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Abstract

Identifying emergent aquatic vegetation (EAV) species is important to monitor environmental changes and support in decision-making.
With the advent of uncrewed aerial vehicle (UAV), it has been possible to acquire high resolution images and assist in this task. At the
same time, the high level of detail of these images can be considered noise for some segmentation algorithms and testing different
smoothing and subsampling variations can be very relevant. Hence, the aim of this study is to analyse the performance of three
segmentation algorithms (region growing, SLIC superpixel and watershed) to generate “homogeneous” regions in high resolution
images, considering blur and scale change effects. To do this, images of a lake impacted by EAV were captured using a multispectral
camera on board of UAV with 8 mm ground sample distance. After image processing, an orthomosaic was produced and three clippings
were extracted from it to be segmented and tested empirically with variations of subsampling (1 cm, 1.6 cm, 2 cm, and 3 cm) and
standard deviation smooth filter application (c = 2, 4, and 8). The results showed that region growing and watershed algorithms are
the most affected by high spatial resolution, and greatly benefits from the smoothing and subsampling applied, i.e., reducing the amount
of detail, while superpixel algorithm created more consistent and uniform results, especially after smoothing, as evidenced by the

quantitative evaluation based on segment entropy, characterized by kurtosis.

1. Introduction

Image segmentation is a fundamental technique used to split an
image into relatively homogeneous and meaningful regions
(Blaschke, 2010; Hossain and Chen, 2019). These regions, which
represent semantically significant groups of pixels, become
objects of image analysis (Blaschke, 2010) and can correspond
to various land cover types, such as vegetation, water bodies,
urban infrastructures, agricultural area etc.

Object based image analysis (OBIA) appeared in the remote
sensing scenario with the advent of high spatial resolution
imagery. In these cases, the pixel size is often smaller than the
object of interest, requiring a processing step to make the image
content more interpretable (Blaschke et al., 2014). OBIA consists
of two main steps: segmentation, which groups pixels into
meaningful objects, and classification, which assigns these
objects to specific categories (Hossain and Chen, 2019).

Many segmentation algorithms originate from computer vision
applications, including region growing (Bins et al., 1996),
superpixel-based methods (Achanta et al., 2012), and watershed
segmentation (Inglada and Christophe, 2009; Kornilov and
Safonov, 2018). These algorithms are commonly used in remote
sensing applications, as pointed out by Hossain and Chen (2019).

Region growing is known for its simplicity, grouping pixels that
are spatially close and have similar intensity values (Espindola et
al., 2006). Superpixel methods, such as simple linear iterative
clustering (SLIC), offer an efficient way to generate compact and
boundary-adherent segments, making them popular due to their
computational efficiency and accuracy (Achanta et al., 2012).
The watershed algorithm, based on mathematical morphology,
provides precise boundary adherence and is commonly used for
image segmentation (Sun and He, 2008).

Different segmentation algorithms have been applied in aquatic
vegetation studies for detection, mapping, classification, and
monitoring. In this context, many recent studies have employed
semantic segmentation, a deep learning-based approach, using
satellite or uncrewed aerial vehicle (UAV) imagery (Liu et al.,
2022; Alagialoglou et al., 2023; Yu et al., 2024). Specific
research has also focused on submerged aquatic vegetation
(SAV) (Brooks et al. 2022; Alagialoglou et al., 2023; Wang et
al., 2023). However, fewer recent studies have explored
segmentation techniques for emergent aquatic vegetation (EAV)
using non-deep learning approaches. For example, Szabd et al.
(2024) applied a region growing algorithm to map aquatic
vegetation, including EAV. Older studies, such as Benjamin et
al. (2021) and Zhou et al. (2021), employed multiresolution
segmentation algorithm, while Bolch et al. (2021) used a large-
scale mean-shift algorithm, all aiming to identify and map
different EAV types.

Both EAV and SAV are rooted to the substrate, EAV
characterizes for being partially under water and remains
growing above water’s surface, SAV are completely under water
(Ashworth, 2023). These plants are important in the dynamics
and biodiversity of aquatic ecosystems. However, uncontrolled
growth can have negative environmental consequences, as is the
case with the invasive and rapidly expanding water hyacinth
(Eichhornia crassipes), which threatens ecosystem services and
multiple water resource uses (Singh et al., 2020; Mgingwana et
al., 2024). With the advent of images acquired by UAV,
identifying EAV species has become highly feasible and
important for decision-making, management, and water resource
protection.

