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ABSTRACT

The presence of illegal waste materials is one of the most significant challenges for environmental management and human health.
Therefore, their identification reduces environmental hazards significantly. Recently, Unmanned Aerial Vehicles (UAVs) equipped
with advanced sensors and specialized machine learning algorithms allow for early identification of illegal waste dumping sites. In this
scenario, is pivotal to fine-tuning image-based automatic detection and classification procedures with geo-intelligence data obtained in
field acquisition campaign conducted in semi-controlled environment. This study aims to identify illegal waste dumping sites by
considering the characteristics of waste materials. The testing activities aimed to evaluate a selected list of UAV payload sensors, and
the data derived from them, including thermal and multispectral images, to assess their ability to be utilised for automatic waste
detection. For this study, the design and testing of a trial site and relative UAV surveying campaign were conducted to mimic the
potential presence of waste materials. Regarding the passive thermal response of the surveyed site, a convergence procedure was
implemented through R script to calibrate the raw images. Through photogrammetric reconstruction and GNSS-RTK (Global
Navigation Satellite System - Network Real Time Kinematic) control point surveying, multiband georeferenced orthomosaic products
have been obtained. The calibrated thermal orthophoto was used for the preliminary identification of the waste materials, in particular
distinguishing wet sand from dry sand. While the Semi-Automatic Classification Plugin in QGIS was applied to the multispectral

orthophoto by utilising materials' spectral signatures to classify the different types of waste materials.

1. INTRODUCTION

Environmental concerns regarding illegal waste sites have
increased significantly in several countries (Jiang et al., 2024).
Such concerns have been raised due to the hazardous impact on
human health and the environmental problems associated with
such phenomena (Quesada-Ruiz et al, 2019). Regarding
environmental problems, illegal waste sites lead to soil
contamination, reduced vegetation cover, air, and water pollution
(Limoli et al., 2019). Concerning public health, a study has found
an increased risk of stomach, liver, lung, and kidney cancers, as
well as ischaemic heart diseases, associated with exposure to
illegal waste sites (Fazzo et al., 2023). Besides human health and
environmental issues, financial resources are needed to treat
illegal waste sites (Seror and Portnov, 2018).

The management of waste materials is typically based on
grouping several types of materials that share the same physical
and chemical characteristics into a single category. In terms of
legislation regarding waste management in Europe, the European
Directive amending Directive 2008/98/EC on waste materials
imposes certain restrictions. These include a requirement for all
Member States to prevent any form of improper and uncontrolled
waste disposal. Furthermore, the directive emphasizes that, to
enable effective recycling and site treatment operations, waste
materials should be collected and dumped according to similar
property categories defined by law enforcement, and they should
not be mixed (Directive (EU) 2018/851, 2008).

Thus, considering the previously mentioned effects, the early
identification of an illegal waste site would lead to several
benefits regarding the environment, human health, and minimal
financial spending. That said, this study aims to support
authorities in identifying illegal waste materials by classifying

them based on their characteristics rather than individual items
Nowadays, the advanced technology of Unmanned Aerial
Vehicles (UAVs) equipped with thermal and multispectral
sensors provides effective results with lower cost and high-
quality images (Seror and Portnov, 2018; Ahmad and Eisma,
2023; Chio and Lin, 2017). These make the deployment of UAV
technology highly effective in detecting waste materials.

2. LITERATURE REVIEW

In this section, the previous studies regarding the use of UAVs
thermal and multispectral images in waste materials
identification were reviewed. The concerns toward waste
management and its impact on the environment and human health
have resulted in several active research projects in this area. In
addition, the development of remote sensing technologies in
recent years, such as the use of UAV technology with its low cost
and remarkably efficient thermal and multispectral sensors,
enables improving the identification of waste materials by
exploiting the spectral response of anthropic materials.

In terms of thermal analysis, Tanda et al. (2020) utilised thermal
images captured by UAV and the implementation of heat balance
to quantify the methane flow rate to manage urban landfills. The
study proposed the detection of biogas depending on distinct
thermal prints from the surrounding area generated by anaerobic
decomposition and biogas. The study was conducted at two
Italian landfills, Mount Scarpino, Genoa, and Scala Erre, Sassari.
This approach was effective and less time-consuming compared
to ground-based screening tools and sensors for detecting biogas.

