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ABSTRACT 

The presence of illegal waste materials is one of the most significant challenges for environmental management and human health. 

Therefore, their identification reduces environmental hazards significantly. Recently, Unmanned Aerial Vehicles (UAVs) equipped 

with advanced sensors and specialized machine learning algorithms allow for early identification of illegal waste dumping sites. In this 

scenario, is pivotal to fine-tuning image-based automatic detection and classification procedures with geo-intelligence data obtained in 

field acquisition campaign conducted in semi-controlled environment. This study aims to identify illegal waste dumping sites by 

considering the characteristics of waste materials. The testing activities aimed to evaluate a selected list of UAV payload sensors, and 

the data derived from them, including thermal and multispectral images, to assess their ability to be utilised for automatic waste 

detection. For this study, the design and testing of a trial site and relative UAV surveying campaign were conducted to mimic the 

potential presence of waste materials. Regarding the passive thermal response of the surveyed site, a convergence procedure was 

implemented through R script to calibrate the raw images. Through photogrammetric reconstruction and GNSS-RTK (Global 

Navigation Satellite System - Network Real Time Kinematic) control point surveying, multiband georeferenced orthomosaic products 

have been obtained. The calibrated thermal orthophoto was used for the preliminary identification of the waste materials, in particular 

distinguishing wet sand from dry sand. While the Semi-Automatic Classification Plugin in QGIS was applied to the multispectral 

orthophoto by utilising materials' spectral signatures to classify the different types of waste materials.  

1. INTRODUCTION

Environmental concerns regarding illegal waste sites have 

increased significantly in several countries (Jiang et al., 2024). 

Such concerns have been raised due to the hazardous impact on 

human health and the environmental problems associated with 

such phenomena (Quesada-Ruiz et al., 2019). Regarding 

environmental problems, illegal waste sites lead to soil 

contamination, reduced vegetation cover, air, and water pollution 

(Limoli et al., 2019). Concerning public health, a study has found 

an increased risk of stomach, liver, lung, and kidney cancers, as 

well as ischaemic heart diseases, associated with exposure to 

illegal waste sites (Fazzo et al., 2023). Besides human health and 

environmental issues, financial resources are needed to treat 

illegal waste sites (Seror and Portnov, 2018).  

The management of waste materials is typically based on 

grouping several types of materials that share the same physical 

and chemical characteristics into a single category. In terms of 

legislation regarding waste management in Europe, the European 

Directive amending Directive 2008/98/EC on waste materials 

imposes certain restrictions. These include a requirement for all 

Member States to prevent any form of improper and uncontrolled 

waste disposal. Furthermore, the directive emphasizes that, to 

enable effective recycling and site treatment operations, waste 

materials should be collected and dumped according to similar 

property categories defined by law enforcement, and they should 

not be mixed (Directive (EU) 2018/851, 2008). 

Thus, considering the previously mentioned effects, the early 

identification of an illegal waste site would lead to several 

benefits regarding the environment, human health, and minimal 

financial spending. That said, this study aims to support 

authorities in identifying illegal waste materials by classifying 

them based on their characteristics rather than individual items 

Nowadays, the advanced technology of Unmanned Aerial 

Vehicles (UAVs) equipped with thermal and multispectral 

sensors provides effective results with lower cost and high-

quality images  (Seror and Portnov, 2018; Ahmad and Eisma, 

2023; Chio and Lin, 2017). These make the deployment of UAV 

technology highly effective in detecting waste materials.  

2. LITERATURE REVIEW

In this section, the previous studies regarding the use of UAVs 

thermal and multispectral images in waste materials 

identification were reviewed. The concerns toward waste 

management and its impact on the environment and human health 

have resulted in several active research projects in this area. In 

addition, the development of remote sensing technologies in 

recent years, such as the use of UAV technology with its low cost 

and remarkably efficient thermal and multispectral sensors, 

enables improving the identification of waste materials by 

exploiting the spectral response of anthropic materials.  

