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Abstract: 
 
Monitoring aquatic invasive plant species (AIPs) and their phenological stages remains a challenge in complex freshwater 
environments. This study evaluates the potential of UAV-based multispectral imagery and machine learning for classifying six 
vegetation classes in a tropical urban reservoir composed of three phenological stages of Eichhornia crassipes and Brachiaria 
subquadripara, Pistia stratiotes, and Typha domingensis species distribution. UAV flights were conducted on three dates using the 
MicaSense RedEdge-Dual sensor. A two-step principal component analysis (PCA) was used to select spectral bands and derive 
Normalized Difference and Ratio indices, aiming to reduce redundancy and assess their usefulness in classification. Three 
classifiers—Linear Discriminant Analysis (LDA), Random Forest (RF), and Support Vector Machine with RBF kernel (SVM-
RBF)—were tested using 5-fold cross-validation. RF and SVM-RBF achieved the highest accuracies, ranging from 0.71 to 0.84, 
while LDA presented the lowest accuracy, between 0.63 and 0.82. Including spectral indices yielded only marginal improvements 
and did not consistently enhance classification performance, particularly when using more robust algorithms like RF and SVM-RBF, 
indicating that the ten original spectral bands are adequate to capture the key spectral distinctions in most cases. Classification 
performance was more consistent for Brachiaria subquadripara and Pistia stratiotes, while considerable confusion was observed 
between Typha domingensis and the phenological stages of Eichhornia crassipes, likely due to spectral similarity. Overall, model 
selection had a higher influence on performance than feature augmentation. Future studies should explore spatial-textural features 
and sensor fusion to improve the generalization of AIP monitoring systems. 
 
 

1. Introduction 

The rapid proliferation of aquatic invasive plants (IAP), such as 
Eichhornia crassipes (water hyacinth), has significantly 
transformed the ecological balance of eutrophic reservoirs, 
resulting in biodiversity loss, deterioration of water quality, 
reduction of water surface area, and disruption of multiple water 
uses (Hestir et al., 2008; Wu and Ding, 2020). These impacts 
are especially critical in tropical and subtropical urban 
reservoirs, where high nutrient loads and low water circulation 
rates create favorable conditions for uncontrolled macrophyte 
growth. Monitoring the spatial distribution, species 
composition, and phenological stages of these plants is crucial 
for understanding ecosystem dynamics, assessing pollution 
levels, and guiding control strategies and ecological restoration 
efforts (Wu and Ding, 2020). 
 
Remote sensing has become an essential tool in the detection 
and monitoring of IAPs. Satellite data, such as from the Sentinel 
or Landsat programs, provide historical and regional-scale 
analysis, but their spatial resolution often limits their 
effectiveness in heterogeneous environments or in detecting 
early-stage infestations. UAVs equipped with multispectral 
sensors have emerged as a powerful complementary platform, 
offering sensor customization, sub-meter spatial resolution, and 
on-demand flight flexibility. These characteristics enable the 
precise mapping of aquatic vegetation, even in narrow or 
fragmented water bodies, and make UAVs effective for 
distinguishing species and phenological stages (Pádua et al., 
2022; Mouta et al., 2023). 
 

Despite these technological advances, challenges remain in 
accurately discriminating IAP species and their phenological 
stages, mainly due to their high spectral similarity, 
environmental variability, and the structural complexity of 
vegetation. Previous studies have shown that integrating 
spectral indices, such as NDVI or band ratios, alongside in-band 
reflectance data can sometimes improve classification 
performance, although results vary depending on sensor type, 
season and classification algorithm (Ade et al., 2022; Mu et al., 
2023). 
 
Machine learning techniques have increasingly been used to 
address these challenges by modeling complex, non-linear 
relationships in multispectral data. Among the commonly 
adopted classifiers, Linear Discriminant Analysis (LDA), 
Random Forest (RF), and Support Vector Machine with a radial 
basis function kernel (SVM-RBF) are promising techniques for 
vegetation mapping tasks. While LDA offers simplicity and 
interpretability, RF and SVM-RBF typically achieve higher 
accuracy in high-dimensional datasets due to their ability to 
capture intricate patterns. Evaluating these classifiers in the 
context of multitemporal UAV datasets and exploring their 
derived spectral indices can provide important insights into the 
robustness and generalizability of IAP classification models. 
 