Goddijn-Murphy et al. (2022) used a UAV-grade FLIR Vue Pro
R 640 thermal camera to detect floating plastic litter, under
various environmental conditions. The field results were
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confirmed by additional laboratory experiments. The study was
performed at Thurso Bay in the Pentland Firth, on the north coast
of Scotland. The previous two studies consisted of fundamental
concepts that enabled the identification of various waste
materials using thermal images collected by UAVs.

In addition to the above-mentioned studies, the study conducted
by Jiang et al. (2024) overcame the limitations of DJI thermal
images when they were used to create thermal orthophoto. The
study proposed a calibration procedure called ThermoSwitcher
system based on DJI thermal SDK, which allows for calibrating
JPG thermal images to GeoTIFF images. The calibration of
thermal images enables heterogeneous temperature distribution
without losing temperature information. The study was
conducted in Nanjing, China, to identify several land cover types
using the surface temperature. The principle of thermal image
calibration by converting JPG thermal images using DJI thermal
SDK is also applied in our study.

In recent years, the integration of remote sensing technologies
and machine learning algorithms has increased significantly,
especially for materials and land cover classification. Several
studies have used the multispectral images collected by UAVs
and machine learning algorithms to classify waste materials.

Oberski et al. (2025) deployed several machine-learning
algorithms to classify microplastic waste. The algorithms were
implemented on multispectral images from UAV at a waste
disposal Plant in northwestern Poland. Several machine learning
algorithms were deployed. These include Random Forest, k-
nearest neighbour (k-NN), Maximum Likelihood, and Minimum
Distance. The accurate result was obtained from k-NN. Also,
Cortesi et al. (2022) employed the same concept of UAV
multispectral images and machine learning by applying a
Random Forest algorithm to detect plastic objects. The study was
conducted on the Arno River in Prulli (Reggello, Florence, Italy).
The classification results showed high accuracy, with recall and
accuracy equal to 98%.

To summarise, several studies have used UAVs thermal and
multispectral images to detect and identify the presence of waste
materials. These studies relied on surface temperature variation
in the case of thermal images and implemented machine learning
algorithms on multispectral images for waste materials
classification. However, fewer studies have integrated both types
of images for waste material identification. This study proposed
the integration of a calibrated thermal orthophoto and
multispectral orthophoto to identify waste materials. The
calibrated thermal orthophoto was used for a preliminary
investigation of the waste materials. By deploying R script to
convert JPG thermal images to GeoTIFF thermal images. For
instance, using calibrated thermal orthophoto allows us to
differentiate between dry sand and wet sand relying on surface
temperature variation. Then the Random Forest algorithm is
applied to classify waste materials. The machine learning
classification technique proposed in this study is based on open-
source tool Semi-Automatic Classification Plugin in QGIS
(Congedo, 2021), which enables simple classification methods
without the need for coding expertise.

3. STUDY AREA

This study is strongly enhanced by the design and execution of a
semi-controlled test executed at the Calvarina testing ex-military
base in Verona, Italy, as shown in Figure 1. Two survey
campaigns were executed in October 2023 and, July2024, where

several waste materials were distributed to mimic the waste
dumping sites.

The waste materials were distributed to mimic the complexity of
real waste sites. Therefore, various scenarios were explored,
including different land cover types (open area, grassland, tree
cover) and types of waste (tyres, wet sand, dry sand, and barrels),
as shown in Figure 2.
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Figure 1: Showcase site Calvarina, Verona, Italy.
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Figure 2: Type of land cover and waste materials.
4. MATERIALS AND METHOD

This study proposes the following methodology, which
encompasses two paths. Firstly, a preliminary investigation of the
waste materials using a calibrated thermal orthophoto based on
the object’s surface temperature. Secondly, a machine learning
algorithm is applied on multispectral orthophoto by utilising the
Semi- Automatic Classification Plugin (SCP) in QGIS software
to classify the different types of waste materials based on the
object's spectral signature.

In this study, the workflow illustrated in Figure 3 was
implemented, including data collection, data processing,
analysis, and implementation of the machine learning algorithm.
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Figure 3: Materials and method workflow.

