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Abstract

This paper presents a UAV-based workflow for the inspection of buildings in cold-region climates, focusing specifically on rooftop
snow depth estimation and thermal reconstruction of building envelopes. Accurate measurement of rooftop snow depth is critical,
as an excessive snow load can lead to structural damage or roof collapse, resulting in substantial economic losses and potential
fatalities. Thermal reconstruction can indicate thermal bridging in the building envelope, a phenomenon that can significantly
reduce heating efficiency, causing increased energy consumption and higher utility expenses. Case studies conducted at multiple
locations demonstrate the efficacy of UAV photogrammetry in accurately measuring rooftop snow depth, validated using manual field
measurements and LiDAR scanning. We also propose a method of joint RGB-thermal reconstruction, capable of producing models
with a high degree of geometric and radiometric accuracy without the requirement of homography or 3D transformations for image
pair alignment. Results validate the approach through field measurements and pixel-wise thermal model evaluation. The proposed

methods provide efficient, accurate, and safe alternatives to traditional inspection practices.

1. INTRODUCTION

The ubiquitous application of aerial vehicles in surveillance and
monitoring tasks is an artifact of the recent advancements in
mobile technologies (Price et al., 2022). The growth in these
fields opens the door to more frequent and broad uses of these
vehicles in tasks that represent extreme challenges or dangers to
workers, such as roof inspection (Graybeal et al., 2002). In such
cases, photogrammetry can be leveraged to offer the end user a
more global and context rich representation of a physical asset,
allowing the user to query the data from a 3D model without
exposure to the same dangers and limitations that accompany
manual inspection.

Within global cold-climate regions, there are additional chal-
lenges that can impose more requirements for the inspection
process. One of these challenges is the accumulation of snow
and ice on rooftops. Heavy snowfalls have led to numerous
roof collapses, with incident frequency and severity varying
geographically. North America has documented a high rate of
structural failures, highlighted by a 20-year survey that recorded
1,029 snow-induced building collapses in the United States from
1989 to 2009 (Geis et al., 2012). Scandinavia and Central Europe
have also experienced winters with particularly severe snowfall,
including the winter of 2010-2011, where at least 85 farm build-
ings in Sweden suffered serious damage or collapse (Nilsson and
Friberg, 2012), and the winter of 2005-2006, where over 200
roof failures occurred across Central Europe (Croce et al., 2018).
Common causes identified in these failures are extreme snow
accumulation beyond design assumptions, often exacerbated by
rain-on-snow events or drift piling, combined with structural de-
ficiencies or maintenance issues that undermine capacity (Geis
et al., 2012, Nilsson and Friberg, 2012). Impacts can range from
substantial economic losses to loss of life. Individual incidents
have incurred hundreds of millions in damages (a single blizzard
in 1993 caused over $200 million in U.S. roof damage) (Geis et

al., 2012). The Katowice Trade Hall collapse in Poland claimed
65 lives when the long-span exhibition hall roof collapsed under
extreme snow load in January 2006 (Biegus and Rykaluk, 2009).
Moscow’s Basmanny Market roof collapse in 2006 is another
example of snow-based roof collapse, resulting in 68 fatalities
and 32 injuries (Lobkina, 2021).

A primary factor contributing to these incidents is the lack of
regular roof inspection and maintenance (Holicky and Sykora,
2009). Many jurisdictions do not mandate the routine inspec-
tion of rooftops by building managers and, due to the cost of
traditional inspections, many buildings do not receive regular
inspection. By reducing the cost and time required for inspec-
tions through the use of UAVs and 3D Reconstruction, routine
winter inspections can become more common and the chances
of snow-based roof collapse can be reduced.