High spatial resolution imagery provides a rich level of scene
detail, but this can also introduce challenges for segmentation.
Some algorithms may interpret fine details as noise, leading to
over-segmentation, where too many small, fragmented segments
are created. On the other hand, insufficient detail can result in
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under-segmentation, where meaningful objects are not properly
delineated. Thus, this study aims to analyse the performance of
three segmentation algorithms (region growing, superpixel, and
watershed) when applied to high resolution images containing
EAV, using kurtosis of entropy values to assess a normal
probability distribution, i.e., internal homogeneity of the
segments. Moreover, the impact of scale variations and
smoothing effects will be examined, as these pre-processing
adjustments can enhance the results of different segmentation
algorithms.

2. Materials and method

Multispectral images of a reservoir with EAV occurrence were
acquired by a Sony Alpha 6000 camera model, with effective
focal length 25 mm, 4 bands (450 nm: blue, 550 nm: green, 650
nm: red, and 850 nm: near-infrared) ina 2512 x 3976 pixels frame
and pixel size 0.0039 mm. The camera was on board of a UAV,
with a flight height of 50 m. As a result, an orthomosaic was
obtained with a ground sample distance (GSD) of 8 mm and three
clippings (images) were extracted from it, containing three
species of EAV to be segmented: water hyacinth (Eichhornia
crassipes), alligator weed (Alternanthera philoxeroides) and
cattails (Typha domingensis).

The approach applied in the study consisted of obtaining three
image clippings with EAV, which were analysed at four
subsampling levels (scale change): 1 cm; 1.6 cm; 2 cm; and 3 cm.
The bilinear interpolation was used due to its smoother visual
aspect, without the geometric discontinuities of the nearest-
neighbour, and computationally faster than cubic convolution
(Roy and Dikshit, 1994; Arif and Akbar, 2005). Additionally, the
clippings were also smoothed by the Gaussian filter with standard
deviation (o = 2, 4 and 8), assumed its characteristic of not only
reducing noise, but effectively blurring the image (Hossain and
Chen, 2019). Both spatial resolution and standard deviation were
defined empirically.

In the following step, three segmentation algorithms were tested
on the three clippings: region growing, superpixel, and
watershed. The region growing algorithm was performed in
Spring 5.5.6 software (Bins et al., 1996) by defining parameters
of similarity and area threshold. The superpixel algorithm was
applied with Python scikit-image 0.18.3 library (Van Der Walt et
al., 2014), which only requires setting the k parameter. Finally,
the Watershed algorithm was applied using the QGIS 3.20.3-
Odense software, integrated with the Orfeo ToolBox 7.3.0 library
(Inglada and Christophe, 2009). The depth threshold and flood
level parameters were defined to control the segmentation
process.

The quality of segmentation was evaluated with the calculation
of entropy for all the segments throughout bands (4) and
clippings (3), summarized by kurtosis. In this context, entropy
represents the degree of complexity or heterogeneity within
segments (Long and Singh, 2013) and was calculated with
Python scikit-image 0.25.2 library (Van Der Walt et al., 2014).
In statistical terms, kurtosis measures the shape of the tails of a
probability distribution (Hyvérinen and Oja, 2000; Du and
Kopriva, 2008). It can be either positive (Ieptokurtic) or negative
(platykurtic), while a normal distribution (Gaussian) has zero
kurtosis. This metric was computed with Python scipy 1.15.3
(Virtanen et al., 2020).

3. Experiments and results

The experiments are organized and presented by algorithm. To
better illustrate the clippings, Figure 1 shows clipping 1 (Figure
1a) that incorporate water hyacinth and alligator weed; Clipping
2 (Figure 1b) includes water hyacinth and cattails; and Clipping
3 (Figure 1c) features alligator weed and cattails. Thus, each
clipping consists of two EAV species to be separated.

Figure 1. Clippings: (a) 1, (b) 2, and (c) 3.
3.1 Experiment 1: Region growing

The region growing algorithm requires two parameters to be set:
similarity and area threshold. Empirical observations showed that
setting similarity values below 50 led to over-segmentation, i.e.,
creating excessive regions representing details within the same
species coverage. Conversely, values above 80 resulted in under-
segmentation, producing an insufficient number of segments.