In terms of thermal analysis, Tanda et al. (2020) utilised thermal 

images captured by UAV and the implementation of heat balance 

to quantify the methane flow rate to manage urban landfills. The 

study proposed the detection of biogas depending on distinct 

thermal prints from the surrounding area generated by anaerobic 

decomposition and biogas. The study was conducted at two 

Italian landfills, Mount Scarpino, Genoa, and Scala Erre, Sassari. 

This approach was effective and less time-consuming compared 

to ground-based screening tools and sensors for detecting biogas. 

Goddijn-Murphy et al. (2022) used a UAV-grade FLIR Vue Pro 

R 640 thermal camera to detect floating plastic litter, under 

various environmental conditions. The field results were 
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confirmed by additional laboratory experiments. The study was 

performed at Thurso Bay in the Pentland Firth, on the north coast 

of Scotland. The previous two studies consisted of fundamental 

concepts that enabled the identification of various waste 

materials using thermal images collected by UAVs. 

 

In addition to the above-mentioned studies, the study conducted 

by Jiang et al. (2024) overcame the limitations of DJI thermal 

images when they were used to create thermal orthophoto. The 

study proposed a calibration procedure called ThermoSwitcher 

system based on DJI thermal SDK, which allows for calibrating 

JPG thermal images to GeoTIFF images. The calibration of 

thermal images enables heterogeneous temperature distribution 

without losing temperature information. The study was 

conducted in Nanjing, China, to identify several land cover types 

using the surface temperature. The principle of thermal image 

calibration by converting JPG thermal images using DJI thermal 

SDK is also applied in our study. 

  

In recent years, the integration of remote sensing technologies 

and machine learning algorithms has increased significantly, 

especially for materials and land cover classification. Several 

studies have used the multispectral images collected by UAVs 

and machine learning algorithms to classify waste materials. 

  

Oberski et al. (2025) deployed several machine-learning 

algorithms to classify microplastic waste. The algorithms were 

implemented on multispectral images from UAV at a waste 

disposal Plant in northwestern Poland. Several machine learning 

algorithms were deployed. These include Random Forest, k-

nearest neighbour (k-NN), Maximum Likelihood, and Minimum 

Distance. The accurate result was obtained from k-NN.  Also, 

Cortesi et al. (2022) employed the same concept of UAV 

multispectral images and machine learning by applying a 

Random Forest algorithm to detect plastic objects. The study was 

conducted on the Arno River in Prulli (Reggello, Florence, Italy). 

The classification results showed high accuracy, with recall and 

accuracy equal to 98%. 

  

To summarise, several studies have used UAVs thermal and 

multispectral images to detect and identify the presence of waste 

materials. These studies relied on surface temperature variation 

in the case of thermal images and implemented machine learning 

algorithms on multispectral images for waste materials 

classification. However, fewer studies have integrated both types 

of images for waste material identification. This study proposed 

the integration of a calibrated thermal orthophoto and 

multispectral orthophoto to identify waste materials. The 

calibrated thermal orthophoto was used for a preliminary 

investigation of the waste materials. By deploying R script to 

convert JPG thermal images to GeoTIFF thermal images. For 

instance, using calibrated thermal orthophoto allows us to 

differentiate between dry sand and wet sand relying on surface 

temperature variation. Then the Random Forest algorithm is 

applied to classify waste materials. The machine learning 

classification technique proposed in this study is based on open-

source tool Semi-Automatic Classification Plugin in QGIS 

(Congedo, 2021), which enables simple classification methods 

without the need for coding expertise. 

 

3. STUDY AREA 

This study is strongly enhanced by the design and execution of a 

semi-controlled test executed at the Calvarina testing ex-military 

base in Verona, Italy, as shown in Figure 1. Two survey 

campaigns were executed in October 2023 and, July2024, where 

several waste materials were distributed to mimic the waste 

dumping sites.  

 

The waste materials were distributed to mimic the complexity of 

real waste sites. Therefore, various scenarios were explored, 

including different land cover types (open area, grassland, tree 

cover) and types of waste (tyres, wet sand, dry sand, and barrels), 

as shown in Figure 2. 

