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Abstract 
 
Identifying emergent aquatic vegetation (EAV) species is important to monitor environmental changes and support in decision-making. 
With the advent of uncrewed aerial vehicle (UAV), it has been possible to acquire high resolution images and assist in this task. At the 
same time, the high level of detail of these images can be considered noise for some segmentation algorithms and testing different 
smoothing and subsampling variations can be very relevant. Hence, the aim of this study is to analyse the performance of three 
segmentation algorithms (region growing, SLIC superpixel and watershed) to generate “homogeneous” regions in high resolution 

images, considering blur and scale change effects. To do this, images of a lake impacted by EAV were captured using a multispectral 
camera on board of UAV with 8 mm ground sample distance. After image processing, an orthomosaic was produced and three clippings 
were extracted from it to be segmented and tested empirically with variations of subsampling (1 cm, 1.6 cm, 2 cm, and 3 cm) and 
standard deviation smooth filter application (σ = 2, 4, and 8). The results showed that region growing and watershed algorithms are 
the most affected by high spatial resolution, and greatly benefits from the smoothing and subsampling applied, i.e., reducing the amount 
of detail, while superpixel algorithm created more consistent and uniform results, especially after smoothing, as evidenced by the 
quantitative evaluation based on segment entropy, characterized by kurtosis. 
 

 

1. Introduction 

Image segmentation is a fundamental technique used to split an 
image into relatively homogeneous and meaningful regions 

(Blaschke, 2010; Hossain and Chen, 2019). These regions, which 
represent semantically significant groups of pixels, become 
objects of image analysis (Blaschke, 2010) and can correspond 
to various land cover types, such as vegetation, water bodies, 
urban infrastructures, agricultural area etc. 
 
Object based image analysis (OBIA) appeared in the remote 
sensing scenario with the advent of high spatial resolution 

imagery. In these cases, the pixel size is often smaller than the 
object of interest, requiring a processing step to make the image 
content more interpretable (Blaschke et al., 2014). OBIA consists 
of two main steps:  segmentation, which groups pixels into 
meaningful objects, and classification, which assigns these 
objects to specific categories (Hossain and Chen, 2019). 
 
Many segmentation algorithms originate from computer vision 
applications, including region growing (Bins et al., 1996), 

superpixel-based methods (Achanta et al., 2012), and watershed 
segmentation (Inglada and Christophe, 2009; Kornilov and 
Safonov, 2018). These algorithms are commonly used in remote 
sensing applications, as pointed out by Hossain and Chen (2019). 
 
Region growing is known for its simplicity, grouping pixels that 
are spatially close and have similar intensity values (Espindola et 
al., 2006). Superpixel methods, such as simple linear iterative 

clustering (SLIC), offer an efficient way to generate compact and 
boundary-adherent segments, making them popular due to their 
computational efficiency and accuracy (Achanta et al., 2012). 
The watershed algorithm, based on mathematical morphology, 
provides precise boundary adherence and is commonly used for 
image segmentation (Sun and He, 2008). 
 

Different segmentation algorithms have been applied in aquatic 
vegetation studies for detection, mapping, classification, and 
monitoring. In this context, many recent studies have employed 
semantic segmentation, a deep learning-based approach, using 
satellite or uncrewed aerial vehicle (UAV) imagery (Liu et al., 
2022; Alagialoglou et al., 2023; Yu et al., 2024). Specific 
research has also focused on submerged aquatic vegetation 

(SAV) (Brooks et al. 2022; Alagialoglou et al., 2023; Wang et 
al., 2023). However, fewer recent studies have explored 
segmentation techniques for emergent aquatic vegetation (EAV) 
using non-deep learning approaches. For example, Szabó et al. 
(2024) applied a region growing algorithm to map aquatic 
vegetation, including EAV. Older studies, such as Benjamin et 
al. (2021) and Zhou et al. (2021), employed multiresolution 
segmentation algorithm, while Bolch et al. (2021) used a large-

scale mean-shift algorithm, all aiming to identify and map 
different EAV types. 
 
Both EAV and SAV are rooted to the substrate, EAV 
characterizes for being partially under water and remains 
growing above water’s surface, SAV are completely under water 
(Ashworth, 2023). These plants are important in the dynamics 
and biodiversity of aquatic ecosystems. However, uncontrolled 
growth can have negative environmental consequences, as is the 

case with the invasive and rapidly expanding water hyacinth 
(Eichhornia crassipes), which threatens ecosystem services and 
multiple water resource uses (Singh et al., 2020; Mqingwana et 
al., 2024). With the advent of images acquired by UAV, 
identifying EAV species has become highly feasible and 
important for decision-making, management, and water resource 
protection. 
 

