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Abstract:

Monitoring aquatic invasive plant species (AIPs) and their phenological stages remains a challenge in complex freshwater
environments. This study evaluates the potential of UAV-based multispectral imagery and machine learning for classifying six
vegetation classes in a tropical urban reservoir composed of three phenological stages of Eichhornia crassipes and Brachiaria
subquadripara, Pistia stratiotes, and Typha domingensis species distribution. UAV flights were conducted on three dates using the
MicaSense RedEdge-Dual sensor. A two-step principal component analysis (PCA) was used to select spectral bands and derive
Normalized Difference and Ratio indices, aiming to reduce redundancy and assess their usefulness in classification. Three
classifiers—Linear Discriminant Analysis (LDA), Random Forest (RF), and Support Vector Machine with RBF kernel (SVM-
RBF)—were tested using 5-fold cross-validation. RF and SVM-RBF achieved the highest accuracies, ranging from 0.71 to 0.84,
while LDA presented the lowest accuracy, between 0.63 and 0.82. Including spectral indices yielded only marginal improvements
and did not consistently enhance classification performance, particularly when using more robust algorithms like RF and SVM-RBF,
indicating that the ten original spectral bands are adequate to capture the key spectral distinctions in most cases. Classification
performance was more consistent for Brachiaria subquadripara and Pistia stratiotes, while considerable confusion was observed
between Typha domingensis and the phenological stages of Eichhornia crassipes, likely due to spectral similarity. Overall, model
selection had a higher influence on performance than feature augmentation. Future studies should explore spatial-textural features
and sensor fusion to improve the generalization of AIP monitoring systems.

1. Introduction Despite these technological advances, challenges remain in
accurately discriminating IAP species and their phenological
stages, mainly due to their high spectral similarity,

environmental variability, and the structural complexity of

The rapid proliferation of aquatic invasive plants (IAP), such as
Eichhornia crassipes (water hyacinth), has significantly

transformed the ecological balance of eutrophic reservoirs,
resulting in biodiversity loss, deterioration of water quality,
reduction of water surface area, and disruption of multiple water
uses (Hestir ef al., 2008; Wu and Ding, 2020). These impacts
are especially critical in tropical and subtropical urban
reservoirs, where high nutrient loads and low water circulation
rates create favorable conditions for uncontrolled macrophyte
growth. Monitoring the spatial distribution, species
composition, and phenological stages of these plants is crucial
for understanding ecosystem dynamics, assessing pollution
levels, and guiding control strategies and ecological restoration
efforts (Wu and Ding, 2020).

Remote sensing has become an essential tool in the detection
and monitoring of IAPs. Satellite data, such as from the Sentinel
or Landsat programs, provide historical and regional-scale
analysis, but their spatial resolution often limits their
effectiveness in heterogeneous environments or in detecting
early-stage infestations. UAVs equipped with multispectral
sensors have emerged as a powerful complementary platform,
offering sensor customization, sub-meter spatial resolution, and
on-demand flight flexibility. These characteristics enable the
precise mapping of aquatic vegetation, even in narrow or
fragmented water bodies, and make UAVs effective for
distinguishing species and phenological stages (Padua et al.,
2022; Mouta et al., 2023).

vegetation. Previous studies have shown that integrating
spectral indices, such as NDVI or band ratios, alongside in-band
reflectance data can sometimes improve classification
performance, although results vary depending on sensor type,
season and classification algorithm (Ade ef al., 2022; Mu et al.,
2023).

Machine learning techniques have increasingly been used to
address these challenges by modeling complex, non-linear
relationships in multispectral data. Among the commonly
adopted classifiers, Linear Discriminant Analysis (LDA),
Random Forest (RF), and Support Vector Machine with a radial
basis function kernel (SVM-RBF) are promising techniques for
vegetation mapping tasks. While LDA offers simplicity and
interpretability, RF and SVM-RBF typically achieve higher
accuracy in high-dimensional datasets due to their ability to
capture intricate patterns. Evaluating these classifiers in the
context of multitemporal UAV datasets and exploring their
derived spectral indices can provide important insights into the
robustness and generalizability of IAP classification models.