This study aims to improve the classification of IPA species and 
their phenological stages using high-resolution multispectral 
imagery acquired by UAVs. We evaluate and compare the 
performance of three machine learning classifiers, LDA, RF and 
SVM-RBF, in distinguishing six vegetation classes, including 
three growth stages of Eichhornia crassipes. To enhance model 
inputs and reduce feature redundancy, we implement a two-step 
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principal component analysis (PCA) for selecting the most 
informative spectral bands and derived indices (Normalized 
Difference and Ratio). The study also investigates whether the 
addition of these spectral indices improves classification 
performance across multiple UAV acquisition flights, and 
assesses the potential and limitations of each classifier in 
handling both species-level and intra-species phenological 
variation. 
 

2. Methodology 

To support this objective, three UAV campaigns were 
conducted at the Ibirité Reservoir (Minas Gerais, Brazil) on 
August 23, September 17, and October 2, 2024, using the 
MicaSense RedEdge Dual-P sensor, which captures data in ten 
multispectral bands at Blue-444, Blue-475, Green-531, Green-
560, Red-650, Red-668, Red Edge-705, Red Edge-717, Red 
Edge-740, and Near Infrared-842 nm. These spectral bands are 
renamed as band_1 to band_10, respectively.  
 
The three UAV campaigns were strategically timed to capture 
phenological variation in aquatic plant development, 
representing late winter (August), early spring (September), and 
mid-spring (October) conditions. According to Ghoussein et al. 
(2019), this period corresponds to the peak seasonal expansion 
of floating macrophytes, such as Eichhornia crassipes, when 
the species exhibit strong phenological expression and 
differences in spectral behaviour become more apparent. The 
dry-season stability and high vegetation cover observed during 
these months provide optimal conditions for class 
discrimination in multispectral imagery. 
 
All flights were calibrated with a reflectance panel and were 
synchronized with Sentinel-2 overpasses, enabling future 
synergy between aerial and satellite data. The images were 
processed using Agisoft Metashape to generate high-resolution 
orthomosaics with a spatial resolution of 6 cm or less. Figure 1 
illustrates an example of the orthomosaics. From these data, 
spectral reflectance data were systematically extracted from 
georeferenced polygons representing different vegetation 
classes. 
 

 
 

Figure 1. UAV orthomosaic of the Ibirité Reservoir (October 2, 
2024). 
 
For each UAV acquisition date, vegetation samples were 
extracted using labelled shapefiles containing georeferenced 
polygons that delineated homogeneous patches of known 
species and phenological stages. These shapefiles were used to 
spatially mask the multispectral UAV orthomosaics, allowing 
the extraction of pixel-level reflectance data exclusively within 
each polygon. Each polygon contributed individual pixel spectra 
to the dataset, rather than averaged values, resulting in a per-
pixel classification approach. 

To maintain class balance and avoid model bias, a maximum of 
3,000 valid samples per vegetation class were randomly 
selected from each date. The final dataset comprised six classes: 
three phenological stages of Eichhornia crassipes, young 
floating, adult floating, and adult rooted (fixed in margins), 
along with Brachiaria subquadripara, Typha domingensis, and 
Pistia stratiotes. Each sampled pixel was characterized by a ten-
dimensional spectral vector corresponding to the UAV sensor’s 
bands and a categorical class label. 
 
Individual datasets were compiled for each UAV flight date and 
subsequently merged into a unified multitemporal database to 
support comparative and temporal classification analyses. For 
model evaluation, the full dataset was randomly partitioned into 
five stratified folds, ensuring a consistent 80% training and 20% 
validation split per fold across all classes. 
 
The labelled training data were used to generate spectral 
signatures for each vegetation class across the three acquisition 
dates, highlighting both interclass separability and phenological 
variation over time. These spectral profiles, derived from pixel-
level reflectance values, are presented in Figure 2. To provide 
spatial context for the labelled areas used in sample extraction, 
Figure 3 displays four zoomed-in orthomosaics with overlaid 
polygons, each representing a different invasive species or 
phenological stage in the reservoir. Complementing this, Figure 
4 includes field photographs documenting the surveyed aquatic 
invasive plants during the UAV campaigns, offering a visual 
reference for the vegetation classes analysed in this study. 
 