High spatial resolution imagery provides a rich level of scene 
detail, but this can also introduce challenges for segmentation. 
Some algorithms may interpret fine details as noise, leading to 
over-segmentation, where too many small, fragmented segments 
are created. On the other hand, insufficient detail can result in 
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under-segmentation, where meaningful objects are not properly 

delineated. Thus, this study aims to analyse the performance of 
three segmentation algorithms (region growing, superpixel, and 
watershed) when applied to high resolution images containing 
EAV, using kurtosis of entropy values to assess a normal 
probability distribution, i.e., internal homogeneity of the 
segments. Moreover, the impact of scale variations and 
smoothing effects will be examined, as these pre-processing 
adjustments can enhance the results of different segmentation 

algorithms. 
 

2. Materials and method 

Multispectral images of a reservoir with EAV occurrence were 
acquired by a Sony Alpha 6000 camera model, with effective 

focal length 25 mm, 4 bands (450 nm: blue, 550 nm: green, 650 
nm: red, and 850 nm: near-infrared) in a 2512 x 3976 pixels frame 
and pixel size 0.0039 mm. The camera was on board of a UAV, 
with a flight height of 50 m. As a result, an orthomosaic was 
obtained with a ground sample distance (GSD) of 8 mm and three 
clippings (images) were extracted from it, containing three 
species of EAV to be segmented: water hyacinth (Eichhornia 
crassipes), alligator weed (Alternanthera philoxeroides) and 

cattails (Typha domingensis). 
 
The approach applied in the study consisted of obtaining three 
image clippings with EAV, which were analysed at four 
subsampling levels (scale change): 1 cm; 1.6 cm; 2 cm; and 3 cm. 
The bilinear interpolation was used due to its smoother visual 
aspect, without the geometric discontinuities of the nearest-
neighbour, and computationally faster than cubic convolution 

(Roy and Dikshit, 1994; Arif and Akbar, 2005). Additionally, the 
clippings were also smoothed by the Gaussian filter with standard 
deviation (σ = 2, 4 and 8), assumed its characteristic of not only 
reducing noise, but effectively blurring the image (Hossain and 
Chen, 2019). Both spatial resolution and standard deviation were 
defined empirically. 
 
In the following step, three segmentation algorithms were tested 

on the three clippings: region growing, superpixel, and 
watershed. The region growing algorithm was performed in 
Spring 5.5.6 software (Bins et al., 1996) by defining parameters 
of similarity and area threshold. The superpixel algorithm was 
applied with Python scikit-image 0.18.3 library (Van Der Walt et 

al., 2014), which only requires setting the 𝑘 parameter. Finally, 
the Watershed algorithm was applied using the QGIS 3.20.3-
Odense software, integrated with the Orfeo ToolBox 7.3.0 library 
(Inglada and Christophe, 2009). The depth threshold and flood 
level parameters were defined to control the segmentation 

process. 
 
The quality of segmentation was evaluated with the calculation 
of entropy for all the segments throughout bands (4) and 
clippings (3), summarized by kurtosis. In this context, entropy 
represents the degree of complexity or heterogeneity within 
segments (Long and Singh, 2013) and was calculated with 
Python scikit-image 0.25.2 library (Van Der Walt et al., 2014). 

In statistical terms, kurtosis measures the shape of the tails of a 
probability distribution (Hyvärinen and Oja, 2000; Du and 
Kopriva, 2008). It can be either positive (leptokurtic) or negative 
(platykurtic), while a normal distribution (Gaussian) has zero 
kurtosis. This metric was computed with Python scipy 1.15.3 
(Virtanen et al., 2020). 
 

3. Experiments and results 

The experiments are organized and presented by algorithm. To 
better illustrate the clippings, Figure 1 shows clipping 1 (Figure 
1a) that incorporate water hyacinth and alligator weed; Clipping 
2 (Figure 1b) includes water hyacinth and cattails; and Clipping 

3 (Figure 1c) features alligator weed and cattails. Thus, each 
clipping consists of two EAV species to be separated. 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1. Clippings: (a) 1, (b) 2, and (c) 3. 
 

3.1 Experiment 1: Region growing 

The region growing algorithm requires two parameters to be set: 
similarity and area threshold. Empirical observations showed that 
setting similarity values below 50 led to over-segmentation, i.e., 

creating excessive regions representing details within the same 
species coverage. Conversely, values above 80 resulted in under-
segmentation, producing an insufficient number of segments. 
 