Another challenge that buildings face in cold climate regions
is thermal bridging, where structural discontinuities within the
building envelope result in localized areas of increased heat
transfer. Thermal bridges typically occur where materials with
higher thermal conductivity, such as concrete or metal structural
elements, penetrate or bypass insulation layers. This commonly
occurs at studs, joists, balconies, and junctions between external
walls, roofs, and floors. This significantly reduces the thermal
performance of buildings, causing increased heat loss, reduced
interior air temperatures, and heightened risks of condensation
and mold growth (Alhawari and Mukhopadhyaya, 2018). In
well-insulated residential buildings situated in cold climates,
studies indicate that thermal bridges can be responsible for a 30%
increase of total heating energy loss (Theodosiou and Papado-
poulos, 2008). Consequently, accurate detection, assessment,
and mitigation of thermal bridging effects are essential to achiev-
ing sustainable energy efficiency, ensuring occupant comfort,
and maintaining the long-term integrity of building assets.

Infrared Thermography (IRT) has become a popular method for
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identifying this issue, using terrestrial or UAV-based sensors
to measure the radiometric properties of the building surface
(Tomita and Chew, 2022). Advances in thermal 3D reconstruc-
tion have provided opportunities to visualize thermal bridging
in structures and better interact with digitized models of these
assets.

With data collected from multi-spectral sensor systems, UAV-
based 3D reconstruction can provide a cost-effective alternative
to traditional inspections, while allowing asset managers and
engineers to analyze 3D building data off-site.

2. RELATED WORK
2.1 Rooftop Snow Depth

UAV-based snow depth measurement has emerged over the past
decade as a versatile technique applicable across several fields,
including alpine hydrology, avalanche forecasting, ecological
studies, and infrastructure assessment. Early efforts predomin-
antly targeted alpine catchments and mountain hydrology, where
precise snow-depth mapping can provide improved snow wa-
ter equivalent (SWE) estimation and water resource forecasting
(Biihler et al., 2015, Maier et al., 2022).

Despite extensive research in natural environments, fewer stud-
ies have explored the application of UAV snow depth measure-
ment in infrastructure contexts, particularly for assessing rooftop
snow loads. One study investigated photogrammetry for rooftop
snow depth measurement (Chiba and Thiis, 2016). Four roofs
were identified for testing, and snow probes were used for field
measurement of the snow depth. A combination of Remotely
Piloted Aircraft System (RPAS) and handheld cameras was used
to capture the data with image overlaps of at least 60%. The
method for extracting model snow depths was not specified, but
it appears to be discretely sampled across the roof surface. Poten-
tially due to this low overlap, or the method of depth estimation,
the mean snow depth error was approximately 9 cm for the roof
that relied entirely on RPAS image captures. Due to these higher
depth errors, and a lack of clearly visualized, high-resolution
rooftop snow depth information, further research is required in
this field to better understand this workflow.

Our paper presents a workflow for UAV-based snow depth estim-
ation that uses consistent, replicable flight parameters that can
be specialized to specific roof requirements. This method res-
ults in a mean error of less than 1 cm, and the photogrammetry
workflow provides comparable results to LiDAR scanning.

2.2 Building Envelope Thermal Reconstruction

Three-dimensional thermal reconstruction combines thermal
imaging with 3D geometry reconstruction, offering valuable in-
sights for building diagnostics and structural inspections. Tradi-
tional photogrammetric methods, such as Structure-from-Motion
(SfM) and Multi-View Stereo (MVS), are widely adopted but
face challenges when applied directly to thermal imagery due
to low resolution, low contrast, and feature sparsity (Ramoén-
Constanti et al., 2022). Recent research emphasizes multi-modal
fusion techniques to address limitations inherent to thermal im-
ages. RGB-IR image fusion has become prevalent, leveraging
high-resolution RGB imagery for geometry reconstruction and
thermal images for surface temperature mapping.