4.1 Data acquisition (thermal and MS images)

The DJI Mavic M3T was used to collect thermal images. It is
equipped with an infrared sensor that operates in the range of 8-
14 um, a resolution of 640x512 pixels, and has a temperature
measurement accuracy of + 2 °C, which together provide high-
quality thermal images. Additionally, the M3T has temperatures
measured ranging from -20 °C to 150 °C (DJI, 2025a). These
highly technical characteristics made M3T ideal for spotting the
temperatures of different waste materials. Multispectral images
were captured using the DJI Mavic 3M, which has a multispectral
camera with four bands: (Green (G): 560 + 16 nm), (Red (R): 650
+ 16 nm), (Red Edge (RE): 730 £ 16 nm), and (Near-infrared
(NIR): 860 nm =+ 26 nm) (DJI, 2025b). Both thermal and
multispectral images were acquired on the 27th of June 2024 on
a sunny day. The difference between the two acquisitions was
approximately 1 hour. The flight height was 65.1 m for thermal
images and 65.8 m for multispectral images, covering
approximately 0.0836 square kilometres. The data obtained from
the two acquisitions comprised 201 thermal images and 400
multispectral images.

Moreover, nine artificial targets, Ground Control Points (GCPs),
were well distributed in the study area to obtain a georeferenced
orthophoto. The coordinates of the GCPs were measured using
GNSS technique, implementing NRTK (Network Real Time
Kinematic) solutions considering, the reference system WGS 84
/ UTM Zone 32N.

4.2 Data processing

Regarding the creation of the calibrated thermal orthophoto, the
JPG thermal images captured by DJI Mavic M3T must be
converted to GeoTIFF images. To apply this convergence, the R
script provided by (Kattenborn and Nelson, 2024) was
implemented. The calibration process includes using DJI thermal
SDK, creation of GeoTIFF images, and the extraction of
metadata from the original images.

Firstly, a radiometric calibration for each image was performed
by deploying DJI thermal SDK (dji_irp.exe) (DJI, 2025c¢). The
method encompasses the extraction of 32-bit floating-point
temperature values and the use of the following parameters:
(distance = 25 m) refers to the distance from the sensor to the
targeted objects, (Humidity = 50%) depends merely on the
surrounding environment of the site, (Emissivity = 0.95),
and (Reflection temperature = 25 °C) (DJI, 2025c). The
parameters used were the default parameters (DJI, 2025c).

Secondly, the ijtiff raster from R packages was used to obtain
GeoTIFF images in 32-bit float format using the results obtained
from the first step (Kattenborn and Nelson, 2024).

Thirdly, by implementing exifr from R packages, all the
necessary EXIF metadata, which includes (GNSS images
coordinate, camera settings, focal length, and sensor orientation),
were then obtained from the original thermal images and applied
to converted GeoTIFF images (Kattenborn and Nelson, 2024).
The results obtained from this convergence procedure were
GeoTIFF thermal images, where each pixel value represents a
real temperature value. These calibrated thermal images are then
used to create a calibrated thermal orthophoto covering the entire
study area.

The Agisoft Metashape version 2.0.3 was utilised to build the
calibrated thermal orthophotos (Agisoft LLC, 2023). The
principle of creating the orthophoto in Agisoft Metashape is
based on three main concepts: image alignment using aerial
triangulation (AT) and bundle block adjustment (BBA), in which
the software matches the common images to generate tie points
(Agisoft LLC, 2023). The calibrated thermal orthophoto obtained
has a GSD of 9.19 cm/pix.

A multi-spectral orthophoto was generated using DJI Terra
version 4.1.0 (DJI, 2024d). The result from DJI Terra consists of
four orthophotos (green, red, red edge, and NIR) with a GSD of
2.61 cm/pix. These four bands are then imported into QGIS
software to be combined into a single orthophoto containing the
fourth multi-spectral bands to classify the waste materials using
(SCP).
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Figure 4: Multispectral orthophoto created using DJI terra.

4.3 Waste materials classification using Random Forest
algorithm (SCP) plugin in QGIS

The semi-classification Plugin (SCP) is an open-source plugin
introduced by Luca Congedo. SCP aims to provide an automatic
tool for raster images to enable land cover classification in a
simple way. It uses Remotior Sensus, a Python package that
allows imaging processes and GIS data. The SCP uses machine
learning algorithms such as Maximum Likelihood, Random
Forest, Maximum Distance, and Support Vector Machine
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(SVM). This study used Random Forest to classify waste
materials (plastic sheets, car tyres, metal barrels, dry sand, and
wet sand).

The selection of the Random Forest algorithm is based on the
robust and effective results it provides when applied to MS
images (Akar and Giingor, 2012; Guo et al., 2022; lordache et al.,
2022). The classification deployed in this study is pixel-based,
depending on aggregating classes that share similar chemical
characteristics and spectral signatures. Since the classification
using Random Forest within the Semi-Automatic Classification
Plugin (SCP) is based on the spectral signature, it is ideal for the
objectives of this study (Congedo, 2021).

