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Abstract

Visual-inertial navigation has become a cornerstone for deploying robots in diverse environments. Despite significant progress,
current approaches may easily fail to deliver reliable and robust navigation for industrial applications. Therefore, evaluating these
methods using various datasets under challenging operational conditions is essential to ensure safe integration into robotic platforms.
As such, this paper aims to enrich the availability of navigation datasets by introducing SMARTNav, which includes raw data obtained
from stereo cameras and IMU sensors mounted on both ground and aerial robots. These robots were deployed in various operational
scenarios across different environments, such as greenhouses, urban streets, indoor spaces, and near-building areas. The data includes
challenges of navigating in GPS-denied areas, repetitive structures, featureless environments, and adverse lighting conditions. In
order to provide corresponding ground-truth for each sequence, different techniques were deployed, such as Motion Capture System,
Real Time Kinematics (RTK), and dense LiDAR-based Simultaneous Localization and Mapping (SLAM). Consequently, the resulting
dataset can be used to address and validate key issues in vision-based state estimation, localization, and mapping for industrial
applications. The SMARTNav dataset is accessible at: https://saxionmechatronics.github.io/smartnav-dataset/.

1. Introduction

Indoor Greenhouse

Visual-Inertial Odometry (VIO) is a critical technology widely
used in robotics and augmented reality to provide low-cost and Fling
high-frequency pose estimation, especially in environments with
poor or unavailable GPS signals. This technology can be de-
ployed in various indoor and outdoor environments for robot
navigation. However, the performance of existing techniques Ground
is still not adequate for a reliable industrial application. There- robet
fore, the availability of diverse datasets in terms of environment
variety, sensor configurations, and addressing technical and op-
erational challenges associated with Simultaneous Localization Handheld
and Mapping (SLAM) is crucial before the integration of these
methods into the robots’ control loops. Current widely used
datasets, such as EuRoC (Burri et al., 2016), TUM VI
let al., 2018)), or KITTI (Geiger et al., 2013)), cover mainly struc-

tured indoor environments or outdoor driving scenarios and lack
the industrial robotic challenges faced when implementing VIO
technology.

In this work, we present the SMARTNav dataset for evaluating
VIO technologies in different industrial environments, cover-
ing various navigation scenarios using handheld, aerial, and
ground robots. The environments include indoor corridors, out-
door near-building environments, streets, and greenhouses. As
ground-truth position data, different measures were taken, in-
cluding the use of motion capture systems, RTK, and dense
LiDAR SLAM. The collected data are not only limited to cam-
era and IMU (specific to VIO), but also high-resolution Lidar
and GPS are recorded as well in long and flexible scenarios,
mainly as supporting material to achieve the best estimate tra-
jectory for accuracy assessment of VIO. Various challenges exist (b)
in different sequences of SMARTNav, caused by environmental
characteristics, including repetitive textures and structures, fea-
tureless surfaces, and dynamic lighting conditions. Additionally,
there are practical limitations such as vibrations, sample dro-
pouts, and motion blur. Based on the above explanation, the
main contributions of this paper are:

Figure 1. Overview of (a) diverse environments included in our
dataset and (b) the ground and aerial robotic platforms used in our
experiments.
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Dataset Sensor Modality Motion Environment Ground Truth
Camera IMU LiDAR Event Drone  Ground Handheld | Indoor Streets Near Green- | RTK  Dense Motion
Camera Vehicle Buildings house SLAM/  Capture
Prior
Maps
KITTI (Geiger et al., 2013) 64-b X X X X X X
EuRoC (Burr et al., 2016) X X X X X X X X
PennCOSYVIO X X X X X X X X
(Pfrommer et al., 2017)
TUM VI (Schubert et al., 2018) X X X X X X X
UZH-FPV X X X X X X X
(Delmerico et al., 2019)
OpenLORIS-Scene 2D X X X X X X X
(Shi et al., 2020)
Newer College Dataset 64-b X X X X X X X
(Ramezani et al., 2020)
UMA-VI X X X X X X X
(Zuniga-Noél et al., 2020)
M2DGR (Yin et al,, 2021) 32-b X X X X
NTU VIRAL 64-b X X X X X X X
(Nguyen et al., 2022)
Hilti-Oxford 32-b X X X X X X
(Zhang et al., 2022)
M3ED (Chaney et al., 2023) 64-b X X X X
SubT-MRS (Zhao et al., 2024) 16-b X X X X X
FusionPortableV?2 128-b X X X X
(Wei et al., 2024)
MARS-LVIG (Li et al., 2024) limited X X X X X X X X
FOV
BotanicGarden 16-b X X X X X X X X X
(Liu et al., 2024)
MUN-FRL 16-b X X X X X X X
(Thalagala et al., 2024)
SMARTNav (ours) 128-b X