For the area threshold, a range of 50 to 200 was established, 
because setting values outside this limit also caused the effects of 
over-segmentation and under-segmentation, without improving 
segmentation quality itself. However, defining a range does not 

completely eliminate these effects, it only reduces their 
occurence. Among the pairs of intervals tested, segmentation 
with parameters 70/200 (similarity/area) configuration generated 
the fewest number of segments across the three clippings and was 
selected for comparison with segmentation using subsampling 
and smoothing (Figures 2 and 3). 
 
From the tests, it was possible to see that setting lower ranges 

created too many segments, both for similarity and area 
threshold, as the requirement to form a region is greater. Thus, 
more segments were formed in the 0.8 cm and 1 cm subsampled 
images due to the greater spectral variability response in space. 
Figures 2 and 3 show a tendency for segments to decrease as the 
level of detail decreases, which indicates, as expected, that 
subsampling and smoothing detect less detail in the image. When 
comparing smoothing and subsampling, smoothing generated 
approximately 70% fewer segments than subsampling at the first 

level. At higher levels, the number of segments in both 
approaches tended to converge. 
 

(a) (b) (c) 
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Figure 2.  Correlation between subsampling and number of 

segments created using region growing algorithm. 
 

 
Figure 3. Correlation between smoothing and number of 

segments created using region growing algorithm. 
 
Since the decrease in spatial resolution creates fewer segments, it 
is possible to note that region growing algorithm is more sensitive 
to the level of detail 0.8 cm and 1 cm images than the other levels. 
In addition, defining the same thresholds for the three clippings 
generated a different number of segments. This behaviour may 
be attributed to the unique characteristics of each region 

(clippings), given that each one has different EAV species, 
spatially arranged in distinct patterns. 
 
For clipping 1, the 3 cm segmented subsampling effectively 
separated the two EAV species (Figure 4a), while the 0.8 cm and 
1 cm subsamplings led to over-segmentation. A similar pattern 
occurred for clippings 2 and 3, however, in clipping 2, only the 2 
cm subsampling (Figure 4b) produced a consistent segmentation. 

In clipping 3, none of the segmented subsamplings was able to 
delineate the species satisfactorily, although the 3 cm 
subsampling (Figure 4c) came closest. 
 
It can be seen the delineation was flawed in all the clippings, 
since it included individuals that did not belong to the same 
species coverage, as well as leaving some of them out due to the 
entanglement between species. In general, clipping 3 apparently 
obtained less efficient results in separating EAV, likely due to its 

complex spatial organization. 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 4. Best delineate segmentations of EAV species in each 
clipping with region growing algorithm, using the following 
parameters: Similarity: 70/Area: 200. Subsampling segmentation 
of (a) 3 cm, (b) 2 cm and (c) 3 cm, respectively. All the clippings 
in the background are at the original level (0.8 cm). 

 
Smoothing did not generate any groupings that visually 
corresponded to the separation of EAV species, indicating that 
the subsampling was more effective in this case. These results 
suggest that the region growing algorithm is sensitive to 
illumination changes and significantly influenced by spatial 
resolution. 
 

3.2 Experiment 2: Superpixel (SLIC) 

The SLIC algorithm requires defining the parameter 𝑘, number 

of segments, and optionally adjusting 𝑚, compactness, which 

influences the shape. For compactness, the higher 𝑚 value, the 
more regular and rigid the segments will be, and the lower, the 
more irregular and flexible will appear. 
 

Regarding the 𝑘 parameter, it is important to note that it 
represents the approximate number of segments to be generated. 

Experiments indicated that approximately 50 segments were 
sufficient to cover a type of EAV in each segment. Higher values 
led to excessively small segments, especially when considering 
plant clusters. Based on these findings, the parameters 10/50 
(compactness/number of segments) were used to compare the 
segmentation across subsampling and smoothing techniques. 
 
The superpixel algorithm maintained a consistent number of 

segments generated in all clippings for all levels of subsampling 
and smoothing. This contrasts with the region growing algorithm, 
where segmentation varied with pixel size. Visually, the 
subsamples segmentation did not show significant differences 
with the variation in pixel size, compared to region growing 
algorithm. There are subtle changes in the edges as the pixel size 
increases, as these contours become more irregular. Despite this, 
the overall segment shapes remained stable across subsampling 
levels. 