The process of waste materials classification using the Random
Forest algorithm within the Semi-Automatic Classification
Plugin (SCP) involves several steps. These include band sets
definition, training samples, and classification refinement.

To begin with, the band sets were defined considering four MS
bands: red, red edge, green, and NIR. Then the centre
wavelength for each band was inserted. In addition, a virtual
raster was created to obtain a single orthophoto (Congedo, 2021).

Following the band sets, the training samples are created using
the region of interest (ROI). ROI are temporary polygons made
by the SCP using a region-growing algorithm or drawn manually.
The purpose of drawing ROIs is to define the spectral
characteristics of the different classes on the multispectral
orthophoto. The preliminary investigation provided by the
calibrated thermal orthophoto enables better selection for the
ROIs. ROIs are then saved as training input with spectral
signatures of the exact polygons. Notice that the classification is
always based on spectral signatures. The ROIs are defined
considering two levels: the first level is the Macro class ID, and
the second level, a subset of the Macro class ID, is the class ID
level (Congedo, 2021). The following ROIs were defined:
pavement, sand, wet sand, metal barrels, tyres, vegetation, plastic
sheets, and concrete (see Figure 5).

1 Vegetation

= Sand

O Wet sand

L1 Pavement

= Concrete

= Plastic sheet
m Metallic barrels
mm Car tyres

Figure 5: Definition of ROIs in MS orthophoto using SCP.

Once the training samples (ROI) were defined, the first
classification was performed using the Random Forest algorithm,
considering 60 trees. Also, the cross-validation was deployed,
which allows for a data partitioning resampling technique
through the cross-validation method. K-fold cross-validation was
applied to the training set, which divides the training data into K
equally sized folds. Each fold was used as a validation set, while
the remaining K-1 folds were used as the training set (Kuhn and

Silge, 2022). This approach would increase classification
accuracy.

To refine the classification results, the spectral signature for each
class was plotted using SCP, as shown in Figure 6. The spectral
signature analysis revealed the following: pavement and the
concrete of the roof building exhibited similar spectral trends in
the NIR band. In addition, plastic sheets and car tyres have shown
a closer trend in Red Edge and NIR bands. The band confusion
among the different classes is more likely to be linked to
similarities in chemical composition between the different
classes. Thus, for classification refinement, materials with
similar chemical compositions are suggested to be merged into a
single class. For instance, plastic sheets and car tyres (polymer
class), pavement, and concrete roof buildings (concrete class).
Moreover, additional regions of interest were drawn, as shown in
Figure 7, for pavement and GCPs as polymer classes to achieve
better classification.

— 1#Vegetation; 1
J#Wet sand; S#w
d#Pavement; 2¢p
S#Concrete; 14¢

~—— G#Plastic sheet
/ — T#Metal; 2¢met2
1= B#Car Tyres, 5¢

—

4004

|
|
1
|
|
|
|
16001 g
|
|
1

Values

540 600 60 0 780 840 %0
Wiavelength

Figure 6: Materials spectral signature in four MS bands using
SCP.

In addition to the classes merged, which had previously applied,
the increased number of trees was also implemented to enable the
algorithm for effective classification. Using 70 trees instead of
the 50 trees that were previously applied, the classification
accuracy improved significantly.
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Figure 7: Additional ROIs to refine classification accuracy
using SCP.

4.4 Classification accuracy assessment

The accuracy assessment of the Random Forest (RF)
classification was made by comparing the polygon test set layers
(reference layers). Which were converted into a raster format
using the original orthophoto, with the final classified raster. A
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polygon shapefile containing the field "MC ID" (matching the
classification scheme) was added. The MC ID values in the test
layers were assigned to match those used during the classification
to ensure a valid accuracy assessment. To assess the model's
performance, we computed the accuracy assessment metrics for
each class, including the user's accuracy (UA), the producer's
accuracy (PA), and the Kappa coefficient. Moreover, we
computed the overall accuracy and the overall Kappa coefficient
(Congedo, 2021).

The calculation of accuracy assessment metrics is based on the
area-based error matrix, which enables us to have an unbiased
model assessment. The error-based matrix is a cross-tabulation
matrix derived from the pixel-based confusion matrix shown in
Table 1. The main diagonal of the pixel-based confusion matrix
represents the number of pixels from the ground truth correctly
classified as class (i) (Olofsson et al., 2014).