This study aims to improve the classification of IPA species and
their phenological stages using high-resolution multispectral
imagery acquired by UAVs. We evaluate and compare the
performance of three machine learning classifiers, LDA, RF and
SVM-RBEF, in distinguishing six vegetation classes, including
three growth stages of Eichhornia crassipes. To enhance model
inputs and reduce feature redundancy, we implement a two-step
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principal component analysis (PCA) for selecting the most
informative spectral bands and derived indices (Normalized
Difference and Ratio). The study also investigates whether the
addition of these spectral indices improves classification
performance across multiple UAV acquisition flights, and
assesses the potential and limitations of each classifier in
handling both species-level and intra-species phenological
variation.

2. Methodology

To support this objective, three UAV campaigns were
conducted at the Ibirité Reservoir (Minas Gerais, Brazil) on
August 23, September 17, and October 2, 2024, using the
MicaSense RedEdge Dual-P sensor, which captures data in ten
multispectral bands at Blue-444, Blue-475, Green-531, Green-
560, Red-650, Red-668, Red Edge-705, Red Edge-717, Red
Edge-740, and Near Infrared-842 nm. These spectral bands are
renamed as band_1 to band 10, respectively.

The three UAV campaigns were strategically timed to capture
phenological variation in aquatic plant development,
representing late winter (August), early spring (September), and
mid-spring (October) conditions. According to Ghoussein et al.
(2019), this period corresponds to the peak seasonal expansion
of floating macrophytes, such as Eichhornia crassipes, when
the species exhibit strong phenological expression and
differences in spectral behaviour become more apparent. The
dry-season stability and high vegetation cover observed during
these months provide optimal conditions for class
discrimination in multispectral imagery.

All flights were calibrated with a reflectance panel and were
synchronized with Sentinel-2 overpasses, enabling future
synergy between aerial and satellite data. The images were
processed using Agisoft Metashape to generate high-resolution
orthomosaics with a spatial resolution of 6 cm or less. Figure 1
illustrates an example of the orthomosaics. From these data,
spectral reflectance data were systematically extracted from
georeferenced polygons representing different vegetation
classes.

Figure 1. UAV orthomosaic of the Ibirité Reservoir (October 2,
2024).

For each UAV acquisition date, vegetation samples were
extracted using labelled shapefiles containing georeferenced
polygons that delineated homogeneous patches of known
species and phenological stages. These shapefiles were used to
spatially mask the multispectral UAV orthomosaics, allowing
the extraction of pixel-level reflectance data exclusively within
each polygon. Each polygon contributed individual pixel spectra
to the dataset, rather than averaged values, resulting in a per-
pixel classification approach.

To maintain class balance and avoid model bias, a maximum of
3,000 wvalid samples per vegetation class were randomly
selected from each date. The final dataset comprised six classes:
three phenological stages of FEichhornia crassipes, young
floating, adult floating, and adult rooted (fixed in margins),
along with Brachiaria subquadripara, Typha domingensis, and
Pistia stratiotes. Each sampled pixel was characterized by a ten-
dimensional spectral vector corresponding to the UAV sensor’s
bands and a categorical class label.

Individual datasets were compiled for each UAV flight date and
subsequently merged into a unified multitemporal database to
support comparative and temporal classification analyses. For
model evaluation, the full dataset was randomly partitioned into
five stratified folds, ensuring a consistent 80% training and 20%
validation split per fold across all classes.

The labelled training data were used to generate spectral
signatures for each vegetation class across the three acquisition
dates, highlighting both interclass separability and phenological
variation over time. These spectral profiles, derived from pixel-
level reflectance values, are presented in Figure 2. To provide
spatial context for the labelled areas used in sample extraction,
Figure 3 displays four zoomed-in orthomosaics with overlaid
polygons, each representing a different invasive species or
phenological stage in the reservoir. Complementing this, Figure
4 includes field photographs documenting the surveyed aquatic
invasive plants during the UAV campaigns, offering a visual
reference for the vegetation classes analysed in this study.
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Figure 2. Spectral signatures of AIP classes derived from labels
collected on each day of the UAV campaigns. Typha
domingensis was not present in the mapped area on September
17, 2024.
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Figure 3. Labeled training polygons for aquatic vegetation
classes used in the classification, delineating homogeneous
patches of six vegetation classes.
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Figure 4. Aquatic invasive plant species observed in the study
area.