2D image transformations have been applied in prior work to
provide efficient methods of image alignment between RGB

and IR image pairs, including overlap transformations (Andras
et al., 2019), and Normalized Cross-Correlation (NCC) image
registration (Yang et al., 2018). A popular method of image
alignment is through a homography transformation, whereby the
RGB images are shifted in some way to fit the image contents
and size of the thermal images. This can be done using 2D affine
transformations (Javadnejad et al., 2020), or using calibration
targets with various detection algorithms (Adamopoulos et al.,
2020, Daffara et al., 2020, Motayyeb et al., 2023), among other
methods. The primary issue with these 2D transformations
is they assume a perfectly planar scene and therefore neglect
any depth variations, such as parallax, that are present in real-
world imagery. When images are captured with oblique views
to better represent non-planar building components, relying on
homography or other 2D transformations for alignment can lead
to inaccuracies in the final registration between thermal and
RGB images (Adamopoulos et al., 2020).

3D pose estimation methods have been developed that aim to
address these issues, including precise modeling of the 3D lever
arm and boresight geometry of the camera rig (Javadnejad et
al., 2020), and registration of the thermal images to an RGB 3D
model by matching features between modalities, projecting them
onto the RGB point cloud, and iteratively refining the thermal
pose with Gauss—Newton optimization (Lin et al., 2025). 3D
camera pose estimation requires extremely precise multi-camera
calibration, which is particularly challenging with consumer-
grade thermal cameras due to lower resolution, low-contrast
thermal images. Consequently, these calibration uncertainties
can lead to significant errors in 3D pose estimation (Javadnejad
et al., 2020).

Methods that do not rely on image alignment are less common. A
study used manually collected building measurements to create
a 3D CAD model that could be textured using thermal imagery.
However, the resulting 3D model lacks detailed building features
due to the manual model generation method (Lagiiela et al.,
2014). Iwaszczuk et al. proposed a method with a prior known
building model, where thermal camera poses are refined based on
line-based model-to-image matching techniques (Iwaszczuk and
Stilla, 2017). This method was also limited by the requirement
for a manually constructed CAD building model.

2.3 Contributions

Through the study outlined in this paper, the authors present two
main contributions to these fields of research:

1. A method for UAV-based rooftop snow depth estimation us-
ing low-cost and open-source tools. A field study validated
the method using 17 rooftop snow probe measurements and
LiDAR scanning.

2. A UAV-based RGB-IR 3D reconstruction workflow that
does not use image alignment between the RGB and IR
image sets, eliminating the need for complex homography
or 3D transformations. Workflow was validated through
radiometric control points and pixel-wise temperature mean
average error (MAE) from selected camera poses.

3. 3D RECONSTRUCTION

This section introduces the high-level workflow for 3D recon-
struction from multi-spectral data gathered using UAVs, detail-
ing the stages of a 3D reconstruction pipeline that is used in this
work.
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Figure 2. Tie-points connecting features from the overlapping
regions of each constituent image, seen in orange.

The initial phase of the photogrammetry pipeline is the Data
Acquisition (DAQ). The quality of the reconstruction is sens-
itive to factors including lighting conditions and time of
day (Burdziakowski and Bobkowska, 2021, Luna Torres et al.,
2024), seasonal variations and time of year (Brown et al., 2024,
Luna Torres et al., 2024), and user-defined flight parameters
including flight altitude and ground sampling distance (GSD)
(Chodura et al., 2025). For physical assets such as building
envelopes, high-quality reconstructions may require hundreds
to thousands of images. Using UAVs with automated or even
autonomous flight regimes and multi-spectral sensors may be
performed with relatively reduced resources compared to manual
collection.

Following the DAQ stage, calibration focuses on performing a
preliminary refinement of the sensor data. This step extracts the
camera intrinsic parameters (focal length, principal point, dis-
tortion coefficients) and performs sensor calibration—both geo-
metric and radiometric—to correct lens distortion or account for
environmental factors, including temperature-dependent sensor
drifts and noise due to ambient light and temperature. It is also
the point at which image enhancements (e.g., brightness, con-
trast) may be applied, improving the effectiveness of feature
extraction during the next stage.