 
To compare the clippings, Figures 5a-c used the 3 cm 
subsampling segmentation. Clipping 1 (Figure 5a) created 
segments containing a set of the same EAV species in the upper 
left and another species in the lower right of the image, while in 
the central area exhibited a mixed transition zone. Compared to 
clipping 1, clippings 2 (Figure 5b) and 3 (Figure 5c) 
demonstrated a clearer separation of the two species, with less 

mixing in their transition regions. However, in clipping 3, the 
spatial organization of EAV resulted in greater spacing between 
plants, leading to segments containing fewer plants and more 
shadow areas. For subsampling, it was apparently more 
challenging to separate the species in clippling 1, as they are 
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visually more similar when compared to the species in clippings 

2 and 3. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 5. Comparison of 3 cm subsamples in clippings (a) 1, (b) 
2 and (c) 3 segmented using superpixel algorithm, with the 

following parameters: Compactness: 10/Quantity of segments: 
50. All the clippings in the background are at the original level 
(0.8 cm). 
 
The same pattern is also evident in Figures 6a-c on smoothing 
process, i.e., the segments generated were able to contour and 
separate the EAV species better in clippings 2 and 3, which 
occurred in subsampling as well. However, a key distinction in 

smoothing is that segment edges become softer and shapes more 
flexible, a characteristic that is accentuated as the degree of 
smoothing increases, reducing the rigidity of the segments 
generated in the subsampling. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Figure 6. Comparison of clippings (a) 1, (b) 2 and (c) 3 
segmented with different smoothing level using superpixel 
algorithm, with the following parameters: Compactness: 
10/Quantity of segments: 50. (a) σ=2; (b) σ=4; (c) σ=8. All the 
clippings in the background are at the original level (0.8 cm). 
 
Smoothing stood out for superpixel algorithm, as visually the 

segments are better defined in edgewise. In contrast, subsampling 
segmentation (Figures 5a-c) retained highly detailed contours, 
which did not significantly contribute to species separation 
quality. To demonstrate this behavior, Figure 7 highlights the 
same segment of clipping 3 in subsampling and smoothing. 
Notably, the excessive edge details in Figure 7a do not add any 
relevant information compared to Figure 7b. Thus, smoothing 
had more consistent results for the superpixel algorithm. 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 7. Comparison of the same segment in (a) subsampling (3 
cm) and (b) smoothing (σ=8) of clipping 3 for superpixel 

algorithm, with the following parameters: Compactness: 
10/Quantity of segments: 50. All the clippings in the background 
are at the original level (0.8 cm). 
 

3.3 Experiment 3: Watershed 

The Watershed algorithm requires tuning of key parameters, 
particularly the depth threshold and flood level, which are critical 
to its performance. Given its inherent tendency for over-
segmentation, multiple tests were conducted, yet most results 
remained highly segmented. However, for comparison purposes, 
segmentation with parameters 0.01/0.3 (depth threshold/flood 
level) generated the fewest segments for the three clippings and 

was used to compare subsampling and smoothing segmentations 
(Figures 8 and 9). 
 

 
Figure 8. Correlation between subsampling and number of 

segments created using watershed algorithm. 
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Figure 9. Correlation between smoothing and number of 

segments created using watershed algorithm. 
 
Watershed behaviour shows similarity to region growing 

algorithm (Figures 8 and 9), since reducing the level of detail also 
reduces the number of segments formed. The decrease was 
approximately 75% from the first to the last level of subsampling, 
and by 85% from the first to the last level of smoothing. The main 
difference between the two algorithms is the number of segments 
generated, since region growing produced 97% and 98% fewer 
segments at the first level of subsampling and smoothing, 
respectively, compared to the same levels in the watershed 

algorithm. 
 
Results for subsampling segmentation were inconsistent, as the 
algorithm detected excessive detail, causing the effect of over-
segmentation. However, subsampling contributes significantly to 
reducing the number of segments, as does smoothing. 
 
The first two levels of smoothing maintained the effect of over-

segmentation (Figures 10a-b). However, the third and highest 
level (σ=8) generated consistent results, effectively delineating 
EAV species and forming larger segments, as exemplified by 
Figure 10c, in clipping 3. Therefore, smoothing stood out 
compared to subsampling for watershed algorithm, which proved 
to be more affected by the high level of detail than the region 
growing algorithm. 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 10.  Comparison of clippings (a) 1, (b) 2 and (c) 3 
segmented with different smoothing levels using watershed 
algorithm, with the following parameters: Depth threshold: 
0.01/Flood level: 0.3. (a) σ=2; (b) σ=4; (c) σ=8. 