To enhance the relevance of input variables, reduce
multicollinearity, and improve the spectral separability of
aquatic vegetation classes, a two-stage feature selection strategy
was implemented based on unsupervised principal component
analysis (PCA). This procedure was applied independently to
each acquisition date, as well as to the combined multitemporal
dataset. In the first stage, PCA was conducted on the full set of
ten spectral bands acquired by the UAV sensor. Bands with the
highest absolute loadings on the leading principal components
were prioritized for selection, as they contributed most
significantly to the variance structure of the data. To ensure the
spectral diversity of the selected bands, pairwise cosine
similarity was calculated between loading vectors, and bands
with high spectral redundancy (cosine similarity > 0.90) were
excluded.

Subsequently, all pairwise combinations of the selected,
spectrally distinct bands were used to compute two types of

vegetation indices—Normalized Difference (ND) and Ratio—
which are widely used to capture relative contrast and
proportional relationships in vegetation reflectance. A second,
independent PCA was then performed exclusively on the full set
of derived indices. Importantly, this approach to index selection
was entirely unsupervised and did not incorporate class labels.
The same criteria were applied to retain only the most
informative and non-redundant indices, yielding a refined set of
variables for classification. This two-step unsupervised process
resulted in a compact feature set composed of selected spectral
bands and vegetation indices optimized for spectral variance
while avoiding collinearity.

To evaluate the impact of feature selection on classification
accuracy, two modelling strategies were employed. The first
configuration (dataset B) used the full set of ten original spectral
bands without any selection. The second configuration (dataset
B+I) incorporated the reduced set of spectral bands and indices
obtained through the unsupervised PCA-based procedure. All
features were standardized using z-score normalization before
classification. Three machine learning algorithms, LDA, RF and
SVM-RBF were applied to both configurations (Thamaga and
Dube, 2019; Bayable et al., 2023).

This experimental design enabled a direct evaluation of how the
PCA-based, unsupervised feature selection pipeline influenced
the performance of each classifier. By comparing models
trained on the original spectral bands (B) with those using the
optimized combination of selected bands and vegetation indices
(B+I), we systematically assessed the added value of
unsupervised index selection for species-level classification of
aquatic invasive plants in this study.

Mean performance metrics for the five stratified folds, including
overall accuracy, precision, recall, and F1-score, were computed
for each classifier and modelling strategy. Confusion matrices
were also analysed to evaluate classification consistency across
species and phenological stages. This comparative framework
enabled a direct examination of how the inclusion of selected
spectral indices affects model performance relative to using the
original spectral bands alone.

3. Results:
3.1 PCA-based unsupervised feature selection

To reduce feature dimensionality and enhance class separability,
a two-level PCA was applied: first to the original spectral bands
and then to the derived spectral indices (Normalized Difference
and Ratio). The first PCA, conducted on the ten-band
reflectance data, identified bands with the highest variance
contribution and lowest angular redundancy. As illustrated in
Figure 5, which shows the PCA biplot for the combined dataset
(ALL), selected bands such as band 3, band 5, band 8, and
band 10 were the most informative and spectrally distinct,
forming the basis for the generation of pairwise spectral indices.

The second PCA, applied to ND and Ratio indices derived from
these bands, further reduced dimensionality by identifying a
subset of indices with high explanatory power and minimal
collinearity. The biplot shown in Figure 6 presents the results of
this analysis for the ALL dataset, highlighting indices such as
ND B5 B3 — Normalized Green Red Difference Index (Tucker,
1979), ND_B5 B8, ND B10 B3 — Green Normalized
Difference Vegetation Index (Gitelson et al., 1996), and
R _B5_ B8 — Ratio Vegetation Index (Birth and McVey, 1968),
as the most relevant for class separation. These indices were
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particularly effective at differentiating among phenological
stages of Eichhornia crassipes and distinguishing other species
like Typha domingensis and Brachiaria subquadripara.