For the area threshold, a range of 50 to 200 was established,
because setting values outside this limit also caused the effects of
over-segmentation and under-segmentation, without improving
segmentation quality itself. However, defining a range does not
completely eliminate these effects, it only reduces their
occurence. Among the pairs of intervals tested, segmentation
with parameters 70/200 (similarity/area) configuration generated
the fewest number of segments across the three clippings and was
selected for comparison with segmentation using subsampling
and smoothing (Figures 2 and 3).

From the tests, it was possible to see that setting lower ranges
created too many segments, both for similarity and area
threshold, as the requirement to form a region is greater. Thus,
more segments were formed in the 0.8 cm and 1 cm subsampled
images due to the greater spectral variability response in space.
Figures 2 and 3 show a tendency for segments to decrease as the
level of detail decreases, which indicates, as expected, that
subsampling and smoothing detect less detail in the image. When
comparing smoothing and subsampling, smoothing generated
approximately 70% fewer segments than subsampling at the first
level. At higher levels, the number of segments in both
approaches tended to converge.
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Figure 2. Correlation between subsampling and number of
segments created using region growing algorithm.
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Figure 3. Correlation between smoothing and number of
segments created using region growing algorithm.

Since the decrease in spatial resolution creates fewer segments, it
is possible to note that region growing algorithm is more sensitive
to the level of detail 0.8 cm and 1 cm images than the other levels.
In addition, defining the same thresholds for the three clippings
generated a different number of segments. This behaviour may
be attributed to the unique characteristics of each region
(clippings), given that each one has different EAV species,
spatially arranged in distinct patterns.

For clipping 1, the 3 cm segmented subsampling effectively
separated the two EAV species (Figure 4a), while the 0.8 cm and
1 cm subsamplings led to over-segmentation. A similar pattern
occurred for clippings 2 and 3, however, in clipping 2, only the 2
cm subsampling (Figure 4b) produced a consistent segmentation.
In clipping 3, none of the segmented subsamplings was able to
delineate the species satisfactorily, although the 3 cm
subsampling (Figure 4c) came closest.

It can be seen the delineation was flawed in all the clippings,
since it included individuals that did not belong to the same
species coverage, as well as leaving some of them out due to the
entanglement between species. In general, clipping 3 apparently
obtained less efficient results in separating EAV, likely due to its
complex spatial organization.

Figure 4. Best delineate segmentations of EAV species in each
clipping with region growing algorithm, using the following
parameters: Similarity: 70/Area: 200. Subsampling segmentation
of (a) 3cm, (b) 2 cmand (c) 3 cm, respectively. All the clippings
in the background are at the original level (0.8 cm).

Smoothing did not generate any groupings that visually
corresponded to the separation of EAV species, indicating that
the subsampling was more effective in this case. These results
suggest that the region growing algorithm is sensitive to
illumination changes and significantly influenced by spatial
resolution.

3.2 Experiment 2: Superpixel (SLIC)

The SLIC algorithm requires defining the parameter k, number
of segments, and optionally adjusting m, compactness, which
influences the shape. For compactness, the higher m value, the
more regular and rigid the segments will be, and the lower, the
more irregular and flexible will appear.

Regarding the k parameter, it is important to note that it
represents the approximate number of segments to be generated.
Experiments indicated that approximately 50 segments were
sufficient to cover a type of EAV in each segment. Higher values
led to excessively small segments, especially when considering
plant clusters. Based on these findings, the parameters 10/50
(compactness/number of segments) were used to compare the
segmentation across subsampling and smoothing techniques.

The superpixel algorithm maintained a consistent number of
segments generated in all clippings for all levels of subsampling
and smoothing. This contrasts with the region growing algorithm,
where segmentation varied with pixel size. Visually, the
subsamples segmentation did not show significant differences
with the variation in pixel size, compared to region growing
algorithm. There are subtle changes in the edges as the pixel size
increases, as these contours become more irregular. Despite this,
the overall segment shapes remained stable across subsampling
levels.