In the feature extraction and matching block, keypoints and
descriptors are extracted from the images. Examples of the
keypoints are shown in Figure 1 as green dots. This is commonly
done using local feature-based matching for traditional images
and techniques like L2-SIFT for aerial data (Jiang et al., 2020).
The keypoints that are extracted from the image form the initial
approximation of the sparse point cloud (Lépez et al., 2021).
At the end of this stage, tie-points are found connecting the
2D features from overlapping regions of the constituent images,
shown as orange lines in Figure 2.

In structure from motion (SfM) the relative poses of the cam-
eras in the scene are approximated and a sparse point cloud is
recovered, representing a rough initial geometry estimate. This
phase does not require apriori knowledge of the camera poses,
although they can be used if available for faster convergence (Ji-
ang et al., 2020). The camera intrinsics are further refined in this
phase.
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Figure 3. Photogrammetry pipeline used for 3D reconstruction.

Following SfM, the bundle adjustment stage refines the cam-
era and scene parameters under a single global optimization,
minimizing the reprojection error. This optimization is applied
across the dataset, leading to improvements in the camera pose
estimations and the sparse point cloud reconstruction (Seitz et
al., 2006). Although this stage improves the current state of the
reconstruction, it tends to be expensive, especially for datasets
with large image counts or feature dense images. The sparse
point cloud is densified in the penultimate stage of multi-view
stereo (MVS). This is done by traversing the constituent image
pixels and estimating new points outside of the tie-points found
in earlier stages. This geometry augmentation is responsible
for a richer geometry approximation (Seitz et al., 2006). Post-
processing is an optional step for user-defined manipulation of
the 3D model. This can include mesh texturing, hole filling,
smoothing, and decimation (reducing the number of polygons in
a mesh).

4. METHODS

All testing was conducted using the UAV platforms outlined
in Table 1, with the DJI Matrice 350 RTK being used in conjunc-
tion with the DJI Zenmuse H20T for thermal data collection and
the DJI Zenmuse L2 for LiDAR data collection. Preliminary
field testing was conducted at Ellis Hall on Queen’s University
campus in Kingston, Ontario as shown in Figure 4. Secondary
locations include Mitchell Hall on Queen’s campus, and com-
mercial buildings located in Kingston and Ottawa that have been
kept anonymous for privacy reasons. For the photogrammetry
flights, double-grid boustrophedon flight patterns were used,
with overlap and ground sampling distance parameters based
on a previous rooftop 3D reconstruction study (Chodura et al.,
2025).

Table 1. Platform, Camera, and Image Specifications

Platform Camera Format Resolution
H20T, Thermal RJPEG 640x512
Matrice 350 H20T, Wide JPEG 4056x3040
L2 Point cloud -
Mavic 3E Wide JPEG 5280x3956
Mini 3 Pro - JPEG 8064x6048

4.1 Rooftop Snow Depth

Snow depth and volume are calculated using vertical axis volu-
metric differencing between a no-snow building model and the
building covered in snow. For the case study on Ellis Hall, pho-
togrammetry and LiDAR were used for comparison, and manual
measurements of the snow depth were taken at various points on
the roof immediately after the flight for validation. Additional
small-scale testing was done on snow piles of known volume
to further validate the method. The final result is a scalar field
displaying snow depth data across an entire roof surface at a
high spatial resolution.
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Figure 4. Ellis Hall on Queen’s campus, Kingston, with snow
depth measurements identified with black circles (SD_x) and
thermal control points identified with red triangles (TCP_x).

4.1.1 Data collection. Data was collected using the same
flight paths for the no-snow and snow models to ensure con-
sistent model accuracy and coverage. For the photogrammetry
flights, double-grid boustrophedon flight paths were used. The
first two used flight parameters of 85% overlap, 0.75 - 1.25
cm/pixel ground sampling distance (GSD), and a camera angle
of 65 degrees. These paths were shifted 45 degrees from one an-
other to provide eight oblique viewing directions of the building
surface. The third path is a lower flight to capture surface details
at a higher resolution, with an overlap of 80%, GSD of 0.5 - 1.0
cm/pixel, and nadir camera angle.

