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Abstract 
 
To promote sustainable forest management planning including biodiversity monitoring and to enable accurate estimates of stem 
volume, above-ground biomass, and carbon stocks, tree identification is essential to contemporary forest inventory. Deep learning 
models are now crucial tools for automating tree recognition over large, forested regions due to the growing availability of high-
resolution LiDAR data. In order to identify individual trees using LiDAR-derived RGB raster imagery, this work compares two cutting-
edge object identification architectures: YOLOv8 and YOLOv11. A total of 82 annotated images were utilized, rasterized at a resolution 
of 5 cm, and processed using two input resolutions (640×640 pixel and 960×960 pixel), several model configurations (s, m, l, x), and 
augmentation settings (rotation and horizontal flip). To provide fair comparison, every model was trained and evaluated using the same 
methodology. Precision, recall, mAP50, and mAP50-95, standard detection metrics, were used to evaluate performance. The results 
show that YOLOv8 consistently beat YOLOv11 on all metrics, especially in its large and extra-large forms at high resolution. 
YOLOv8x with 960 pixel resolution and augmentation was the best-performing setup, with 0.974 precision, 0.837 recall, 0.934 mAP50, 
and 0.821 mAP50-95. The results demonstrate notable improvements in detection accuracy when compared to previous methods that 
used YOLOv4 or domain-specific structures like YOLOTree. With the use of rasterized UAV laser scanning data, our results highlight 
the potential of the YOLO architecture as a robust and scalable tool for automated, high-precision forest inventory. 
 
 
 

1. Introduction 

Forests are among the most important ecosystems on Earth, 
offering vital functions such as climate regulation, carbon 
sequestration, soil preservation, water purification, and 
biodiversity conservation (Luo et al., 2024; Satama-Bermeo et 
al., 2025; Straker et al., 2023; Sun et al., 2022; Topgül et al., 
2025). As global environmental challenges such as climate 
change, deforestation, and biodiversity loss worsen, the 
significance of sustainable forest management and accurate 
forest inventories grows (Satama-Bermeo et al., 2025; Sun et al., 
2022). Forest inventories are the systematic collection of detailed 
data on forest features such as species composition, tree size, 
health condition, and spatial distribution (Luo et al., 2024; 
Straker et al., 2023). Such thorough inventories are essential for 
making informed decisions about resource allocation, 
conservation strategies, pest control, selective logging, and 
climate change mitigation (Luo et al., 2024; Topgül et al., 2025). 
 
Individual tree identification is a critical component of modern 
forest inventories, allowing for precise estimates of stem volume, 
above-ground biomass, and carbon stocks, as well as targeted 
interventions for biodiversity conservation, forest health 
monitoring, and sustainable management practices (Satama-
Bermeo et al., 2025; Straker et al., 2023; Sun et al., 2022). 
Traditional techniques of tree identification, such as human field 
surveys and aerial imaging interpretation, while accurate, are 
labor-intensive, time-consuming, and costly, especially when 
scaled across large or inaccessible forest regions (Luo et al., 
2024; Satama-Bermeo et al., 2025; Topgül et al., 2025). 
 
 

By making it possible to collect detailed structural and spectral 
data across large forested landscapes, recent developments in 
remote sensing technologies, such as satellite imagery, airborne 
laser scanning (ALS), and high-resolution unmanned aerial 
vehicle (UAV) imagery, have significantly increased the 
effectiveness and scope of forest inventories (Luo et al., 2024; 
Satama-Bermeo et al., 2025; Sun et al., 2022). Numerous 
techniques, such as marker-controlled algorithms, point cloud 
clustering, and watershed segmentation, may be used to extract 
information from these remote sensing datasets (Sun et al., 2022). 
 
Convolutional neural networks (CNNs), a type of deep learning 
(DL) approach, have lately been quite effective at automating 
tasks involving the recognition of individual trees. When 
compared to conventional techniques, these models greatly 
improve the scalability, accuracy, and efficiency of tree 
identification procedures (Luo et al., 2024; Straker et al., 2023; 
Topgül et al., 2025). Notably, even in complex environments 
with overlapping canopies and diverse growth patterns, object 
detection models such as You Only Look Once (YOLO) 
architectures (YOLOv5, YOLOv7, YOLOv8, and YOLOv9) 
have demonstrated remarkable potential in accurately identifying 
individual tree crowns (Luo et al., 2024; Satama-Bermeo et al., 
2025; Sertel and Topgul, 2025; Topgül et al., 2025). 
 