Table 1. Comparison of datasets in terms of used sensors, test platforms, environment variety, and ground-truth measurement. For
LiDAR, letter b stands for the number of beams, determining the sensor’s resolution.

e A diverse VIO dataset covering underrepresented and chal-
lenging environments for industrial applications of robots
such as greenhouses, collected on different platforms.

e A multi-method approach for high-quality ground truth
trajectory generation in diverse scenarios.

The rest of the manuscript is organized as follows. In
we looked into the previously published SLAM and VIO data-
sets and highlight the novel aspects of our experiments. Also,
details the collection, calibration, and ground truth
measurement for our data sequences. Discussions and some
insights into SMARTNav datasets are presented in [section 4]

and finally, [section 3| brings a conclusion to the paper.

2. Related Works

Since the emergence of SLAM methods, various datasets have
been published to introduce challenging use cases of these tech-
nologies in the real world. One of the pioneering and well-
known datasets is KITTI (Geiger et al., 2013) that introduces
a standard benchmark for developing GPS-denied navigation
solutions primarily for automotive applications. Another pub-
licly available dataset is PennCOSY VIO (Pfrommer et al., 2017),
dedicated to the application of VIO in handheld devices, mainly
in offices, labs, construction areas, and parking lots (outdoors).
This dataset used fiducial markers as the source of ground truth
position. As such, the dataset collectors could cover larger and
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(a)

(b)

Figure 2. Sensor configuration and experimental platforms a) VIDAR setup that is mounted on a wheeled robot for ground data

sequences. b) SARAX (Alharbat et al., 2024) drone that is used for aerial sequences.

more arbitrary trajectories. TUM VI (Schubert et al., 2018) is
another widely accepted benchmark for high-fidelity VIO sensor
data, with hardware-level synchronized camera and IMU read-
ings and 16-bit images beneficial for higher dynamic ranges.
This data features both indoor and outdoor scenarios using a
handheld setup; however, for the ground-truth, it relies on mo-
tion capture readings only at the beginning and end of the tra-
jectories. UMA-VI (Zuiiiga-Noél et al., 2020) exhibits a similar
data collection strategy, however, it delivers a higher number of
sequences with more challenging texture and illumination con-
ditions. To focus more on the robotics aspect of visual-inertial
localization, the EuRoC MAV dataset was
presented to provide synchronized image and IMU readings
accompanied by a very accurate motion capture-based ground
truth trajectory. Likewise, UZH-FPV (Delmerico et al., 2019)
was published, collected from FPV drone flights; however, it
emphasizes more on agile flights and drastic motions.

There is a large number of datasets that are not specifically col-
lected for visual-inertial navigation and are extended to other
sensor modalities as well. For example, OpenLORIS-Scene
is such a dataset that adds a 2D LiDAR sensor
for ground robots’ lifelong applications. Newer College Data-
set (Ramezani et al., 2020) brings 3D LiDAR scans with 64
beams (vertical channels) to the recorded sequences, which ex-
tends the use-cases of the dataset to Lidar-Inertial Odometry
(LIO) and LiDAR-based SLAM algorithms. A recent, yet sim-
ilar in terms of platform and ground truth retrieval, is the Hilti-
Oxford (Zhang et al., 2022). This dataset describes the use
of dense prior maps of the environment and localizing LiDAR
scans in the prior map, as a way to calculate the ground-truth
trajectory. M2DGR explores further indoor,
street views, and near-building environments in the dataset, and
depending on the availability, it uses motion capture or RTK as
ground truth. A multi-sensor SLAM dataset for drone platforms
is the NTU VIRAL (Nguyen et al., 2022), utilizing multiple
cameras, IMUs, 2 LiDARs, and Ultra Wide Band (UWB), for
both indoor and outdoor environments.