The LiDAR flights consisted of five flights, with the first flight
being an orthographic boustrophedon pattern at nadir camera
angle, with a flight altitude of approximately 70 meters over the
target surface, and a LiDAR side overlap of 87%. The following
four flights are linear oblique paths at the same altitude and a
camera angle of 70 degrees, with flights facing the building from
each side. UAV localization was done using Real-Time Kin-
ematics (RTK) GPS through a mobile base station, and inertial
measurement units (IMUs) on-board the UAV. The flight plans
included calibration segments of the flight at the start, end, and
between direction changes to improve IMU accuracy.

4.1.2 Error metrics. Snow depth measurements were made
at 17 points on the roof, as shown in Figure 4. Measurements
were made using a snow probe inserted into the snow down to the
roof surface to record the depth. Laser rangefinders were used
to identify the exact position of measurement locations. Using
the position data of the control points, equivalent points on the
model were identified and the model depths were compared to
the field measurements.

4.1.3 Data processing. Photogrammetry models are pro-
cessed using Reality Capture, a photogrammetry software de-
veloped by Epic Games (Reality Capture Development Team,
2025). Following the alignment, meshing, and texturing stages,
a PLY model is exported and brought into CloudCompare, a 3D
point cloud processing software, for analysis (CloudCompare
Development Team, 2025). After both the no-snow and snow

models have been brought into CloudCompare, they are manu-
ally segmented of their surroundings and aligned using equival-
ent point pairs and an iterative closest point (ICP) algorithm set
to continue until an RMS of 1075, The mesh vertices are used
for the analysis, and these point clouds are spatially sub-sampled
to a minimum point distance of 5 mm for uniformity across
the mesh surface and between compared models. The volume
analysis is done using a 2.5D Volume’ tool. This refers to the
principal direction that must be specified on which the volume
is computed. The tool uses a rasterization process to divide the
clouds into an n by m grid of cells, specified by a user-defined
step size Az, in this case set to 0.01 m. Where there are points
in the principle plane identified in both clouds (ground and ceil-
ing), the difference in height is computed as the planar distance
between these two points. Volume across the surface can then
be defined by the following:

V= zn: zm: Az’d;;, 1)

i=1 j=1

V' = volume difference

Ax = step size

d;; = difference in height at grid cell (3, j)
n X m = grid dimensions

i, j = indices in the grid

where

and in the case of a grid step missing either a ground or ceiling
value, d;; = 0. Following the computation in Equation (1), a
global volume difference can be determined, and the grid can
be exported as a new point cloud, showing the difference in
height, or in this case snow depth, for every cell in the XY-plane
(CloudCompare Development Team, 2015).

4.2 Building Envelope Thermal Reconstruction

This paper proposes a joint RGB-IR 3D reconstruction method
capable of producing models of high geometric and radiometric
accuracy. The higher spatial resolution and image contrast of
the RGB images is used to create a high-quality mesh surface,
and the thermal images are used for the model texture.

Previous methods of thermal-RGB reconstruction require com-
plex homography, using feature matching between image pairs
for pose estimation of the thermal cameras within the RGB point
cloud environment. The method used in this paper instead uses
strategically selected flight parameters and post-processing to
improve the clarity and dynamic contrast of the thermal images
so that features can effectively be extracted and camera poses
can be accurately estimated.