 
Figure 2. Spectral signatures of AIP classes derived from labels 
collected on each day of the UAV campaigns. Typha 
domingensis was not present in the mapped area on September 
17, 2024. 
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Figure 3. Labeled training polygons for aquatic vegetation 
classes used in the classification, delineating homogeneous 
patches of six vegetation classes. 
 

 
 
Figure 4. Aquatic invasive plant species observed in the study 
area. 
 
To enhance the relevance of input variables, reduce 
multicollinearity, and improve the spectral separability of 
aquatic vegetation classes, a two-stage feature selection strategy 
was implemented based on unsupervised principal component 
analysis (PCA). This procedure was applied independently to 
each acquisition date, as well as to the combined multitemporal 
dataset. In the first stage, PCA was conducted on the full set of 
ten spectral bands acquired by the UAV sensor. Bands with the 
highest absolute loadings on the leading principal components 
were prioritized for selection, as they contributed most 
significantly to the variance structure of the data. To ensure the 
spectral diversity of the selected bands, pairwise cosine 
similarity was calculated between loading vectors, and bands 
with high spectral redundancy (cosine similarity > 0.90) were 
excluded. 
 
Subsequently, all pairwise combinations of the selected, 
spectrally distinct bands were used to compute two types of 

vegetation indices—Normalized Difference (ND) and Ratio—
which are widely used to capture relative contrast and 
proportional relationships in vegetation reflectance. A second, 
independent PCA was then performed exclusively on the full set 
of derived indices. Importantly, this approach to index selection 
was entirely unsupervised and did not incorporate class labels. 
The same criteria were applied to retain only the most 
informative and non-redundant indices, yielding a refined set of 
variables for classification. This two-step unsupervised process 
resulted in a compact feature set composed of selected spectral 
bands and vegetation indices optimized for spectral variance 
while avoiding collinearity. 
 
To evaluate the impact of feature selection on classification 
accuracy, two modelling strategies were employed. The first 
configuration (dataset B) used the full set of ten original spectral 
bands without any selection. The second configuration (dataset 
B+I) incorporated the reduced set of spectral bands and indices 
obtained through the unsupervised PCA-based procedure. All 
features were standardized using z-score normalization before 
classification. Three machine learning algorithms, LDA, RF and 
SVM-RBF were applied to both configurations (Thamaga and 
Dube, 2019; Bayable et al., 2023). 
 
This experimental design enabled a direct evaluation of how the 
PCA-based, unsupervised feature selection pipeline influenced 
the performance of each classifier. By comparing models 
trained on the original spectral bands (B) with those using the 
optimized combination of selected bands and vegetation indices 
(B+I), we systematically assessed the added value of 
unsupervised index selection for species-level classification of 
aquatic invasive plants in this study. 
 
Mean performance metrics for the five stratified folds, including 
overall accuracy, precision, recall, and F1-score, were computed 
for each classifier and modelling strategy. Confusion matrices 
were also analysed to evaluate classification consistency across 
species and phenological stages. This comparative framework 
enabled a direct examination of how the inclusion of selected 
spectral indices affects model performance relative to using the 
original spectral bands alone. 
 

3. Results: 

3.1 PCA-based unsupervised feature selection 

To reduce feature dimensionality and enhance class separability, 
a two-level PCA was applied: first to the original spectral bands 
and then to the derived spectral indices (Normalized Difference 
and Ratio). The first PCA, conducted on the ten-band 
reflectance data, identified bands with the highest variance 
contribution and lowest angular redundancy. As illustrated in 
Figure 5, which shows the PCA biplot for the combined dataset 
(ALL), selected bands such as band_3, band_5, band_8, and 
band_10 were the most informative and spectrally distinct, 
forming the basis for the generation of pairwise spectral indices. 
 
The second PCA, applied to ND and Ratio indices derived from 
these bands, further reduced dimensionality by identifying a 
subset of indices with high explanatory power and minimal 
collinearity. The biplot shown in Figure 6 presents the results of 
this analysis for the ALL dataset, highlighting indices such as 
ND_B5_B3 – Normalized Green Red Difference Index (Tucker, 
1979), ND_B5_B8, ND_B10_B3 – Green Normalized 
Difference Vegetation Index (Gitelson et al., 1996), and 
R_B5_B8 – Ratio Vegetation Index (Birth and McVey, 1968), 
as the most relevant for class separation. These indices were 
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particularly effective at differentiating among phenological 
stages of Eichhornia crassipes and distinguishing other species 
like Typha domingensis and Brachiaria subquadripara.  
 