 

3.4 Evaluation of quality segmentation 

The quantitative results used to evaluate the quality of the 
segmentation are presented in Tables 1 to 3, one for each 

clipping, comparing the performance of the three segmentation 

algorithms. For this evaluation, the optimal result for each 
algorithm was selected: for region growing, the 3 cm 
subsampling segmentation; for superpixel, the smoothing 
segmentation with a standard deviation of 4; and for watershed, 
the smoothing segmentation with a standard deviation of 8. 
 

Entropy - band 
Region 
growing 

Superpixel Watershed 

Entropy - R -2 -0.86675 4.02562 
Entropy - G -2 0.54782 4.45903 
Entropy - B -2 -0.51049 0.55407 

Entropy - NIR -2 -0.45068 4.48288 

Table 1. Summarization of entropy for clipping 1 using kurtosis. 
 

Entropy - band 
Region 
growing 

Superpixel Watershed 

Entropy - R 7.14877 -0.66345 4.76301 
Entropy - G 7.06009 -0.40961 4.29834 
Entropy - B 0.85005 -0.92953 -0.39675 

Entropy - NIR 7.90339 -1.03827 2.83454 

Table 2. Summarization of entropy for clipping 2 using kurtosis. 

 

Entropy - band 
Region 
growing 

Superpixel Watershed 

Entropy - R -1.66601 -0.52187 8.70199 
Entropy - G -1.45591 -0.79042 7.06248 
Entropy - B -1.83116 -0.44127 2.02572 

Entropy - NIR -0.71617 -0.50625 4.94880 

Table 3. Summarization of entropy for clipping 3 using kurtosis. 
 
Both region growing and watershed algorithms demonstrated 
overall kurtosis that indicated different entropy values between 
segments, resulting in a non-Gaussian distribution. Region 
growing generated fewer and bigger segments (Figure 4), in 
contrast, watershed produced more and smaller ones (Figure 10). 

 
These characteristics must have significantly impacted the results 
of kurtosis once to enclose bigger regions adds greater variability 
in pixel values, leading to a higher internal entropy, which means 
less homogeneous segments. Similarly, smaller regions tend to 
produce highly homogeneous segments with low internal 
entropy. However, because they often represent distinct scene 
details, the entropy values vary substantially across segments. 

 
If kurtosis differs substantially from zero, it demonstrates fewer 
extreme values and more uniform segments in the image context. 
In all the clippings, kurtosis of four bands for superpixel entropy 
were closer to zero, which leads to a normal (Gaussian) 
distribution, meaning a higher internal homogeneity in this study. 
 

4. Conclusions 

The results obtained from the three segmentation algorithms 
showed that region growing and watershed are the most sensitive 
and affected by high spatial resolution, with over-segmentation 
being itself one of the limitations of watershed, which produced 
the largest number of segments, meanwhile superpixel algorithm 

was less impacted by the same factor and responded better in 
smoothed clippings. Overall, all of them improved their 
performance in images pre-processed with subsampling and/or 
smoothing. 
 
It is important to highlight that the excessive scene detail, due to 
the high spatial resolution, can interfere on the identification of 
EAV species successfully, which leads to the importance of 
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simulations and controlled variations in spatial detail using 

subsampling and smoothing to optimize segmentation. 
 
Additionally, tunning the algorithm parameters is a challenging 
step, especially for watershed due to its tendency for over-
segmentation. Depending on the values set for the input 
parameters, many scene details have been segmented, such as 
leaves, shadows, and other minor elements. 
 

On the other hand, the superpixel algorithm generates a fixed 
number of segments for all clippings, both for subsampled and 
smoothed versions. This is a feature completely different from 
the other two, which rely on adaptive parameters to create, at 
first, an unknown number of segments. This unknown value 
varies between clippings (regions) and between levels of 
subsampling and smoothing. 
 
Comparing all the three segmentation algorithms, superpixel 

generated the most consistent results in delineating the EAV 
species, considering that it separates them without excessive and 
unnecessary detail. In addition, the internal homogeneity among 
segments seems to be better than the other ones, since it was 
found the near-zero kurtosis of segment entropy in this case.  
 
Furthermore, superpixel is easy to define the parameters which, 
once defined, can be used for all the clippings (regions), 

generating satisfying results. In contrast, defining parameters for 
region growing and watershed algorithms requires many tests 
before the most suitable parameters are defined, and even what is 
suitable for one region is often not suitable for another, as these 
optimal parameters may not be the same for each region, 
depending on the texture of species present in the scene. 
 
As a result, segmentation plays a critical role in the overall 

process, as the accuracy of classification depends directly on 
segmentation quality. The main challenge lies in selecting the 
most appropriate algorithm and parameter settings to generate 
meaningful segments aligned with the study purpose. 
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