4.2.1 Data collection. The thermal data was collected using
the DJI Zenmuse H20T, which produces radiometric 640 x 512
RJPEG images using an uncooled VOx microbolometer sensor.
The thermal camera has a 40.6 degree FOV and a 58 mm focal
length, and functions in a thermal range of -40 °C to 150 °C.
H20T specifications claim a + 2°C or + 2% accuracy at 5 m in
laboratory conditions. Preliminary testing indicated a loss of fine
detail when flying at distances greater than 20 m to the target
surface, so a flight height of 5 m - 15 m over target surfaces was
used. A reduced flight speed of 0.85 m/s was used to reduce
the likelihood of motion blur, a phenomenon more common
in thermal imagery. With the proposed thermal reconstruction
workflow, it was critical that the thermal images alone could
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establish enough tie points to achieve a successful alignment.
Because of this fact, combined with the narrow thermal FOV and
low flight altitude, higher image overlaps of 80 % and 70 % were
used for the orthogonal and oblique thermal flights, respectively.
Thermal images were taken in conjunction with RGB images
using the H20T’s wide camera lens, featuring a 1/2.3” CMOS
12 MP sensor and producing 4056 x 3040 RGB images.

4.2.2 Error metrics. Radiometric control points were taken
at 8 locations on the building envelope and rooftop to validate
the UAV-based thermal images and final model. A commercial
laser thermometer with a temperature range of -40 °C to 600 °C
was used, with a reported reading accuracy of + 2 °C below 0
°C and = 1 °C above 0 °C. The control points were compared
with points on the mesh surface of the model. In addition to
model validation through field measurements, temperature Mean
Average Error (MAE) at various camera poses across the model
was used to evaluate whether the thermal data captured was
accurately represented in the 3D reconstruction.

4.2.3 Pre-processing. In DJI’'s RJPEG output files, thermal
information is encrypted and difficult to access. A thermal tool
application developed by UAVAGEO was used to convert the
RIJPEG files to TIF files (UAV4GEO Development Team, 2025).
Image metadata is preserved in this process, and temperature
information is stored for each pixel of the images. A script was
then used to produce a set of PNG files from the TIF dataset,
where a global relationship is defined between a pixel temperat-
ure and its color value. This method provides 255 distinct values
for temperature to be assigned, linearly spread out between the
highest and lowest pixel temperatures in the dataset. These max-
imum and minimum values were clipped to 18 °C and -25 °C for
this experiment, respectively, which maintained 99.5% of pixel
value temperatures while removing outliers that significantly
reduced the contrast of the thermal images. These outliers were
likely due to very low-emissivity materials reflecting ambient
temperature, and heat vents producing small regions of high
temperature. Regions outside the specified range were assigned
the relevant maximum or minimum temperature.

4.2.4 Photogrammetry. Reality Capture was used for the
photogrammetry pipeline. A typical end-to-end photogrammetry
process would consist of the same source dataset being used for
alignment, meshing, and texturing. Because of the higher image
contrast and spatial resolution of the RGB images, this dataset
was used for the meshing stage to provide a more geometrically
accurate reconstruction of the building. In a separate project, the
thermal images were imported and aligned. Due to the lower
altitude flight and the pre-processing steps, as well as the RTK
GPS metadata to establish position priors, a sparse cloud of tie
points was produced. The sparse clouds of both reconstructions
were exported as components, along with the estimated camera
poses for both datasets, and the components were aligned using
ICP and bundle adjustment global alignment techniques within
Reality Capture. For the following stages, the RGB images were
restricted from texturing, and the thermal images were restricted
from meshing in order to produce the thermal reconstruction.

4.2.5 Post-processing. The resulting mesh was exported as
a PLY file and brought into CloudCompare for post-processing.
The surrounding environment was manually removed to provide
an accurate representation of the buildings temperature range.
The RGB colour channel values of all mesh vertices (for gray-
scale, they are the same across the three channels) are converted
into a scalar field.

For the point cloud of mesh vertices P, each point p has a colour
value ¢(p) € [0, 255]. A linear transformation can be defined:

- Tmin
Tnin, P, 2
9es <)+ Vpe 2

that maps from c(p) to T'(p) such that T'(p) € [Tmin, Tmax)

where T'(p) = temperature in °C at p
Tmin = minimum temperature
Tmax = Maximum temperature

¢(p) = color channel intensity value at p

using the known relationship between the color value and tem-
perature determined using the pre-processing minimum and
maximum temperatures. The model can then be displayed with a
color map that better displays the temperature range, and points
on the mesh can be sampled for temperature accuracy metrics.