 

 
 

Figure 1: Showcase site Calvarina, Verona, Italy. 

 

 
 

Figure 2: Type of land cover and waste materials. 

 

4. MATERIALS AND METHOD 

This study proposes the following methodology, which 

encompasses two paths. Firstly, a preliminary investigation of the 

waste materials using a calibrated thermal orthophoto based on 

the object’s surface temperature. Secondly, a machine learning 

algorithm is applied on multispectral orthophoto by utilising the 

Semi- Automatic Classification Plugin (SCP) in QGIS software 

to classify the different types of waste materials based on the 

object's spectral signature.  

 

In this study, the workflow illustrated in Figure 3 was 

implemented, including data collection, data processing, 

analysis, and implementation of the machine learning algorithm. 
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Figure 3: Materials and method workflow. 

 

4.1  Data acquisition (thermal and MS images) 

The DJI Mavic M3T was used to collect thermal images.  It is 

equipped with an infrared sensor that operates in the range of 8-

14 μm, a resolution of 640x512 pixels, and has a temperature 

measurement accuracy of ± 2 ºC, which together provide high-

quality thermal images. Additionally, the M3T has temperatures 

measured ranging from -20 ºC to 150 ºC (DJI, 2025a). These 

highly technical characteristics made M3T ideal for spotting the 

temperatures of different waste materials. Multispectral images 

were captured using the DJI Mavic 3M, which has a multispectral 

camera with four bands: (Green (G): 560 ± 16 nm), (Red (R): 650 

± 16 nm), (Red Edge (RE): 730 ± 16 nm), and (Near-infrared 

(NIR): 860 nm ± 26 nm) (DJI, 2025b). Both thermal and 

multispectral images were acquired on the 27th of June 2024 on 

a sunny day. The difference between the two acquisitions was 

approximately 1 hour. The flight height was 65.1 m for thermal 

images and 65.8 m for multispectral images, covering 

approximately 0.0836 square kilometres. The data obtained from 

the two acquisitions comprised 201 thermal images and 400 

multispectral images. 

 

Moreover, nine artificial targets, Ground Control Points (GCPs), 

were well distributed in the study area to obtain a georeferenced 

orthophoto. The coordinates of the GCPs were measured using 

GNSS technique, implementing NRTK (Network Real Time 

Kinematic) solutions considering, the reference system WGS 84 

/ UTM Zone 32N. 

 

4.2 Data processing  

Regarding the creation of the calibrated thermal orthophoto, the 

JPG thermal images captured by DJI Mavic M3T must be 

converted to GeoTIFF images. To apply this convergence, the R 

script provided by (Kattenborn and Nelson, 2024) was 

implemented. The calibration process includes using DJI thermal 

SDK, creation of GeoTIFF images, and the extraction of 

metadata from the original images. 

  

Firstly, a radiometric calibration for each image was performed 

by deploying DJI thermal SDK (dji_irp.exe) (DJI, 2025c). The 

method encompasses the extraction of 32-bit floating-point 

temperature values and the use of the following parameters: 

(distance = 25 m) refers to the distance from the sensor to the 

targeted objects, (Humidity = 50%) depends merely on the 

surrounding environment of the site, (Emissivity = 0.95), 

and (Reflection temperature = 25 ºC) (DJI, 2025c). The 

parameters used were the default parameters (DJI, 2025c). 

 

Secondly, the ijtiff raster from R packages was used to obtain 

GeoTIFF images in 32-bit float format using the results obtained 

from the first step  (Kattenborn and Nelson, 2024).  

 

Thirdly, by implementing exifr from R packages, all the 

necessary EXIF metadata, which includes (GNSS images 

coordinate, camera settings, focal length, and sensor orientation), 

were then obtained from the original thermal images and applied 

to converted GeoTIFF images (Kattenborn and Nelson, 2024). 

The results obtained from this convergence procedure were 

GeoTIFF thermal images, where each pixel value represents a 

real temperature value. These calibrated thermal images are then 

used to create a calibrated thermal orthophoto covering the entire 

study area.  

