spread compared
with SLAM A, but there is a singular outlier data point increas-
ing the maximum error significantly.

Figure 6 depicts a cross-section of the final point cloud which
compares the GNSS/INS, and SLAM results. Versions of the
GNSS/INS trajectory with and without heading corrections ap-
plied are given in Figure 6a and 6b, respectively. Figure 6a
contains clear duplicate targets due to the angular biases. In
comparison the trees in Figure 6b are more distinct and bet-
ter resolved. Both SLAM methods outperform the GNSS/INS
solutions as show in Figure 6. Finally, with the heading cor-
rections a slight increase in the model sharpness is observed
when comparing SLAM B in Figure 6d to SLAM A in Fig-
ure 6c. These qualitative observations are consistent with the
entropy values (smaller is better) computed for the chosen sec-
tions which also indicate improved consistency.

4. Discussion

Several calibration methods were used in the work to reduce
errors caused by the extrinsic lever arm offset and rotation from
the Lidar frame to the Body frame. The proposed method to
solve the orientation between IMU and lidar allowed us to do
accurate positioning and mapping using the setup. However, the
evaluation of the method is limited due to the additional rotation
errors in the post-processed GNSS/INS trajectory, which was
tackled separately relying on the Rényi’s quadratic entropy. In
future work rotation biases should be modeled and estimated
within the factor graph.

The 19.8% smaller ATE of SLAM B w.r.t SLAM A, seen in
Table 5, suggests that errors in the initial guess of the orienta-
tion between two frames impacts the scan registration results,

(a) GNSS A: point cloud without correcting trajectory
rotation error (EG = 2.054).

(b) GNSS B: point cloud example with corrected rotation
(EG = 1.340).

(c) SLAM A: SLAM solution point cloud example without
initial correction. (EG = 1.319).

(d) SLAM B: SLAM solution point cloud example with
corrected rotation (EG = 1.277).

Figure 6. Qualitative comparison of the GNSS only, heading
corrected, and SLAM point cloud models as well as the

Quadratic Entropies Eq. (5) of the selected area.
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which get stuck in local minima. The performance of different
registration algorithms was not explored in this work.

At present there remains challenges in robust scan matching in
freshwater environments due to the lack of features and geo-
metry in close proximity to the USV, especially planar fea-
tures parallel to the xy-plane. As a result, it was necessary to
add apriori GNSS measurements to the graph. Despite this,
the SLAM Elevation histograms shown in Figure 5 are more
spread, albeit reducing maximum errors. Future work should
address this via estimating the water level from, for example,
the shoreline in order to constrain the elevation when comput-
ing scan registration results. The information could also be used
to aid vehicle navigation or other sensor systems.

Figure 7 depicts the output of the edge selection algorithm as a
heatmap of the ratios of the different edges of computed trans-
formations. Darker areas of the graph correspond with higher
loop success to occurrence ratio. Note that the brightness along
the diagonal varies which highlights differences in the quantity
and quality of features of scans in that particular area. The tri-
angular sections in the middle and end of the graph correspond
with periods in time where the USV was holding its position.
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Figure 7. Computed ratios of likes to occurrences for each scan
registration between submaps from found loops of length 3.

In Figure 7, it is seen that loop closures are quite rare (a lot of
white in the figure) and there exists long chains of consecutive
submaps registered together. Even a small bias in the registra-
tion will accumulate into large error in the map in this environ-
ment with features only available on the surrounding banks.

However, the work showed that the proposed graph-SLAM
method improves the consistency of generated point cloud mod-
els shown quantitatively in the decrease in Rényi’s quadratic
entropy, and qualitatively in the visual conformity of features
such as trees and ground shown in Figure 6.

Our work also addressed the issue of choosing successful re-
gistration results without relying on trained machine learning
models. Additionally, the method parameters can be used in
the covariance estimates of the factor graph factors, since cur-
rent scan registration estimates remain overly optimistic. The
method leverages the parameters’ relation to bound the desired
uncertainty in the estimated transformations.

Currently all research was done using a post-processing solu-
tions, which is a limitation if real-time solution is needed. Real-
time operation would allow using the sensor for control and
navigation of the USV as well as for mapping. The implement-
ation is technically feasible and in the plans as future work.

5. Conclusion

In this paper we have addressed the issue of 3D mapping in
boreal freshwater environments using an autonomous USV in
conjunction with a unique scanner setup. We used established
entropy-based calibration method for calibrating the rotating
platform extrinsic parameters and finding a bias in a post-
processed GNSS/INS trajectory. Additionally, we introduce a
cost function for solving the extrinsic Lidar to Body frame ro-
tation.

The mapping solution is solved with a pose-graph SLAM prob-
lem using a post-processed GNSS/INS trajectory as the ini-
tial guess, which was refined further with lidar odometry and
computing a large set of scan registration results forming loop-
closures. Loop-closures were selected into the graph by rating
transformations based on their measured consistency by form-
ing larger loops.

The method improved the overall consistency of the point cloud
as measured by Rényi’s quadratic entropy, and visualizing the
generated models. Additionally, given a good initialization of
the scan registration, the absolute trajectory error was also ob-
served to decrease.

A limitation of the current system is the lack of active control
and obstacle avoidance capabilities, when the USV is equipped
with our custom sensor payload. Additionally, the system is
limited to slow moving and non-turbid waters in good weather
conditions. For future work we propose improving the robust-
ness of scan registration in freshwater environments by devising
a constraint on the elevation of the registration solution. Addi-
tionally, a real-time implementation of the system is planned to
enable obstacle avoidance and further autonomy of the USV.
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Kaartinen, H., Hyyppä, J., Vastaranta, M., Kukko, A., Jaakkola,
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