Ground truth
Class 1 [Class 2 | ..... | Class k | Total
Class 1 Pu P12 v | Pk P+
Class2 | Pz P2 v | Px Pa+
Classk | Pxi P2 v | Prk Px+
Total P P v | P n

Table 1: Pixel-based confusion matrix.

To obtain the area-based error matrix, each cell from the pixel-
based confusion matrix should be transferred using equation (1).

a = 2U
l]_Pi+ l

(M

where  aj = area- based error cells
Pij = correctly classified pixels for class (i)
Pi+=row total

wi = the proportion of total raster area as class (i)

Ground truth
Class 1 | Class 2 Class k | Total
Class 1 ai an aik ai+
Class 2 azl an ax a
Class k a1 ak2 a3 ak+
Total a+ a+ e a+k n

Table 2: Area-based error matrix.

The accuracy assessment metrics, including the user's and the
producer’s accuracy for each class as well as the overall accuracy,
are then calculated as follows:

As shown in equation (2), the user's accuracy is the ratio between
the correct classified samples for class (i) and the row total.

ui=2t @

Ai+

The producer's accuracy, as shown in equation (2), is the ratio
between the correctly classified samples for class (i) and the total
column.
— Gii
P =— (3)

At

The overall accuracy is calculated as shown in equation (4),
which is the ratio between the sum of all the classes that are
correctly classified in the sample and the total of all samples (n)
(Olofsson et al., 2014).

— k Qi

5. RESULTS AND DISCUSSION

In this section, the results of this study are introduced, starting
with a calibrated thermal orthophoto to conduct a preliminary
investigation of waste materials. In addition, waste materials
classification was obtained using the Random Forest algorithm
by deploying SCP on a multispectral orthophoto. The
classification was supported by the results from the calibrated
thermal orthophoto. The results of the waste classification were
obtained by applying the following steps: initial classification,
classification enhancement, final classification, and classification
accuracy assessment.

5.1 Calibrated thermal orthophoto

The calibrated thermal orthophoto, as shown in Figure 8, was
obtained after converting JPG thermal images to GeoTIFF
images using the R script. The calibrated orthophoto provides
valuable insight for the preliminary investigations of the different
types of waste materials.

A

50 m

Figure 8: Calibrated thermal orthophoto created using Agisoft
Metashape.

As shown in Figure 9, several waste materials were visible based
on surface temperature. These include plastic sheets placed
below the sand dumping, which can be easily noticed on the
pavement due to differences in surface temperature. Dry and wet
sand were also visible because wet sand exhibits lower
temperature values than dry sand. The calibrated thermal
orthophoto allows for other materials to be differentiated, such as
metal barrels and car tyres.
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Figure 9: Preliminary investigations using the calibrated thermal
orthophoto

5.2 Waste materials classification on MS orthophoto using
SCP

5.2.1 Initial classification

Regarding the multispectral classification, eight classes were
considered in the initial classification, including vegetation,
pavement, concrete, plastic sheet, dry sand, wet sand, car tyres,
and metal barrels. As shown in Figure 10, the initial
classification provided accurate results regarding vegetation,
even for the small vegetation patches on the roof of the building.
However, small regions were misclassified due to the presence of
shadows. The effect of shaded areas is clearly visible in Figure
10 and 11, where some vegetation and the shaded pavement area
were misclassified as car tyres due to the low multispectral
reflectance. These are highlighted by the white rectangles in
Figure 10 and 11.

Moreover, the algorithm was unable to distinguish between
pavement and concrete buildings, as shown by the red rectangles
in Figure 10. This misclassification is linked to the similarity in
chemical material composition, which leads to similar spectral
signatures. Also, the roof membrane was not accurately visible,
as shown by the yellow rectangle in Figure 10.
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Figure 10: Initial materials classification using Random Forest
in SCP.

Figure 11 shows the correct classification of the sand dumps,
where wet and dry sand were clearly distinguishable, as were
metal barrels. However, mixed class issues were observed in car

tyres where plastic sheets class were also assigned to some car
tyres as shown by the pink rectangle in Figure 10.
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Pavement
misclassified
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Figure 11: Initial materials classification using Random Forest
in SCP

5.2.2  Classification refinement

The inconsistency in some of the classes obtained from the initial
classification required further investigation concerning the
spectral signature for each class. The classification aims to
categorise waste materials based on their similar characteristics.
Therefore, the aggregation of classes was implemented based on
material characteristics and spectral signature, as explained in the
material and method section.