To compare the clippings, Figures 5a-c used the 3 cm
subsampling segmentation. Clipping 1 (Figure 5a) created
segments containing a set of the same EAV species in the upper
left and another species in the lower right of the image, while in
the central area exhibited a mixed transition zone. Compared to
clipping 1, clippings 2 (Figure 5b) and 3 (Figure 5c)
demonstrated a clearer separation of the two species, with less
mixing in their transition regions. However, in clipping 3, the
spatial organization of EAV resulted in greater spacing between
plants, leading to segments containing fewer plants and more
shadow areas. For subsampling, it was apparently more
challenging to separate the species in clippling 1, as they are
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visually more similar when compared to the species in clippings
2 and 3.

Figure 5. Comparison of 3 cm subsamples in clippings (a) 1, (b)
2 and (c) 3 segmented using superpixel algorithm, with the
following parameters: Compactness: 10/Quantity of segments:
50. All the clippings in the background are at the original level
(0.8 cm).

The same pattern is also evident in Figures 6a-c on smoothing
process, i.e., the segments generated were able to contour and
separate the EAV species better in clippings 2 and 3, which
occurred in subsampling as well. However, a key distinction in
smoothing is that segment edges become softer and shapes more
flexible, a characteristic that is accentuated as the degree of
smoothing increases, reducing the rigidity of the segments
generated in the subsampling.

Figure 6. Comparison of clippings (a) 1, (b) 2 and (c) 3
segmented with different smoothing level using superpixel
algorithm, with the following parameters: Compactness:
10/Quantity of segments: 50. (a) 6=2; (b) 0=4; (c) c=8. All the
clippings in the background are at the original level (0.8 cm).

Smoothing stood out for superpixel algorithm, as visually the
segments are better defined in edgewise. In contrast, subsampling
segmentation (Figures 5a-c) retained highly detailed contours,
which did not significantly contribute to species separation
quality. To demonstrate this behavior, Figure 7 highlights the
same segment of clipping 3 in subsampling and smoothing.
Notably, the excessive edge details in Figure 7a do not add any
relevant information compared to Figure 7b. Thus, smoothing
had more consistent results for the superpixel algorithm.
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Figure 7. Comparison of the same segment in (a) subsampling (3
cm) and (b) smoothing (c=8) of clipping 3 for superpixel
algorithm, with the following parameters: Compactness:
10/Quantity of segments: 50. All the clippings in the background
are at the original level (0.8 cm).
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3.3 Experiment 3: Watershed

The Watershed algorithm requires tuning of key parameters,
particularly the depth threshold and flood level, which are critical
to its performance. Given its inherent tendency for over-
segmentation, multiple tests were conducted, yet most results
remained highly segmented. However, for comparison purposes,
segmentation with parameters 0.01/0.3 (depth threshold/flood
level) generated the fewest segments for the three clippings and
was used to compare subsampling and smoothing segmentations
(Figures 8 and 9).
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Figure 8. Correlation between subsampling and number of
segments created using watershed algorithm.
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Figure 9. Correlation between smoothing and number of
segments created using watershed algorithm.

Watershed behaviour shows similarity to region growing
algorithm (Figures 8 and 9), since reducing the level of detail also
reduces the number of segments formed. The decrease was
approximately 75% from the first to the last level of subsampling,
and by 85% from the first to the last level of smoothing. The main
difference between the two algorithms is the number of segments
generated, since region growing produced 97% and 98% fewer
segments at the first level of subsampling and smoothing,
respectively, compared to the same levels in the watershed
algorithm.

Results for subsampling segmentation were inconsistent, as the
algorithm detected excessive detail, causing the effect of over-
segmentation. However, subsampling contributes significantly to
reducing the number of segments, as does smoothing.

The first two levels of smoothing maintained the effect of over-
segmentation (Figures 10a-b). However, the third and highest
level (6=8) generated consistent results, effectively delineating
EAV species and forming larger segments, as exemplified by
Figure 10c, in clipping 3. Therefore, smoothing stood out
compared to subsampling for watershed algorithm, which proved
to be more affected by the high level of detail than the region
growing algorithm.

Figure 10. Comparison of clippings (&) 1, (b) 2 and (c) 3
segmented with different smoothing levels using watershed
algorithm, with the following parameters: Depth threshold:
0.01/Flood level: 0.3. (a) 0=2; (b) 0=4; (c) c=8.