The recent datasets tend to broaden the test scenarios of the
SLAM, both in terms of challenges, sensor modalities, used
platforms, and experiment environments. M3ED
is one of the first to collect data on multiple aer-

ial and ground robots, and uses a motion capture system and
precise GNSS for ground-truth depending on the test case. SubT-
MRS is another multi-platform dataset with
a wide range of sensors, captured in challenging multi-season
environments, but more focused on subterranean environments.

One of the main barriers, limiting the complexity and length of
the dataset sequences in the explored literature, was the choice
of ground-truth measurement method. The datasets relying on
motion capture systems are usually limited to small lab envir-
onments (Burri et al., 2016| [Delmerico et al., 2019), or they
cannot provide the ground truth for the entirety of the traject-
ory (Schubert et al., 2018|, [Zuniiga-Noél et al., 2020). GNSS-
based methods are also limited to clear sky environments. How-
ever, recent datasets deploy dense prior maps of the intended
environments and then localize the recorded LiDAR scans in
the given accurate prior map (Zhao et al., 2024} [Zhang et al.]
[2022] [Ramezani et al., 2020). Alternatively, high resolution and
accurate LIDAR SLAM was found as a sufficient solution for

generating ground truth (Liu et al., 2024).

Building on the above overview, this paper seeks to enrich the
pool of datasets available for validating visual-inertial odometry
(VIO) methods in industrial settings. The SMARTNav data-
set covers a wide range of challenging conditions, including
GPS-denied areas, repetitive structures, featureless surfaces, and
urban landscapes, using both aerial and ground robotic platforms.
It also provides high-precision ground truth from high-resolution
LiDAR, GNSS-RTK, and OptiTrack systems. [Table I|compares
SMARTNav to the existing datasets discussed above, highlight-
ing its unique contributions.

3. SMARTNav Dataset

3.1 Experimental Platforms

3.1.1 Ground Robot shows the ground experimental
platform with Visual-LiDAR (VIDAR) setup, GNSS receiver,
and processing unit, which is a Jetson Orin NX. The LiDAR is
an Ouster OS1-128 sensor, which provides 3D point clouds at
128 x 1024 resolution, 10 Hz frequency, 200 meters maximum
range, and centimeter-level range accuracy. The LiDAR is also
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FAST-LIO2 (Xu et al., 2022

LeGO-LOAM (Shan and Englot, 2018 GLIM (Koide et al., 2024

greenhouse.ground-1

o
greenhouse_ground-2 _

corridor.ground-1

Table 2. Comparison of LIDAR SLAM methods to provide the best estimate trajectory

equipped with an InvenSense ICM-20948 IMU sensor recorded
at 100 Hz. Additionally, the ZED X stereo camera is used to
record visual sensory data at different resolutions, color spaces,
and frequencies depending on the testing environments. For
the greenhouse tests, RGB images were recorded at 480 x 300
resolution and 15 Hz frequency. The reason for low resolution in
these tests was using the wrong Quality of Service (QoS) policy
of best effort for sensor messages in ROS 2, which prevented any
buffering and caused message drops. Hence, we had to lower
the sensor data resolution and rates to compensate for the effect.
For the street-side walk, campus, and corridor tests, we fixed
this issue by setting QoS to reliable. Then, grayscale images
with 960 x 540 resolution were recorded with a consistent 15
Hz frequency.

3.1.2 Aerial Robot For the flying scenarios, we used differ-
ent hardware setups due to modifications and upgrades. Initially,
SARAX (Alharbat et al., 2024) drone platform was
used within a lab room equipped with an OptiTrack Prime 13
motion capture system. In these tests, the ZED 2 stereo camera
was deployed, recording grayscale images with 672 x 376 resol-
ution and 30 Hz rate. Furthermore, handheld experiments were
conducted by carrying the drone around the room. We used the
same platform and recording configuration in outdoor flight tests
within our drone dome facility, an area surrounded by buildings.
For greenhouse tests, we upgraded the SARAX platform camera
with a ZED X camera, which has global shutter sensors and
internal IMU dampers, reducing the vibration effects. Here, the
images were recorded at 960 x 600 resolution and the rate was
30 Hz.