PCA 1 - Spectral Bands (Red = Selected)

Date PCA Selected Indices
ALL R B5 B8 ND B5 B3, ND B5 B8, ND B10 B3
23/08/2024 R B5 B7,R B10 B7,ND B10 B5,ND B8 B7
17/09/2024 ND B6 B3,R B6 B8,R BI10 B3,R B10 B6
02/10/2024 R B5 B8, R BI10 B5,ND B10 B3
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Figure 5. PCA biplot of the original spectral bands (band 1 to
band 10) for the combined (ALL) dataset. Vectors represent the
contribution of each band to the first two principal components,
supporting the selection of bands 3, 5, 8 and 10 for spectral
index generation.

PCA 2 - Spectral Indices (Red = Selected)

Ratio_band_S

Ratio_band_5_band_3

ND_band_5_band_3

PC2

11
d

Q 8
Rativ_band_10 band 3

Class
BS
EC_Adult_Floating
EC_Adult_Rooted
EC Young_Floating

D
Ratio_band_10_band_5 E>
-6 -4 =2 0 2 4 6 8 10

PC1

Figure 6. PCA biplot of the derived spectral indices based on
selected bands from the first PCA. Highlighted indices (e.g.,
ND_B5 B3, ND B5 B8, ND B10 B3, and R_B5 B8) showed
the highest variance contribution and were most effective for
class discrimination.

Table 1 summarizes the spectral indices selected through PCA
for each acquisition date and for the combined (ALL)
multitemporal dataset. While the specific indices varied across
dates—likely due to phenological changes and environmental
conditions—certain spectral bands were consistently prominent.
band 5 was the most frequently selected variable in this
procedure, followed by band 10, band 3, and band 8.
Additionally, band 6 and band_7 also appeared in multiple
indices, reinforcing their importance for capturing subtle
spectral variations relevant to vegetation class discrimination.
The frequent recurrence of these bands underscores their
robustness and relevance in multitemporal classification
workflows.

Table 1. PCA-selected spectral indices for each acquisition date
and the combined (ALL) dataset.

3.2 Classifier performance assessment

The 5-fold cross-validation classification performance across
different machine learning algorithms and feature
configurations revealed consistent trends throughout the
multitemporal datasets. Both SVM-RBF and RF classifiers
consistently achieved the highest overall accuracy and macro-
averaged precision, recall, and F1-score across all acquisition
dates. In contrast, Linear Discriminant Analysis (LDA)
systematically underperformed, particularly in the October 2,
2024 dataset, where its accuracy (0.630) and F1-score (0.660)
were substantially lower than those of RF (accuracy: 0.718; F1-
score: 0.735) and SVM (accuracy: 0.720; Fl-score: 0.738).
These results highlight the advantage of non-linear and
ensemble-based methods in modeling the complex spectral
responses and high inter-class variability associated with
aquatic invasive plants. For comparison, previous studies using
Sentinel-2 data and RF, SVM for IAPs classification achieved
overall accuracies above 85% (Padua et al., 2022; Bayable et
al., 2023; Mqingwana et al., 2024).

Although including derivative spectral indices (B+I) is
generally expected to enhance -classification performance,
especially in Eichhornia crassipes mapping tasks (Thamaga and
Dube, 2019), our results showed inconsistent improvements. In
several cases, particularly for RF and SVM-RBF, models using
only the original spectral bands (B) performed comparably to,
or even slightly better than, using a complex dataset. This
suggests that in high spatial and spectral resolution, the raw
spectral information may already capture the key variability
needed for class discrimination.

This trend suggests that these algorithms are inherently robust
to input dimensionality and may already capture the key
spectral distinctions using raw reflectance data. An exception
was observed in the LDA classifier on the October 2 dataset,
where the inclusion of indices improved classification accuracy
from 0.630 to 0.685 and Fl-score from 0.660 to 0.700,
indicating that feature enhancement may be more beneficial for
linear classifiers when class separability is limited.