 

The Agisoft Metashape version 2.0.3 was utilised to build the 

calibrated thermal orthophotos (Agisoft LLC, 2023). The 

principle of creating the orthophoto in Agisoft Metashape is 

based on three main concepts: image alignment using aerial 

triangulation (AT) and bundle block adjustment (BBA), in which 

the software matches the common images to generate tie points 

(Agisoft LLC, 2023). The calibrated thermal orthophoto obtained 

has a GSD of 9.19 cm/pix.  

 

A multi-spectral orthophoto was generated using DJI Terra 

version 4.1.0 (DJI, 2024d). The result from DJI Terra consists of 

four orthophotos (green, red, red edge, and NIR) with a GSD of 

2.61 cm/pix. These four bands are then imported into QGIS 

software to be combined into a single orthophoto containing the 

fourth multi-spectral bands to classify the waste materials using 

(SCP).  

 
 

Figure 4: Multispectral orthophoto created using DJI terra. 

 

4.3 Waste materials classification using Random Forest 

algorithm (SCP) plugin in QGIS 

The semi-classification Plugin (SCP) is an open-source plugin 

introduced by Luca Congedo. SCP aims to provide an automatic 

tool for raster images to enable land cover classification in a 

simple way. It uses Remotior Sensus, a Python package that 

allows imaging processes and GIS data. The SCP uses machine 

learning algorithms such as Maximum Likelihood, Random 

Forest, Maximum Distance, and Support Vector Machine 
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(SVM). This study used Random Forest to classify waste 

materials (plastic sheets, car tyres, metal barrels, dry sand, and 

wet sand).  

 

The selection of the Random Forest algorithm is based on the 

robust and effective results it provides when applied to MS 

images (Akar and Güngör, 2012; Guo et al., 2022; Iordache et al., 

2022).  The classification deployed in this study is pixel-based, 

depending on aggregating classes that share similar chemical 

characteristics and spectral signatures. Since the classification 

using Random Forest within the Semi-Automatic Classification 

Plugin (SCP) is based on the spectral signature, it is ideal for the 

objectives of this study (Congedo, 2021). 

 

The process of waste materials classification using the Random 

Forest algorithm within the Semi-Automatic Classification 

Plugin (SCP) involves several steps. These include band sets 

definition, training samples, and classification refinement. 

 

To begin with, the band sets were defined considering four MS 

bands: red, red edge, green, and NIR.  Then the centre 

wavelength for each band was inserted. In addition, a virtual 

raster was created to obtain a single orthophoto (Congedo, 2021).  

  

Following the band sets, the training samples are created using 

the region of interest (ROI). ROI are temporary polygons made 

by the SCP using a region-growing algorithm or drawn manually. 

The purpose of drawing ROIs is to define the spectral 

characteristics of the different classes on the multispectral 

orthophoto. The preliminary investigation provided by the 

calibrated thermal orthophoto enables better selection for the 

ROIs. ROIs are then saved as training input with spectral 

signatures of the exact polygons. Notice that the classification is 

always based on spectral signatures. The ROIs are defined 

considering two levels: the first level is the Macro class ID, and 

the second level, a subset of the Macro class ID, is the class ID 

level (Congedo, 2021). The following ROIs were defined: 

pavement, sand, wet sand, metal barrels, tyres, vegetation, plastic 

sheets, and concrete (see Figure 5). 

 

 
 

Figure 5: Definition of ROIs in MS orthophoto using SCP. 

 

Once the training samples (ROI) were defined, the first 

classification was performed using the Random Forest algorithm, 

considering 60 trees. Also, the cross-validation was deployed, 

which allows for a data partitioning resampling technique 

through the cross-validation method. K-fold cross-validation was 

applied to the training set, which divides the training data into K 

equally sized folds. Each fold was used as a validation set, while 

the remaining K-1 folds were used as the training set (Kuhn and 

Silge, 2022). This approach would increase classification 

accuracy.  