3.2 Ground-Truth

In the flight and handheld tests conducted in the lab room, the
motion capture system provided the ground truth position data
at above 180 Hz. In the outdoor flight test, we used a Holybro
H-RTK F9P rover to measure RTK as the ground-truth data. The
RTK data passed through the Extended Kalman Filter (EKF)
from the PX4 autopilot, and the smoothed output of the autopilot
has been recorded. The position variances from EKF were care-
fully checked for possible positioning inaccuracies, and only the

trajectory segments with variances above 0.05 were accepted as
ground-truth. In the drone dome tests, satellite signals for RTK
were intermittently available due to proximity to buildings, yield-
ing centimeter-level accuracy for parts of trajectories. In contrast,
and to our surprise, the RTK provided strong satellite coverage
with reasonable accuracy as ground truth for greenhouse flight
tests.

In order to generate ground truth for the ground sequences, we
investigated the performance of several SLAM-based methods.
We checked the suitability of each method by visually inspecting
the map consistency, optimized pose drifts in revisited areas, and
correspondence with the paved trajectory on the satellite images.

shows the comparison results between the three traject-
ory estimation methods, namely FAST-LIO2 (Xu et al., 2022),
LeGO-LOAM (Shan and Englot, 2018), and GLIM
[2024). FAST-LIO2 did not have the mapping component of a typ-
ical SLAM algorithm, while the other two were capable of global
pose-graph optimization to null the drifts in revisited places, i.e.,
loop closures. As clearly visible, for greenhouse_ground._1,
GLIM has the best performance with no map drifts compared
to the other methods. In greenhouse_ground_2, which is a
long direct pavement, GLIM struggles to correctly follow the
ground level, while LeGO-LOAM gives the most drift-free es-
timation, thanks to its ground-optimized odometry and mapping
formulation. Moreover, [Fig. 3alshows the trajectory outputs of
FAST-LIO2, LeGO-LOAM, and a customer-grade GPS, drawn
on a satellite map. By visual inspection of the visited locations
on the map, and checking the accordance of start and end points,
we concluded that LeGO-LOAM can provide accurate position
estimation with less than 1 meter error.

3.3 Calibration

To measure each of the stereo cameras’ intrinsic parameters,
extrinsics between the two cameras, and extrinsics between the
IMU and cameras, the Kalibr package was
used. The manufacturer-reported values for these parameters are
also present in the dataset; however, for IMU noise characterist-
ics, we settled for the vendor’s measured values.
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Figure 3. Some visualizations of the data in the SMARTNav dataset. a) Comparison between LiDAR-inertial odometry, visual-inertial
odometry, and GNSS localization in a street test. b) Projection of LIDAR’s dense point cloud on the image after camera-LiDAR
calibration. c) Comparison plot of VIO methods in a drone flight test. d) The map that was created by accumulating the point clouds
based on positions calculated by FAST-LIO2.

The direct_visual_lidar_calibration package
was used for targetless camera-LiDAR calibration.
The method automatically and iteratively correlates the features
in LiDAR point clouds to the visual representation in the camera
image as demonstrated in[Fig. 3b]

4. Discussion

[Fig-3]demonstrates some of the data modalities present in the
SMARTNav dataset. In[Fig. 3¢} an initial assessment of some
well-established VIO methods such as VINS-Fusion (Qin et
[al., 2018), ORBSLAMS3 (Campos et al., 2021)), and proprietary
ZED-SDK, are compared to RTK ground-truth. For the RTK,
the 5 times exaggerated covariance values are drawn in gray
color around the trajectory. Since the data belongs to a flight test
in a near-building environment, only at low covariance segments,
the trajectory can serve as the ground truth. This behavior is
observed in some other sequences in our dataset, mostly near
trees and buildings with limited sky views.

The flight, ground, and handheld data collected in the greenhouse
were challenging for VIO algorithms, due to the repetitive pat-

terns of the plants. The greenhouse_flight_4 data in[Table 3|
shows the feature tracking of VINS-Fusion that only relied on
the ceiling patterns, consequently, the drift of VIO was consider-
able. Another frequent problem for the existing VIO algorithms,
also reported in other benchmarks (Delmerico and Scaramuzza)
[2018], [Schubert et al., 2018), is the divergence of the state es-
timate, usually leading to erratic motions and unstable drifting,
similar to outdoor_flight_3 and optitrack_flight_2 plots
in[Table 3] This behavior can be consequential for downstream
control algorithms in robotic implementations. Providing a cov-
ariance estimation is a standard approach to avoid this issue, a
requirement that most of the available optimization-based VIO
methods do not have.