As shown in Table 2, classification performance on the full
multitemporal dataset (ALL) remained stable for RF and SVM,
with overall accuracies ranging from 0.76 to 0.78 regardless of
whether indices were included. LDA, however, continued to
perform poorly under the multitemporal configuration,
reaffirming its limitations in capturing spectral variability across
acquisition dates. Although including derivative spectral indices
led to minor performance gains in specific cases, most notably
with LDA, their overall contribution was limited when
compared to the effect of the classification algorithm itself.
Comparative results based on the Fl-score indicate that model
choice had a far greater influence on classification success than
feature augmentation alone.
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Date Model Features | Accuracy | Precision | Recall | F1-Score
23/08/2024 LDA B+l 0.764 0.764 0.764 0.764
23/08/2024 LDA B 0.766 0.761 0.762 0.762
23/08/2024 RF B+I 0.804 0.803 0.804 0.803
23/08/2024 RF B 0.807 0.807 0.806 0.806
23/08/2024 | SVM (RBF) B+l 0.821 0.820 0.821 0.820
23/08/2024 | SVM (RBF) B 0.822 0.823 0.821 0.821
17/09/2024 LDA B+l 0.811 0.808 0.811 0.808
17/09/2024 LDA B 0.818 0.818 0.817 0.817
17/09/2024 RF B+I 0.826 0.824 0.826 0.824
17/09/2024 RF B 0.827 0.825 0.825 0.825
17/09/2024 | SVM (RBF) B+l 0.840 0.839 0.840 0.839
17/09/2024 | SVM (RBF) B 0.839 0.837 0.838 0.838
02/10/2024 LDA B+l 0.685 0.700 0.685 0.700
02/10/2024 LDA B 0.630 0.729 0.660 0.660
02/10/2024 RF B+I 0.714 0.731 0.714 0.731
02/10/2024 RF B 0.718 0.808 0.735 0.735
02/10/2024 | SVM (RBF) B+l 0.719 0.737 0.719 0.737
02/10/2024 | SVM (RBF) B 0.720 0.810 0.738 0.738

ALL LDA B+l 0.701 0.766 0.701 0.701

ALL LDA B 0.714 0.736 0.708 0.708

ALL RF B+1 0.780 0.780 0.752 0.752

ALL RF B 0.763 0.782 0.759 0.759

ALL SVM (RBF) B+I 0.761 0.780 0.758 0.758

ALL SVM (RBF) B 0.762 0.780 0.757 0.757

Table 2. Performance Metrics of LDA, Random Forest, and
SVM (RBF) Models Across Dates and Feature Sets

These findings emphasize that algorithm selection is more
essential than feature engineering when classifying AIP species
using UAV-based multispectral imagery. Ensemble methods
like Random Forest and kernel-based approaches such as SVM
(RBF) consistently delivered higher accuracy and F1-scores
across dates and configurations, demonstrating strong
performance and adaptability over time. This makes them
highly suitable for operational monitoring of aquatic vegetation
in dynamic environments.

Regarding the classification of the dataset ALL with B+I
features, the confusion matrices for LDA (Figure 7), RF (Figure
8), and SVM-RBF (Figure 9) reveal important patterns about
the strengths and limitations of each classifier in handling both
inter-species and intra-species variation in AIP.

Species-level differentiation was generally strong across all
models, particularly for Brachiaria subquadripara, Eichhornia
crassipes, and Pistia stratiotes. These three species displayed
consistently high true positive rates with limited confusion
among one another, suggesting that their spectral signature
variations are sufficiently distinct to be reliably detected by all
classifiers. In contrast, Typha domingensis proved more difficult
to classify consistently. All three models showed confusion
between Typha domingensis and other classes, particularly with
Eichhornia crassipes, which likely reflects the higher spectral
variability of Typha.