 
 
Figure 5. PCA biplot of the original spectral bands (band_1 to 
band_10) for the combined (ALL) dataset. Vectors represent the 
contribution of each band to the first two principal components, 
supporting the selection of bands 3, 5, 8 and 10 for spectral 
index generation. 
 

 
Figure 6. PCA biplot of the derived spectral indices based on 
selected bands from the first PCA. Highlighted indices (e.g., 
ND_B5_B3, ND_B5_B8, ND_B10_B3, and R_B5_B8) showed 
the highest variance contribution and were most effective for 
class discrimination. 
 
Table 1 summarizes the spectral indices selected through PCA 
for each acquisition date and for the combined (ALL) 
multitemporal dataset. While the specific indices varied across 
dates—likely due to phenological changes and environmental 
conditions—certain spectral bands were consistently prominent. 
band_5 was the most frequently selected variable in this 
procedure, followed by band_10, band_3, and band_8. 
Additionally, band_6 and band_7 also appeared in multiple 
indices, reinforcing their importance for capturing subtle 
spectral variations relevant to vegetation class discrimination. 
The frequent recurrence of these bands underscores their 
robustness and relevance in multitemporal classification 
workflows. 
 

Date PCA Selected Indices 
ALL R_B5_B8, ND_B5_B3, ND_B5_B8, ND_B10_B3 
23/08/2024 R_B5_B7, R_B10_B7, ND_B10_B5, ND_B8_B7 
17/09/2024 ND_B6_B3, R_B6_B8, R_B10_B3, R_B10_B6 
02/10/2024 R_B5_B8, R_B10_B5, ND_B10_B3 

 
Table 1. PCA-selected spectral indices for each acquisition date 
and the combined (ALL) dataset. 
 
3.2 Classifier performance assessment 

The 5-fold cross-validation classification performance across 
different machine learning algorithms and feature 
configurations revealed consistent trends throughout the 
multitemporal datasets. Both SVM-RBF and RF classifiers 
consistently achieved the highest overall accuracy and macro-
averaged precision, recall, and F1-score across all acquisition 
dates. In contrast, Linear Discriminant Analysis (LDA) 
systematically underperformed, particularly in the October 2, 
2024 dataset, where its accuracy (0.630) and F1-score (0.660) 
were substantially lower than those of RF (accuracy: 0.718; F1-
score: 0.735) and SVM (accuracy: 0.720; F1-score: 0.738). 
These results highlight the advantage of non-linear and 
ensemble-based methods in modeling the complex spectral 
responses and high inter-class variability associated with 
aquatic invasive plants. For comparison, previous studies using 
Sentinel-2 data and RF, SVM for IAPs classification achieved 
overall accuracies above 85% (Pádua et al., 2022; Bayable et 
al., 2023; Mqingwana et al., 2024). 
 
Although including derivative spectral indices (B+I) is 
generally expected to enhance classification performance, 
especially in Eichhornia crassipes mapping tasks (Thamaga and 
Dube, 2019), our results showed inconsistent improvements. In 
several cases, particularly for RF and SVM-RBF, models using 
only the original spectral bands (B) performed comparably to, 
or even slightly better than, using a complex dataset. This 
suggests that in high spatial and spectral resolution, the raw 
spectral information may already capture the key variability 
needed for class discrimination. 
 
This trend suggests that these algorithms are inherently robust 
to input dimensionality and may already capture the key 
spectral distinctions using raw reflectance data. An exception 
was observed in the LDA classifier on the October 2 dataset, 
where the inclusion of indices improved classification accuracy 
from 0.630 to 0.685 and F1-score from 0.660 to 0.700, 
indicating that feature enhancement may be more beneficial for 
linear classifiers when class separability is limited. 
 