Similar to vision data, processing LiDAR data in the greenhouse
test was challenging, not only due to the environmental structure
but also because of data sample dropouts and relatively large
motions between some consecutive raw point clouds.
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Table 3. Analysis of VIO performance in our flight tests.

5. Conclusion

This paper described the SMARTNav dataset, gathered to assist
in developing and evaluating vision-based navigation solutions.
The data was collected over the span of multiple projects, us-
ing aerial, ground, and handheld motion platforms, in different
indoor and outdoor spaces, most notably a flower greenhouse.
We hope this data can help the further development of reliable
visual-inertial navigation solutions for heterogeneous sensors
and platforms.

Based on the analysis of the SMARTNav dataset, we identified
several key challenges and further development areas. One of
the pressing issues was the reliability of optimization and bundle-
adjustment methods, and proper failure reporting through a calib-
rated covariance estimation. Additionally, partial discrepancies
of individual sensors were observed in multiple instances in this
data, requiring more attention to fusion methods. Particularly,
using prior maps, created from dense LIDAR measurements and
low-cost localization in these maps, is an appealing development
area using our dataset. Despite the initial intent for studying VIO
methods, many of the collected data can also be used for LiDAR-
based SLAM development and evaluation. Lastly, expanding the
current dataset by adding environments of robot implementation,
a more diverse set of sensors, and mobile platforms is in our
future work scope.

Acknowledgements

This work was partly supported by the Netherlands Organization
for Scientific Research (NWO) via SIA RAAK-Public project
(Van bestrijden naar beheersen van de EPR, No.10.015) and SIA
RAAK-MKB project (Smart Greenhouses, No.17.014). The
authors would like to thank the contributions of project managers
Henri Huisman and Amin Zaami as well as Gerjen ter Maat for
helping in the data collection.

References

Alharbat, A., Zwakenberg, D., Esmaeeli, H., Mersha, A., 2024.
Sarax: An open-source software/hardware framework for aerial
manipulators. International Conference on Unmanned Aircraft
Systems, ICUAS 2024.

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari,
S., Achtelik, M. W, Siegwart, R., 2016. The EuRoC micro aerial
vehicle datasets. The International Journal of Robotics Research,
35(10), 1157-1163.

Campos, C., Elvira, R., Rodriguez, J. J. G., Montiel, J. M.,
Tardés, J. D., 2021. Orb-slam3: An accurate open-source library
for visual, visual-inertial, and multimap slam. /EEE transactions
on robotics, 37(6), 1874—-1890.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-X-2-W2-2025-149-2025 | © Author(s) 2025. CC BY 4.0 License.

154



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Chaney, K., Cladera, F., Wang, Z., Bisulco, A., Hsieh, M. A.,
Korpela, C., Kumar, V., Taylor, C. J., Daniilidis, K., 2023. M3ed:
Multi-robot, multi-sensor, multi-environment event dataset. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4016—4023.

Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., Scara-
muzza, D., 2019. Are we ready for autonomous drone racing?
the uzh-fpv drone racing dataset. 2019 International Conference
on Robotics and Automation (ICRA), IEEE, 6713-6719.

Delmerico, J., Scaramuzza, D., 2018. A benchmark compar-
ison of monocular visual-inertial odometry algorithms for flying
robots. 2018 IEEE international conference on robotics and
automation (ICRA), IEEE, 2502-2509.

Geiger, A., Lenz, P, Stiller, C., Urtasun, R., 2013. Vision meets
robotics: The kitti dataset. The international journal of robotics
research, 32(11), 1231-1237.

Koide, K., Oishi, S., Yokozuka, M., Banno, A., 2023. General,
single-shot, target-less, and automatic lidar-camera extrinsic
calibration toolbox. 2023 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 11301-11307.

Koide, K., Yokozuka, M., Oishi, S., Banno, A., 2024. Glim: 3d
range-inertial localization and mapping with gpu-accelerated
scan matching factors. Robotics and Autonomous Systems, 179,
104750.

Li, H., Zou, Y., Chen, N., Lin, J., Liu, X., Xu, W., Zheng,
C.,Li, R., He, D., Kong, F. et al., 2024. MARS-LVIG dataset:
A multi-sensor aerial robots SLAM dataset for LiDAR-visual-
inertial-GNSS fusion. The International Journal of Robotics
Research, 43(8), 1114-1127.