Typha is a tall and emergent macrophyte, with upright stems
and denser vertical structure, and exhibits a complex interaction
with light, including variable shadowing, reflectance anisotropy,
and increased within-class heterogeneity (Al-Sodany et al.,
2022). Additionally, Typha tends to remain physiologically
active over longer periods, introducing temporal variation in
chlorophyll content, canopy moisture, and structural traits.
These ecological features result in a broader spectral footprint
across time and space, increasing the likelihood of spectral
overlap with other species. Also, this variability reduced its
separability under both linear and non-linear classification
schemes.
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Figure 7. Confusion matrix of LDA classification using B+I
features (Dataset: ALL).
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Figure 8. Confusion matrix of RF classification using B+I
features (Dataset: ALL).
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Figure 9. Confusion matrix of SVM-RBF classification using
B+I features (Dataset: ALL).
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The confusion observed between adult-floating and adult-rooted
Eichhornia crassipes in the classification results is likely due to
their similar reflectance profiles in the red-edge and near-
infrared regions. While floating adults tend to maintain higher
reflectance in these wavelengths due to healthier, more hydrated
leaves, long-term adult-rooted plants at the margins often
exhibit increased senescence, homogeneous and denser canopy
structures—factors that reduce red-edge and NIR reflectance.
Ghoussein et al. (2023) demonstrated that Eichhornia crassipes
with signs of aging or mixed physiological states (e.g.,
yellowing or flowering individuals) presented lower reflectance
in NIR bands compared to vigorous, green monospecific stands.

In contrast, young plants are more easily distinguishable from
adult individuals due to their higher reflectance in the visible
range. This spectral behavior is linked to their lower chlorophyll
content, which results in reduced absorption and consequently
greater reflectance in the visible wavelengths. Sims and Gamon
(2002) found this pattern to be consistent across species and
developmental stages, highlighting that young leaves, with
underdeveloped pigment structures, exhibit distinct optical
properties compared to mature leaves. As a result, phenological
differences between young and adult plants generate a more
pronounced spectral separation than the structural differences
between adult floating and rooted forms, whose divergence is
primarily constrained to the NIR and red-edge domains.

The feature importance analysis from the Random Forest
classifier trained on the full multitemporal dataset (ALL, B+I)
revealed a clear dominance of raw spectral bands over
derivative indices (Table 3). The top-ranked features included
band 4 (Green, 560 nm), band_3 (Green, 531 nm), and band 7
(Red Edge, 705 nm), followed by band 1 (Blue, 444 nm) and
band 10 (NIR, 842 nm). These wavelengths are strongly
associated with pigment content, internal canopy structure, and
water status—key traits for distinguishing aquatic invasive
species under varying phenological conditions.

This ranking aligns with Hestir et al. (2008), who emphasized
the importance of red-edge and NIR reflectance in capturing the
structural complexity and physiological variation within
Eichhornia crassipes mats, particularly where flowering,
senescence, and active  growth  coexist. = Notably,
ND band 10 band_3, the GNDVI, was among the highest-
ranked indices, reflecting its sensitivity to chlorophyll
concentration and biomass. Mucheye et al. (2022) reported
strong correlations between GNDVI and chlorophyll content in
E. crassipes, reinforcing its use for classification of
phenological stages.

Band Importance Score

band 4 (Green-560) 0.1077
band 3 (Green-531) 0.1040
band 7 (Red Edge 705) 0.0947
band 1 (Blue-444) 0.0929
band 10 (Near Infrared-842) 0.0855
band_8 (Red Edge-717) 0.0852
band 2 (Blue-475) 0.0796
ND _band 10 band_3 0.0700
band 9 (Red Edge-740) 0.0670
ND band 5 band 3 0.0511
band 6 (Red-668) 0.0507
ND band 5 band 8 0.0405
Ratio_band 5 band 8 0.0384
band 5 (Red-650) 0.0349

Table 3. Top features ranked by RF Importance for the ALL
Dataset using B+I features.

Our study builds upon recent advances demonstrating the
effectiveness of RF and SVM in remote sensing-based mapping
of Eichhornia crassipes. Bayable et al. (2023), working with
Sentinel-2 and Landsat-8 imagery in Lake Tana (Ethiopia),
reported overall accuracies exceeding 0.9 using RF and SVM
for distinguishing E. crassipes from surrounding land cover
types. Similarly, Padua et al. (2022) applied these algorithms to
UAV multispectral imagery over the Mondego River basin
(Portugal) in a binary classification of E. crassipes versus open
water, achieving accuracies of 0.94 with RF and 0.87 with
SVM. While these results confirm the effectiveness of these
algorithms, they were obtained under relatively simplified
classification schemes, with greater spectral separation between
classes and limited intra-class variability. In contrast, our study
applied RF and SVM-RBF to a more complex and ecologically
realistic scenario involving six vegetation classes within a
heterogeneous urban reservoir. Despite the higher spectral
similarity and structural variability among classes, our models
achieved overall accuracies ranging from 0.71 to 0.84. These
findings reaffirm the robustness of RF and SVM in aquatic
vegetation mapping, particularly when applied to fine-resolution
UAV data, and underscore their suitability for operational
monitoring in more challenging classification contexts.