3.4 Evaluation of quality segmentation

The quantitative results used to evaluate the quality of the
segmentation are presented in Tables 1 to 3, one for each

clipping, comparing the performance of the three segmentation
algorithms. For this evaluation, the optimal result for each
algorithm was selected: for region growing, the 3 cm
subsampling segmentation; for superpixel, the smoothing
segmentation with a standard deviation of 4; and for watershed,

the smoothing segmentation with a standard deviation of 8.

Region .

Entropy - band growing Superpixel | Watershed
Entropy - R -2 -0.86675 4.02562
Entropy - G -2 0.54782 4.45903
Entropy - B -2 -0.51049 0.55407

Entropy - NIR -2 -0.45068 4.48288

Table 1. Summarization of entropy for clipping 1 using kurtosis.
Entropy - band Region Superpixel | Watershed
growing
Entropy - R 7.14877 -0.66345 4.76301
Entropy - G 7.06009 -0.40961 4.29834
Entropy - B 0.85005 -0.92953 -0.39675
Entropy - NIR 7.90339 -1.03827 2.83454
Table 2. Summarization of entropy for clipping 2 using kurtosis.
Entropy - band Regl_o " Superpixel | Watershed
growing
Entropy - R -1.66601 -0.52187 8.70199
Entropy - G -1.45591 -0.79042 7.06248
Entropy - B -1.83116 -0.44127 2.02572
Entropy - NIR -0.71617 -0.50625 4.94880

Table 3. Summarization of entropy for clipping 3 using kurtosis.

Both region growing and watershed algorithms demonstrated
overall kurtosis that indicated different entropy values between
segments, resulting in a non-Gaussian distribution. Region
growing generated fewer and bigger segments (Figure 4), in
contrast, watershed produced more and smaller ones (Figure 10).

These characteristics must have significantly impacted the results
of kurtosis once to enclose bigger regions adds greater variability
in pixel values, leading to a higher internal entropy, which means
less homogeneous segments. Similarly, smaller regions tend to
produce highly homogeneous segments with low internal
entropy. However, because they often represent distinct scene
details, the entropy values vary substantially across segments.

If kurtosis differs substantially from zero, it demonstrates fewer
extreme values and more uniform segments in the image context.
In all the clippings, kurtosis of four bands for superpixel entropy
were closer to zero, which leads to a normal (Gaussian)
distribution, meaning a higher internal homogeneity in this study.

4, Conclusions

The results obtained from the three segmentation algorithms
showed that region growing and watershed are the most sensitive
and affected by high spatial resolution, with over-segmentation
being itself one of the limitations of watershed, which produced
the largest number of segments, meanwhile superpixel algorithm
was less impacted by the same factor and responded better in
smoothed clippings. Overall, all of them improved their
performance in images pre-processed with subsampling and/or
smoothing.

It is important to highlight that the excessive scene detail, due to
the high spatial resolution, can interfere on the identification of
EAV species successfully, which leads to the importance of
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simulations and controlled variations in spatial detail using
subsampling and smoothing to optimize segmentation.

Additionally, tunning the algorithm parameters is a challenging
step, especially for watershed due to its tendency for over-
segmentation. Depending on the values set for the input
parameters, many scene details have been segmented, such as
leaves, shadows, and other minor elements.

On the other hand, the superpixel algorithm generates a fixed
number of segments for all clippings, both for subsampled and
smoothed versions. This is a feature completely different from
the other two, which rely on adaptive parameters to create, at
first, an unknown number of segments. This unknown value
varies between clippings (regions) and between levels of
subsampling and smoothing.

Comparing all the three segmentation algorithms, superpixel
generated the most consistent results in delineating the EAV
species, considering that it separates them without excessive and
unnecessary detail. In addition, the internal homogeneity among
segments seems to be better than the other ones, since it was
found the near-zero kurtosis of segment entropy in this case.

Furthermore, superpixel is easy to define the parameters which,
once defined, can be used for all the clippings (regions),
generating satisfying results. In contrast, defining parameters for
region growing and watershed algorithms requires many tests
before the most suitable parameters are defined, and even what is
suitable for one region is often not suitable for another, as these
optimal parameters may not be the same for each region,
depending on the texture of species present in the scene.

As a result, segmentation plays a critical role in the overall
process, as the accuracy of classification depends directly on
segmentation quality. The main challenge lies in selecting the
most appropriate algorithm and parameter settings to generate
meaningful segments aligned with the study purpose.
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