Nevertheless, despite the significant enhancement in the refined
classification, the shaded areas still lacked correct classification,
which can be considered a limitation for such analysis (see Figure
12 and Figure 13).

classification_(second)
Band 1 (Gray)
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Figure 12: Final materials classification using Random Forest in
SCP.
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Figure 13: Final materials classification using Random Forest in
SCP.

5.2.3 Classification accuracy assessment

The implementation of the classification accuracy assessment
was deployed using the reference layers shown in Figure 14.
These reference layers represent the ground truth regions selected
from the original MS orthophoto. The creation of the reference
layers was conducted in accordance with the steps previously
explained in Section 4.4. The reference layers were then
compared with the final classified raster.
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Figure 14: Classification accuracy assessment using SCP

Table 3 illustrates the results obtained from the accuracy
assessment using the Semi-Automatic Classification Plugin
(SCP) in QGIS. These results include user's accuracy (UA),
producer's accuracy (PA), Kappa coefficient, the number of
pixels for each reference layer per class (Ref. pixels), and the
mapped proportion for each class from the total classified raster
(Map prop.). To have a reliable model assessment, the number of
reference pixels per class (ground truth) was approximately
balanced across classes, as shown in Table 3.

Class Ref. Map UA PA | Kappa
(pixels) | prop. (%) (%)
Vegetation 2302 0.8375 | 98.78 |100.00| 0.93
Concrete 2307 0.1149 | 77.07 |100.00| 0.75
Dry sand 2433 0.0028 | 99.96 | 99.34 | 1.00
Wet sand 2306 0.0027 | 93.37 9.06 | 0.93
Metal barrels 2633 0.0006 | 99.01 3.61 0.99
Polymer 2220 | 0.0415 | 62.52 | 72.53 | 0.61

Table 3: Accuracy assessment metrics, Kappa coefficient, and
weight of each class.

As shown in Table 3, the classification proved reliable results
with (98.78% UA, 100% PA) for vegetation, (77.07% UA, 100%
PA) for concrete, and (99.96% UA, 99.34% PA) for dry sand.
Despite the high user’s accuracy that the model achieved for wet
sand (93.37%) and metal (99.01%), the model demonstrated
lower producer’s accuracy for these classes. With (9.06%) for
wet sand and (3.61%) for metal. This inconsistency between
user’s and producer’s accuracy is attributed to the rarity of wet
sand and metal classes within the entire classified raster when
using a balanced number of pixels per class (Stehman, 2012).
Additionally, the model shows moderate accuracy metrics for the
polymer class, with 63% UA and 73% PA. In general, the
overall model performance was 95% for overall accuracy and
0.82 for the Kappa coefficient. These high values for overall
accuracy and overall Kappa coefficient demonstrate strong
model performance.

6. CONCLUSION

The identification of illegal waste sites is a challenging task
worldwide. Nowadays, with advanced technology in remote
sensing, such as the use of Unmanned Aerial Vehicles UAVs
equipped with advanced sensors, it allows for effective waste
detection at a low cost. Moreover, the deployment of machine
learning algorithms in remote sensing tasks makes it feasible to
identify waste materials. The objectives of this study are based
on using thermal and multispectral images captured by UAVs to
detect the presence of waste materials, which enables the early
identification of illegal waste sites. Such identification provides
remarkable benefits for waste management, urban planning, and
decision-makers. The methodology implemented in this study
encompasses two steps: to have a preliminary waste materials
detection using thermal images and then apply open-source tools
to classify the waste materials relying on a machine learning
algorithm. To enhance the capability of thermal images, this
study utilised R script to convert the JPG thermal images to
GeoTIFF thermal images in which the value for each pixel
represents real surface temperature. The calibrated images are
then used to build a calibrated thermal orthophoto, which helps
in differentiating different waste materials present on the site.
The preliminary investigations provided a fundamental basis to
apply machine learning algorithms for classification tasks.
Regarding machine learning classification, this study proposed
the use of open-source tools, in particular Semi-Automatic
Classification Plugin from QGIS software. The implementation
of the Random Forest algorithm on multi spectral orthophoto
demonstrated reliable results, particularly when aggregating the
waste classes that share the same characteristics and spectral
signatures. This approach can enable authorities to achieve
effective waste management. Moreover, the model achieved
strong performance with an overall accuracy of 95% and a Kappa
coefficient of 0.82.
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