 

To refine the classification results, the spectral signature for each 

class was plotted using SCP, as shown in Figure 6. The spectral 

signature analysis revealed the following: pavement and the 

concrete of the roof building exhibited similar spectral trends in 

the NIR band. In addition, plastic sheets and car tyres have shown 

a closer trend in Red Edge and NIR bands. The band confusion 

among the different classes is more likely to be linked to 

similarities in chemical composition between the different 

classes. Thus, for classification refinement, materials with 

similar chemical compositions are suggested to be merged into a 

single class. For instance, plastic sheets and car tyres (polymer 

class), pavement, and concrete roof buildings (concrete class). 

Moreover, additional regions of interest were drawn, as shown in 

Figure 7, for pavement and GCPs as polymer classes to achieve 

better classification. 

 

 
Figure 6: Materials spectral signature in four MS bands using 

SCP. 

 

In addition to the classes merged, which had previously applied, 

the increased number of trees was also implemented to enable the 

algorithm for effective classification. Using 70 trees instead of 

the 50 trees that were previously applied, the classification 

accuracy improved significantly.  

 

 
 

Figure 7: Additional ROIs to refine classification accuracy 

using SCP. 

 

4.4 Classification accuracy assessment  

The accuracy assessment of the Random Forest (RF) 

classification was made by comparing the polygon test set layers 

(reference layers). Which were converted into a raster format 

using the original orthophoto, with the final classified raster. A 
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polygon shapefile containing the field "MC ID" (matching the 

classification scheme) was added. The MC ID values in the test 

layers were assigned to match those used during the classification 

to ensure a valid accuracy assessment. To assess the model's 

performance, we computed the accuracy assessment metrics for 

each class, including the user's accuracy (UA), the producer's 

accuracy (PA), and the Kappa coefficient. Moreover, we 

computed the overall accuracy and the overall Kappa coefficient 

(Congedo, 2021). 

 

The calculation of accuracy assessment metrics is based on the 

area-based error matrix, which enables us to have an unbiased 

model assessment. The error-based matrix is a cross-tabulation 

matrix derived from the pixel-based confusion matrix shown in 

Table 1. The main diagonal of the pixel-based confusion matrix 

represents the number of pixels from the ground truth correctly 

classified as class (i) (Olofsson et al., 2014). 

 

 Ground truth 

 Class 1 Class 2 ….. Class k Total 

Class 1 P11 P12 ….. P1k P1+ 

Class 2 P21 P22 ….. P2k P2+ 

….. ….. ….. ….. ….. ….. 

Class k  Pk1 Pk2 ….. Pkk Pk+ 

Total  P+1 P+2 ….. P+k n 

Table 1: Pixel-based confusion matrix. 

 

To obtain the area-based error matrix, each cell from the pixel-

based confusion matrix should be transferred using equation (1). 

 

𝑎𝑖𝑗 =
𝑃𝑖𝑗

𝑃𝑖+
𝑤𝑖         (1) 

 

where  aij = area- based error cells 

 Pij = correctly classified pixels for class (i)                         

 Pi+ = row total  

 wi = the proportion of total raster area as class (i) 

 

 Ground truth 

 Class 1 Class 2 ….. Class k Total 

Class 1 a11 a12 ….. a1k a1+ 

Class 2 a21 a22 ….. a2k a2+ 

….. ….. ….. ….. ….. ….. 

Class k ak1 ak2 ….. ak3 ak+ 

Total a+2 a+2 ….. a+k n 

Table 2: Area-based error matrix. 

 

The accuracy assessment metrics, including the user's and the 

producer's accuracy for each class as well as the overall accuracy, 

are then calculated as follows: 

As shown in equation (2), the user's accuracy is the ratio between 

the correct classified samples for class (i) and the row total. 

 

𝑈𝑖 =
𝑎𝑖𝑖

𝑎𝑖+
         (2) 

 

The producer's accuracy, as shown in equation (2), is the ratio 

between the correctly classified samples for class (i) and the total 

column. 

 

𝑃𝑖 =
𝑎𝑖𝑖

𝑎+𝑖
         (3) 

The overall accuracy is calculated as shown in equation (4), 

which is the ratio between the sum of all the classes that are 

correctly classified in the sample and the total of all samples (n) 

(Olofsson et al., 2014). 