3.3 LDA Projection and the effect of spectral indices

Regarding the LDA classification of the October 2 dataset,
where the inclusion of indices improved classification accuracy
and F-1 score, Figure 10 illustrates the corresponding LDA
projections in two scenarios: using only the original spectral
bands (top panel) and using both bands and derivative indices
(bottom panel). Although the overall distinction between the
two scenarios is not remarkable, the most notable improvement
is observed in the separation between FEichhornia crassipes
adult rooted (green points) and adult floating (yellow points),
which show reduced overlap and greater distance between their
centroids in the augmented feature space (Bands + Indices).
This suggests that the inclusion of spectral indices contributed
to enhancing the discriminability between these two
phenological forms.

Furthermore, the Eichhornia crassipes young floating (red
points) and Typha domingensis (purple points) classes became
more adjacent in the LDA projection with indices, indicating a
potential trade-off where the additional features did not
consistently improve class separability across all groups. A
further observation is the increased isolation of the Brachiaria
subquadripara class (blue points) when indices were included,
as its centroid moved farther away from the other groups,
suggesting improved distinction from spectrally similar
vegetation.

These subtle shifts in the LDA space demonstrate that the
inclusion of spectral indices can enhance linear discriminant
performance for certain class pairs, particularly when original
bands alone do not fully capture the spectral variability
associated with structural and physiological plant traits. Despite
its simplicity and interpretability, LDA’s limited separation
reinforces the need for non-linear models like RF and SVM-
RBEF to effectively capture complex spectral patterns inherent to
IAPs (Padua et al., 2022; Bayable et al., 2023).
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Figure 10. LDA projection of the October 2 dataset using B
(Top) and B+I (Bottom) for IAP classification.

4. Conclusions

This study advanced the classification of aquatic invasive plant
species and their phenological stages using high-resolution
UAV multispectral imagery combined with machine learning
algorithms. A two-level PCA-based dimensionality reduction
was applied to identify the most informative spectral bands and
construct meaningful Normalized Difference and Ratio indices.
Although the selected indices visually separated the vegetation
classes in PCA space, suggesting potential for improved class
separability, they did not consistently enhance the performance
of classification models compared to using the full set of ten
original spectral bands. This indicates that raw reflectance data
already captures the key spectral variation necessary for
accurate classification in most cases.

RF and SVM-RBF achieved higher performance metrics than
LDA across all acquisition dates and feature configurations.
These results highlight the advantages of ensemble and kernel-
based methods in modelling the non-linear spectral patterns
associated with aquatic vegetation. Among the species analysed,
Brachiaria subquadripara and Pistia stratiotes exhibited the
highest spectral distinction from Eichhornia crassipes, enabling
more reliable classification. In contrast, Typha domingensis
showed significant spectral overlap with all phenological stages
of Eichhornia, leading to frequent misclassifications. These
difficulties are likely related to Typha’s taller emergent
structure and high intra-class variability.

Future studies should focus on integrating object-based image
analysis (GEOBIA) to incorporate spatial, morphological, and
textural information, which can enhance the ability to
distinguish spectrally similar classes. The adoption of deep
learning methods, particularly Convolutional Neural Networks
(CNNs), offers promising potential for learning complex
spectral-spatial ~features directly from UAV imagery.

Additionally, the fusion of UAV and satellite datasets, such as
Sentinel-2, can increase the temporal and spatial scalability of
classification systems, making them more suitable for
continuous monitoring. Spectro-temporal modelling and the
inclusion of structural metrics are also recommended to improve
robustness over time and better capture ecological dynamics.
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