5. RESULTS
5.1 Snow Load Results

Results from the Ellis Hall case study can be seen in Figure 5.
Seen in the lighter colors, both the LIDAR models and photo-
grammetry models provided snow depth maps that effectively
captured regions of built-up snow and drifts that had formed
on the rooftop. Additionally, fine snow details were captured,
included footprints left in the snow by an animal, seen on the
highest roof section to the left of the telescope.

The field measurements collected on the rooftop were compared
with depth information from the models, and the snow depth
error at each control point is shown for LiDAR (6;) and photo-
grammetry (Jp) in Table 2. Average snow depth error for these
methods was 1.0 cm and 0.9 cm for LiDAR and photogrammetry,
respectively.

Table 2. Measured Snow Depths Compared with Photogrammetry

and LiDAR Model Depths
Measured Lidar Photogrammetry
Point Depth | Depth 01 Depth Op
(cm) | (cm) | (cm) | (cm) | (cm)
SD_1 6.5 5.7 0.8 6.5
SD_2 7.5 6.9 0.6 8.2
SD_3 18.0 18.9 0.9 19.5
SD_4 12.5 12.0 0.5 12.5
SD_5 10.0 104 0.4 10.0
SD_6 11.5 12 0.5 12.1
SD_7 12.0 12.6 0.6 11.0

0

0.7

1.5

0

0
0.6
1.0

SD_8 9.5 10.2 0.7 9.6 0.1
SD_9 10.0 104 0.4 9.1 0.9
SD_10 13.5 134 0.1 12.0 1.5
SD_11 7.0 8.6 1.6 7.1 0.1
SD_12 11.0 12.1 1.1 10.7 0.3
SD_13 8.5 9.1 0.6 8.6 0.1
SD_14 15.5 13.1 2.4 14.3 1.2
SD_15 11.0 12.8 1.8 8.4 2.6
SD_16 14.0 17.9 39 15.5 L5
SD_17 10.5 9.6 0.9 7.9 2.6
Average - - 1.0 - 0.9

Additional flights were conducted at three other buildings with
varying degrees of snow cover to observe how photogrammetry
performed in different conditions and settings. Rooftop access
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Figure 5. Photogrammetry snow depth map (left) and LiDAR snow depth map (right).

was not permitted at these locations, and thus additional depth
measurements were not taken. Resulting models appeared to
show equivalent snow detail to the case study, from qualitative
analysis of the reconstructions and depth fields.

5.2 Thermal Reconstruction Results

5.2.1 Geometric model accuracy. The geometric model ac-
curacy determines the quality of the surface on which the tem-
perature information is displayed. This can be measured qualit-
atively through visual examination and quantitatively through
control points and cloud-to-cloud comparisons with a ground
truth model. Figure 6 shows the RGB-IR 3D reconstruction.
Close-up images on the right provide qualitative evidence of
thermal re-projection accuracy and demonstrate details free from
aliasing and distortion.

5.2.2 Thermal measurement accuracy. Absolute temperat-
ure error can occur due to incorrect calibration of environmental
parameters such as ambient temperature and the emissivity of
the target material. The absolute temperature error can be de-
termined using field measurements with calibrated instruments.
Absolute temperature error was evaluated at eight different loc-
ations on the building envelope and rooftop using a calibrated
laser thermometer. The results can be seen in Table 3, and the
testing yielded an average temperature error of 0.9 °C.