As shown in Table 2, classification performance on the full 
multitemporal dataset (ALL) remained stable for RF and SVM, 
with overall accuracies ranging from 0.76 to 0.78 regardless of 
whether indices were included. LDA, however, continued to 
perform poorly under the multitemporal configuration, 
reaffirming its limitations in capturing spectral variability across 
acquisition dates. Although including derivative spectral indices 
led to minor performance gains in specific cases, most notably 
with LDA, their overall contribution was limited when 
compared to the effect of the classification algorithm itself. 
Comparative results based on the F1-score indicate that model 
choice had a far greater influence on classification success than 
feature augmentation alone. 
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Date Model Features Accuracy Precision Recall F1-Score 
23/08/2024 LDA B+I 0.764 0.764 0.764 0.764 
23/08/2024 LDA B 0.766 0.761 0.762 0.762 
23/08/2024 RF B+I 0.804 0.803 0.804 0.803 
23/08/2024 RF B 0.807 0.807 0.806 0.806 
23/08/2024 SVM (RBF) B+I 0.821 0.820 0.821 0.820 
23/08/2024 SVM (RBF) B 0.822 0.823 0.821 0.821 
17/09/2024 LDA B+I 0.811 0.808 0.811 0.808 
17/09/2024 LDA B 0.818 0.818 0.817 0.817 
17/09/2024 RF B+I 0.826 0.824 0.826 0.824 
17/09/2024 RF B 0.827 0.825 0.825 0.825 
17/09/2024 SVM (RBF) B+I 0.840 0.839 0.840 0.839 
17/09/2024 SVM (RBF) B 0.839 0.837 0.838 0.838 
02/10/2024 LDA B+I 0.685 0.700 0.685 0.700 
02/10/2024 LDA B 0.630 0.729 0.660 0.660 
02/10/2024 RF B+I 0.714 0.731 0.714 0.731 
02/10/2024 RF B 0.718 0.808 0.735 0.735 
02/10/2024 SVM (RBF) B+I 0.719 0.737 0.719 0.737 
02/10/2024 SVM (RBF) B 0.720 0.810 0.738 0.738 

ALL LDA B+I 0.701 0.766 0.701 0.701 
ALL LDA B 0.714 0.736 0.708 0.708 
ALL RF B+I 0.780 0.780 0.752 0.752 
ALL RF B 0.763 0.782 0.759 0.759 
ALL SVM (RBF) B+I 0.761 0.780 0.758 0.758 
ALL SVM (RBF) B 0.762 0.780 0.757 0.757 

 
Table 2. Performance Metrics of LDA, Random Forest, and 
SVM (RBF) Models Across Dates and Feature Sets 
 
These findings emphasize that algorithm selection is more 
essential than feature engineering when classifying AIP species 
using UAV-based multispectral imagery. Ensemble methods 
like Random Forest and kernel-based approaches such as SVM 
(RBF) consistently delivered higher accuracy and F1-scores 
across dates and configurations, demonstrating strong 
performance and adaptability over time. This makes them 
highly suitable for operational monitoring of aquatic vegetation 
in dynamic environments. 
 
Regarding the classification of the dataset ALL with B+I 
features, the confusion matrices for LDA (Figure 7), RF (Figure 
8), and SVM-RBF (Figure 9) reveal important patterns about 
the strengths and limitations of each classifier in handling both 
inter-species and intra-species variation in AIP. 
 
Species-level differentiation was generally strong across all 
models, particularly for Brachiaria subquadripara, Eichhornia 
crassipes, and Pistia stratiotes. These three species displayed 
consistently high true positive rates with limited confusion 
among one another, suggesting that their spectral signature 
variations are sufficiently distinct to be reliably detected by all 
classifiers. In contrast, Typha domingensis proved more difficult 
to classify consistently. All three models showed confusion 
between Typha domingensis and other classes, particularly with 
Eichhornia crassipes, which likely reflects the higher spectral 
variability of Typha.  
 
Typha is a tall and emergent macrophyte, with upright stems 
and denser vertical structure, and exhibits a complex interaction 
with light, including variable shadowing, reflectance anisotropy, 
and increased within-class heterogeneity (Al-Sodany et al., 
2022). Additionally, Typha tends to remain physiologically 
active over longer periods, introducing temporal variation in 
chlorophyll content, canopy moisture, and structural traits. 
These ecological features result in a broader spectral footprint 
across time and space, increasing the likelihood of spectral 
overlap with other species. Also, this variability reduced its 
separability under both linear and non-linear classification 
schemes. 

 
 
Figure 7. Confusion matrix of LDA classification using B+I 
features (Dataset: ALL). 
 