  

𝑂𝑖 = ∑
𝑎𝑖𝑖

𝑛

𝑘
𝑖=1       (4) 

 
5. RESULTS AND DISCUSSION  

In this section, the results of this study are introduced, starting 

with a calibrated thermal orthophoto to conduct a preliminary 

investigation of waste materials. In addition, waste materials 

classification was obtained using the Random Forest algorithm 

by deploying SCP on a multispectral orthophoto. The 

classification was supported by the results from the calibrated 

thermal orthophoto. The results of the waste classification were 

obtained by applying the following steps: initial classification, 

classification enhancement, final classification, and classification 

accuracy assessment.  

 

5.1 Calibrated thermal orthophoto  

The calibrated thermal orthophoto, as shown in Figure 8, was 

obtained after converting JPG thermal images to GeoTIFF 

images using the R script. The calibrated orthophoto provides 

valuable insight for the preliminary investigations of the different 

types of waste materials.  

 
 

Figure 8: Calibrated thermal orthophoto created using Agisoft 

Metashape. 

 

As shown in Figure 9, several waste materials were visible based 

on surface temperature. These include plastic sheets placed 

below the sand dumping, which can be easily noticed on the 

pavement due to differences in surface temperature. Dry and wet 

sand were also visible because wet sand exhibits lower 

temperature values than dry sand. The calibrated thermal 

orthophoto allows for other materials to be differentiated, such as 

metal barrels and car tyres. 
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Figure 9: Preliminary investigations using the calibrated thermal 

orthophoto 

 

5.2 Waste materials classification on MS orthophoto using 

SCP 

5.2.1 Initial classification 

Regarding the multispectral classification, eight classes were 

considered in the initial classification, including vegetation, 

pavement, concrete, plastic sheet, dry sand, wet sand, car tyres, 

and metal barrels.  As shown in Figure 10, the initial 

classification provided accurate results regarding vegetation, 

even for the small vegetation patches on the roof of the building. 

However, small regions were misclassified due to the presence of 

shadows. The effect of shaded areas is clearly visible in Figure 

10 and 11, where some vegetation and the shaded pavement area 

were misclassified as car tyres due to the low multispectral 

reflectance. These are highlighted by the white rectangles in 

Figure 10 and 11.   

 

Moreover, the algorithm was unable to distinguish between 

pavement and concrete buildings, as shown by the red rectangles 

in Figure 10. This misclassification is linked to the similarity in 

chemical material composition, which leads to similar spectral 

signatures. Also, the roof membrane was not accurately visible, 

as shown by the yellow rectangle in Figure 10. 

  

 
 

Figure 10:  Initial materials classification using Random Forest 

in SCP. 

 

Figure 11 shows the correct classification of the sand dumps, 

where wet and dry sand were clearly distinguishable, as were 

metal barrels. However, mixed class issues were observed in car 

tyres where plastic sheets class were also assigned to some car 

tyres as shown by the pink rectangle in Figure 10. 

 

 
 

Figure 11: Initial materials classification using Random Forest 

in SCP 

 

5.2.2 Classification refinement  

The inconsistency in some of the classes obtained from the initial 

classification required further investigation concerning the 

spectral signature for each class. The classification aims to 

categorise waste materials based on their similar characteristics. 

Therefore, the aggregation of classes was implemented based on 

material characteristics and spectral signature, as explained in the 

material and method section. 

 

Nevertheless, despite the significant enhancement in the refined 

classification, the shaded areas still lacked correct classification, 

which can be considered a limitation for such analysis (see Figure 

12 and Figure 13).   

 

 
 

Figure 12: Final materials classification using Random Forest in 

SCP. 
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Figure 13: Final materials classification using Random Forest in 

SCP. 

 

5.2.3 Classification accuracy assessment  

The implementation of the classification accuracy assessment 

was deployed using the reference layers shown in Figure 14. 