Table 3. Temperature Field Measurements Compared with
Temperatures Sampled from the Model

Measured Model
Point Temp (°C) | Temp (°C) | 6 (°C)
TCP_1 7.3 7.6 0.3
TCP2 10.2 10.0 0.2
TCP_3 -12.7 -8.9 3.8
TCP 4 9.5 8.5 1.0
TCP_5 11.3 11.3 0.0
TCP_6 14.9 15.7 0.8
TCP_7 -6.3 -5.6 0.7
TCP_8 9.6 8.9 0.7
Average - - 0.9

5.2.3 Aliasing and distortion. Aliasing and other distortions
can occur during the texturing process as the thermal imagery
is projected onto the existing mesh. This can be caused by a
misalignment in the estimated camera poses or by inaccuracies
in mesh geometry, lens distortion effects, or insufficient texture

resolution relative to the mesh. This can result in a loss of
fine details displayed on the model. Aliasing and distortion
can be observed both visually, and quantitatively by comparing
pixel-wise temperature values from the IR source images with
corresponding RGB values from rendered model views, enabling
the evaluation of thermal and geometric model accuracy relative
to the input images (Hassan et al., 2024).

Temperature MAE, considering every pixel of the compared
images, was measured for five different camera poses. The
randomly chosen images, the error map, and the MAE for each
camera pose can be seen in Figure 7. The average MAE across
all camera poses was 2.7 °C.

6. DISCUSSION

The results from the snow depth experiment yielded promising
results, with both photogrammetry models and LiDAR models
producing depth errors equal to or less than 1 cm. Additionally,
the average depth difference between the two methods was less
than 1.3 cm. LiDAR producing a higher error than photogram-
metry could have been due to the higher levels of noise produced
in the LiDAR point cloud, when compared to the photogram-
metry cloud that was derived from a mesh surface. Qualitative
observation of varying roof types and snow coverage indicate
that this method can be applied to a range of snow conditions,
but more measurement field tests are required to confirm this.

The proposed thermal reconstruction method produced a model
with high geometric accuracy, high radiometric accuracy, and
minimal aliasing and distortion. Additionally, the proposed
method does not require complex homography or multi-modal
image matching. Field measurements yielded an average abso-
lute temperature error of 0.9 °C, an average temperature MAE
of 2.7 °C between IR source images and the model. This error
could be caused by incorrect projection of the thermal texture
over the mesh resulting from misalignment of the camera poses
or geometric deformations in the mesh. Additionally, it was ob-
served that areas where shadows were present exhibited higher
error. This is because the temperature of these areas shifts as the
flight progresses, and these values are averaged to produce the
final texture in the model.

Another notable observation in the thermal reconstruction shown
in Figure 6 is the presence of significantly lower temperature
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Figure 6. Joint RGB-thermal 3D reconstruction. After images from both datasets are aligned separately, the resulting sparse clouds of tie
points are merged. The RGB images are used for meshing, due to their higher spatial resolution and image contrast. The texture is then
projected onto the mesh using the thermal images, and a linear transformation can be applied to yield the corrected temperature values.
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Figure 7. Grayscale images (top) display the thermal images collected from the UAV. Using the estimated camera poses from the
photogrammetry alignment stage, a pixel-wise comparison between renders of the model and the IR source images was conducted to
yield a temperature error for each pixel (bottom). The mean average error (MAE) for each camera pose is displayed in the bottom left.

readings on reflective surfaces such as the HVAC vent and tele-
scope. These lower temperature values likely result from the
low emissivity characteristics of metallic or polished surfaces.
Emissivity is the efficiency of a surface in emitting thermal radi-
ation relative to an ideal thermal radiator. Due to their reduced
capacity to emit infrared radiation, these surfaces predominantly
reflect ambient thermal radiation, causing them to appear artifi-
cially colder in thermal imagery. Consequently, the measured
temperatures on these reflective surfaces may not accurately
represent their true surface temperature.

7. CONCLUSION

This paper demonstrates the successful application of UAV-
based 3D reconstruction techniques for assessing rooftop snow
depths and thermographic properties of building envelopes in
cold region climates. Photogrammetry-based reconstruction
achieves accurate snow depth measurements, aligning closely
with manual field observations and LiDAR scans. The presen-
ted thermal reconstruction method effectively combines high-
resolution RGB data with thermal imagery, providing precise
temperature mapping with low geometric and radiometric errors.
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