 
 
Figure 8. Confusion matrix of RF classification using B+I 
features (Dataset: ALL). 
 

 
 

Figure 9. Confusion matrix of SVM-RBF classification using 
B+I features (Dataset: ALL). 
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The confusion observed between adult-floating and adult-rooted 
Eichhornia crassipes in the classification results is likely due to 
their similar reflectance profiles in the red-edge and near-
infrared regions. While floating adults tend to maintain higher 
reflectance in these wavelengths due to healthier, more hydrated 
leaves, long-term adult-rooted plants at the margins often 
exhibit increased senescence, homogeneous and denser canopy 
structures—factors that reduce red-edge and NIR reflectance. 
Ghoussein et al. (2023) demonstrated that Eichhornia crassipes 
with signs of aging or mixed physiological states (e.g., 
yellowing or flowering individuals) presented lower reflectance 
in NIR bands compared to vigorous, green monospecific stands.  
 
In contrast, young plants are more easily distinguishable from 
adult individuals due to their higher reflectance in the visible 
range. This spectral behavior is linked to their lower chlorophyll 
content, which results in reduced absorption and consequently 
greater reflectance in the visible wavelengths. Sims and Gamon 
(2002) found this pattern to be consistent across species and 
developmental stages, highlighting that young leaves, with 
underdeveloped pigment structures, exhibit distinct optical 
properties compared to mature leaves. As a result, phenological 
differences between young and adult plants generate a more 
pronounced spectral separation than the structural differences 
between adult floating and rooted forms, whose divergence is 
primarily constrained to the NIR and red-edge domains. 
 
The feature importance analysis from the Random Forest 
classifier trained on the full multitemporal dataset (ALL, B+I) 
revealed a clear dominance of raw spectral bands over 
derivative indices (Table 3). The top-ranked features included 
band_4 (Green, 560 nm), band_3 (Green, 531 nm), and band_7 
(Red Edge, 705 nm), followed by band_1 (Blue, 444 nm) and 
band_10 (NIR, 842 nm). These wavelengths are strongly 
associated with pigment content, internal canopy structure, and 
water status—key traits for distinguishing aquatic invasive 
species under varying phenological conditions. 
 

This ranking aligns with Hestir et al. (2008), who emphasized 
the importance of red-edge and NIR reflectance in capturing the 
structural complexity and physiological variation within 
Eichhornia crassipes mats, particularly where flowering, 
senescence, and active growth coexist. Notably, 
ND_band_10_band_3, the GNDVI, was among the highest-
ranked indices, reflecting its sensitivity to chlorophyll 
concentration and biomass. Mucheye et al. (2022) reported 
strong correlations between GNDVI and chlorophyll content in 
E. crassipes, reinforcing its use for classification of 
phenological stages. 
 

Band Importance Score 
band_4 (Green-560) 0.1077 
band_3 (Green-531) 0.1040 
band_7 (Red Edge 705) 0.0947 
band_1 (Blue-444) 0.0929 
band_10 (Near Infrared-842) 0.0855 
band_8 (Red Edge-717) 0.0852 
band_2 (Blue-475) 0.0796 
ND_band_10_band_3 0.0700 
band_9 (Red Edge-740) 0.0670 
ND_band_5_band_3 0.0511 
band_6 (Red-668) 0.0507 
ND_band_5_band_8 0.0405 
Ratio_band_5_band_8 0.0384 
band_5 (Red-650) 0.0349 
 
Table 3. Top features ranked by RF Importance for the ALL 
Dataset using B+I features. 

 
Our study builds upon recent advances demonstrating the 
effectiveness of RF and SVM in remote sensing-based mapping 
of Eichhornia crassipes. Bayable et al. (2023), working with 
Sentinel-2 and Landsat-8 imagery in Lake Tana (Ethiopia), 
reported overall accuracies exceeding 0.9 using RF and SVM 
for distinguishing E. crassipes from surrounding land cover 
types. Similarly, Pádua et al. (2022) applied these algorithms to 
UAV multispectral imagery over the Mondego River basin 
(Portugal) in a binary classification of E. crassipes versus open 
water, achieving accuracies of 0.94 with RF and 0.87 with 
SVM. While these results confirm the effectiveness of these 
algorithms, they were obtained under relatively simplified 
classification schemes, with greater spectral separation between 
classes and limited intra-class variability. In contrast, our study 
applied RF and SVM-RBF to a more complex and ecologically 
realistic scenario involving six vegetation classes within a 
heterogeneous urban reservoir. Despite the higher spectral 
similarity and structural variability among classes, our models 
achieved overall accuracies ranging from 0.71 to 0.84. These 
findings reaffirm the robustness of RF and SVM in aquatic 
vegetation mapping, particularly when applied to fine-resolution 
UAV data, and underscore their suitability for operational 
monitoring in more challenging classification contexts. 
 