Liu, Y., Fu, Y., Qin, M., Xu, Y., Xu, B., Chen, F., Goossens,
B., Sun, P. Z., Yu, H., Liu, C. et al., 2024. Botanicgarden: A
high-quality dataset for robot navigation in unstructured nat-
ural environments. IEEE Robotics and Automation Letters, 9(3),
2798-2805.

Nguyen, T.-M., Yuan, S., Cao, M., Lyu, Y., Nguyen, T. H.,
Xie, L., 2022. Ntu viral: A visual-inertial-ranging-lidar dataset,
from an aerial vehicle viewpoint. The International Journal of
Robotics Research, 41(3), 270-280.

Pfrommer, B., Sanket, N., Daniilidis, K., Cleveland, J., 2017.
Penncosyvio: A challenging visual inertial odometry benchmark.
2017 IEEE International Conference on Robotics and Automa-
tion, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017,
3847-3854.

Qin, T, Li, P, Shen, S., 2018. Vins-mono: A robust and versatile
monocular visual-inertial state estimator. /EEE transactions on
robotics, 34(4), 1004-1020.

Ramezani, M., Wang, Y., Camurri, M., Wisth, D., Mattamala,
M., Fallon, M., 2020. The newer college dataset: Handheld lidar,
inertial and vision with ground truth. 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
IEEE, 4353-4360.

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., Siegwart, R.,
2016. Extending kalibr: Calibrating the extrinsics of multiple
imus and of individual axes. 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 4304-4311.

Schubert, D., Goll, T., Demmel, N., Usenko, V., Stiickler, J.,
Cremers, D., 2018. The tum vi benchmark for evaluating visual-
inertial odometry. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 1680-1687.

Shan, T., Englot, B., 2018. Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain.
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 4758-4765.

Shi, X., Li, D., Zhao, P., Tian, Q., Tian, Y., Long, Q., Zhu,
C., Song, J., Qiao, F., Song, L. et al., 2020. Are we ready for
service robots? the openloris-scene datasets for lifelong slam.
2020 IEEE international conference on robotics and automation
(ICRA), IEEE, 3139-3145.

Thalagala, R. G., De Silva, O., Jayasiri, A., Gubbels, A., Mann,
G. K., Gosine, R. G., 2024. MUN-FRL: A Visual-Inertial-
LiDAR Dataset for Aerial Autonomous Navigation and Map-
ping. The International Journal of Robotics Research, 43(12),
1853-1866.

Wei, H., Jiao, J., Hu, X., Yu, J., Xie, X., Wu, J., Zhu, Y., Liu,
Y., Wang, L., Liu, M., 2024. Fusionportablev2: A unified multi-
sensor dataset for generalized slam across diverse platforms and
scalable environments. The International Journal of Robotics
Research, 02783649241303525.

Xu, W., Cai, Y., He, D., Lin, J., Zhang, F., 2022. Fast-lio2: Fast
direct lidar-inertial odometry. IEEE Transactions on Robotics,
38(4), 2053-2073.

Yin, J., Li, A., Li, T., Yu, W., Zou, D., 2021. M2dgr: A multi-
sensor and multi-scenario slam dataset for ground robots. IEEE
Robotics and Automation Letters, 7(2), 2266-2273.

Zhang, L., Helmberger, M., Fu, L. F. T., Wisth, D., Camurri,
M., Scaramuzza, D., Fallon, M., 2022. Hilti-oxford dataset: A
millimeter-accurate benchmark for simultaneous localization
and mapping. IEEE Robotics and Automation Letters, 8(1), 408—
415.

Zhao, S., Gao, Y., Wu, T., Singh, D., Jiang, R., Sun, H., Sarawata,
M., Qiu, Y., Whittaker, W., Higgins, L. et al., 2024. Subt-mrs
dataset: Pushing slam towards all-weather environments. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 22647-22657.

Zuiiiga-Noél, D., Jaenal, A., Gomez-Ojeda, R., Gonzalez-
Jimenez, J., 2020. The UMA-VI dataset: Visual—-inertial odo-
metry in low-textured and dynamic illumination environments.
The International Journal of Robotics Research, 39(9), 1052-
1060. https://doi.org/10.1177/0278364920938439.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-149-2025 | © Author(s) 2025. CC BY 4.0 License. 155



	Introduction
	Related Works
	SMARTNav Dataset
	Experimental Platforms
	Ground Robot
	Aerial Robot

	Ground-Truth
	Calibration

	Discussion
	Conclusion