These reference layers represent the ground truth regions selected 

from the original MS orthophoto. The creation of the reference 

layers was conducted in accordance with the steps previously 

explained in Section 4.4. The reference layers were then 

compared with the final classified raster. 

 

 
 

Figure 14: Classification accuracy assessment using SCP 

 

Table 3 illustrates the results obtained from the accuracy 

assessment using the Semi-Automatic Classification Plugin 

(SCP) in QGIS. These results include user's accuracy (UA), 

producer's accuracy (PA), Kappa coefficient, the number of 

pixels for each reference layer per class (Ref. pixels), and the 

mapped proportion for each class from the total classified raster 

(Map prop.). To have a reliable model assessment, the number of 

reference pixels per class (ground truth) was approximately 

balanced across classes, as shown in Table 3. 

 

Class Ref. 

(pixels) 

Map   

prop. 

UA 

(%) 

PA 

(%) 

Kappa 

Vegetation 2302 0.8375 98.78 100.00 0.93 

Concrete 2307 0.1149 77.07 100.00 0.75 

Dry sand 2433 0.0028 99.96 99.34 1.00 

Wet sand 2306 0.0027 93.37 9.06 0.93 

Metal barrels 2633 0.0006 99.01 3.61 0.99 

Polymer 2220 0.0415 62.52 72.53 0.61 

Table 3: Accuracy assessment metrics, Kappa coefficient, and 

weight of each class. 

As shown in Table 3, the classification proved reliable results 

with (98.78% UA, 100% PA) for vegetation, (77.07% UA, 100% 

PA) for concrete, and (99.96% UA, 99.34% PA) for dry sand.  

Despite the high user’s accuracy that the model achieved for wet 

sand (93.37%) and metal (99.01%), the model demonstrated 

lower producer’s accuracy for these classes. With (9.06%) for 

wet sand and (3.61%) for metal. This inconsistency between 

user’s and producer’s accuracy is attributed to the rarity of wet 

sand and metal classes within the entire classified raster when 

using a balanced number of pixels per class (Stehman, 2012). 

Additionally, the model shows moderate accuracy metrics for the 

polymer class, with 63% UA and 73% PA.   In general, the 

overall model performance was 95% for overall accuracy and 

0.82 for the Kappa coefficient. These high values for overall 

accuracy and overall Kappa coefficient demonstrate strong 

model performance.  

 

6. CONCLUSION  

The identification of illegal waste sites is a challenging task 

worldwide.  Nowadays, with advanced technology in remote 

sensing, such as the use of Unmanned Aerial Vehicles UAVs 

equipped with advanced sensors, it allows for effective waste 

detection at a low cost.   Moreover, the deployment of machine 

learning algorithms in remote sensing tasks makes it feasible to 

identify waste materials. The objectives of this study are based 

on using thermal and multispectral images captured by UAVs to 

detect the presence of waste materials, which enables the early 

identification of illegal waste sites. Such identification provides 

remarkable benefits for waste management, urban planning, and 

decision-makers. The methodology implemented in this study 

encompasses two steps: to have a preliminary waste materials 

detection using thermal images and then apply open-source tools 

to classify the waste materials relying on a machine learning 

algorithm. To enhance the capability of thermal images, this 

study utilised R script to convert the JPG thermal images to 

GeoTIFF thermal images in which the value for each pixel 

represents real surface temperature. The calibrated images are 

then used to build a calibrated thermal orthophoto, which helps 

in differentiating different waste materials present on the site. 

The preliminary investigations provided a fundamental basis to 

apply machine learning algorithms for classification tasks.  

Regarding machine learning classification, this study proposed 

the use of open-source tools, in particular Semi-Automatic 

Classification Plugin from QGIS software. The implementation 

of the Random Forest algorithm on multi spectral orthophoto 

demonstrated reliable results, particularly when aggregating the 

waste classes that share the same characteristics and spectral 

signatures. This approach can enable authorities to achieve 

effective waste management. Moreover, the model achieved 

strong performance with an overall accuracy of 95% and a Kappa 

coefficient of 0.82. 
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