3.3 LDA Projection and the effect of spectral indices 

Regarding the LDA classification of the October 2 dataset, 
where the inclusion of indices improved classification accuracy 
and F-1 score, Figure 10 illustrates the corresponding LDA 
projections in two scenarios: using only the original spectral 
bands (top panel) and using both bands and derivative indices 
(bottom panel). Although the overall distinction between the 
two scenarios is not remarkable, the most notable improvement 
is observed in the separation between Eichhornia crassipes 
adult rooted (green points) and adult floating (yellow points), 
which show reduced overlap and greater distance between their 
centroids in the augmented feature space (Bands + Indices). 
This suggests that the inclusion of spectral indices contributed 
to enhancing the discriminability between these two 
phenological forms. 
 
Furthermore, the Eichhornia crassipes young floating (red 
points) and Typha domingensis (purple points) classes became 
more adjacent in the LDA projection with indices, indicating a 
potential trade-off where the additional features did not 
consistently improve class separability across all groups. A 
further observation is the increased isolation of the Brachiaria 
subquadripara class (blue points) when indices were included, 
as its centroid moved farther away from the other groups, 
suggesting improved distinction from spectrally similar 
vegetation. 
 
These subtle shifts in the LDA space demonstrate that the 
inclusion of spectral indices can enhance linear discriminant 
performance for certain class pairs, particularly when original 
bands alone do not fully capture the spectral variability 
associated with structural and physiological plant traits. Despite 
its simplicity and interpretability, LDA’s limited separation 
reinforces the need for non-linear models like RF and SVM-
RBF to effectively capture complex spectral patterns inherent to 
IAPs (Pádua et al., 2022; Bayable et al., 2023). 
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Figure 10. LDA projection of the October 2 dataset using B 
(Top) and B+I (Bottom) for IAP classification. 
 

4. Conclusions 

This study advanced the classification of aquatic invasive plant 
species and their phenological stages using high-resolution 
UAV multispectral imagery combined with machine learning 
algorithms. A two-level PCA-based dimensionality reduction 
was applied to identify the most informative spectral bands and 
construct meaningful Normalized Difference and Ratio indices. 
Although the selected indices visually separated the vegetation 
classes in PCA space, suggesting potential for improved class 
separability, they did not consistently enhance the performance 
of classification models compared to using the full set of ten 
original spectral bands. This indicates that raw reflectance data 
already captures the key spectral variation necessary for 
accurate classification in most cases. 
 
RF and SVM-RBF achieved higher performance metrics than 
LDA across all acquisition dates and feature configurations. 
These results highlight the advantages of ensemble and kernel-
based methods in modelling the non-linear spectral patterns 
associated with aquatic vegetation. Among the species analysed, 
Brachiaria subquadripara and Pistia stratiotes exhibited the 
highest spectral distinction from Eichhornia crassipes, enabling 
more reliable classification. In contrast, Typha domingensis 
showed significant spectral overlap with all phenological stages 
of Eichhornia, leading to frequent misclassifications. These 
difficulties are likely related to Typha’s taller emergent 
structure and high intra-class variability.  
 
Future studies should focus on integrating object-based image 
analysis (GEOBIA) to incorporate spatial, morphological, and 
textural information, which can enhance the ability to 
distinguish spectrally similar classes. The adoption of deep 
learning methods, particularly Convolutional Neural Networks 
(CNNs), offers promising potential for learning complex 
spectral–spatial features directly from UAV imagery. 

Additionally, the fusion of UAV and satellite datasets, such as 
Sentinel-2, can increase the temporal and spatial scalability of 
classification systems, making them more suitable for 
continuous monitoring. Spectro-temporal modelling and the 
inclusion of structural metrics are also recommended to improve 
robustness over time and better capture ecological dynamics.  
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