In this paper, deep learning methods for individual tree detection 
are investigated and evaluated for coniferous forest in northern 
Sweden, focusing on the importance of advancements towards 
precision forestry, forest inventory, and sustainable management 
of global forest resources (Satama-Bermeo et al., 2025; Straker 
et al., 2023; Sun et al., 2022). 
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2. Materials and Methods 

2.1 Study Area 

The study was carried out at the Svartberget Experimental Forest, 
located northwest of Vindeln in northern Sweden (64.24°N, 
19.77°E). The forest is owned by the forest company Sveaskog 
and is a part of Vindeln Experimental Forests run by the Swedish 
University of Agricultural Sciences. In the boreal zone, 
Svartberget is a long-term study site with an emphasis on 
sustainable forest management, catchment-scale hydrology, and 
mire ecology. The area is characterized by elevations ranging 
from 160 m to 320 m above sea level and consists predominantly 
of mixed coniferous forest with Norway spruce (Picea abies (L.) 
H. Karst.) and Scots pine (Pinus sylvestris L.). The underlying 
bedrock is composed almost entirely of gneiss, while the soils are 
primarily formed from moraines of varying thickness. 
 
2.2 Dataset 

In this study, the dataset consists of 82 raster images created from 
LiDAR point clouds captured via UAV laser scanning on DJI 
Matrice 350 RTK drone equipped with DJI Zenmuse L1 (i.e., a 
Livox LiDAR module and a 20 MP RGB camera). Firstly, raw 
data are processed through DJI Terra software and then the raw 
point clouds were processed in Cloud-Compare software, 
rendering RGB raster images at a 5 cm spatial resolution. This 
rasterizing method preserves the structural and spatial attributes 
of individual tree crowns while transforming the 3D point cloud 
into a 2D form that can be input into CNNs for object detection. 
 
Due to the variability in forest conditions in terms of tree density, 
crown overlap, and canopy structure, it was essential to ensure 
the robustness of the model. Annotated bounding boxes were 
placed around every individual tree in each image for ground-
truthing in supervised learning. The dataset was split into training 
(70%), validation (20%), and testing (10%) subsets, with a 
representative distribution of forest complexity maintained 
across all splits. In total, 4600 trees were annotated. Even though 
raster image count is limited, many trees were populated in these 
images. Therefore, there are a total of 3103 trees in the training 
dataset, 974 trees in the validation dataset, and 523 trees in the 
test dataset. 
 
Data augmentation was applied to the training set as a means of 
model generalization. Each annotated image was augmented 
three times with horizontal flipping and random rotations, -15° to 
+15° on either side. The augmented variability further aided the 
models in detecting trees under varying orientations and spatial 
arrangements. 
 
2.3 Methodology 

This study compares the two object-detection architectures, 
YOLOv8 and YOLOv11, introduced by Jocher et al. (2023) for 
detecting individual trees using the raster images derived via 
UAV RGB and LiDAR data. The same training and evaluation 
framework was implemented for both models to ensure a 
consistent basis for comparison. The reason for selecting real-
time object-detection models is their scalability of this study. 
Since forests covers large areas, the inference time of these 
models can add up significantly over time (Sertel and Topgul, 
2025; Terven et al., 2023). 
 
2.3.1 Model Architecture and Training Configuration: 
The model families used in this study, YOLOv8 and YOLOv11 
(Jocher et al., 2023), were evaluated under four configurations, 

s-small, m-middle, l-large, and x-extra-large. These variants 
differ in terms of depth and width so the effect of the complexity 
of each model could be assessed in terms of detection 
performance (Terven et al., 2023). All models are pretrained with 
Common Objects in Context dataset before any further training. 
 
The model was trained using the input resolutions of 640×640 
pixel and 960×960 pixel to assess how spatial detail may 
influence model accuracy. In order to further improve 
generalization and to provide robustness against overfitting, data 
augmentation was employed. This involved augmenting each 
input sample three times, with horizontal flipping and random 
rotation in the range of -15° to +15°. These augmentation is 
selected for comparability of previous research by Topgül et al. 
(2025). 
 
It was deemed essential to apply all models by supervised 
learning, with the same optimization setting in terms of learning 
rate scheduling, batch size, and loss functions. This allows to 
factor out other variables affecting architecture and input 
resolution. 
 
2.3.2 Performance Evaluation Metrics: The model has been 
evaluated using precision, recall, and mean Average Precision 
(mAP), all of which are widely regarded as standard metrics for 
evaluating object detection performance. Together with other 
complements, those metrics can be used to judge detection 
accuracy, robustness, and the ability of a given model to both 
localize and classify individual trees. 
 
The metrics are defined as: 

• Precision evaluates the ratio of correctly predicted 
trees among all predicted bounding boxes: 

 

 
 

• Recall quantifies the proportion of true trees that were 
successfully detected: 

 

 
 

• Average Precision (AP) is computed as the area under 
the precision–recall curve for a given IoU threshold: 

 
• Mean Average Precision (mAP) is the average of AP 

values over different Intersection over Union (IoU) 
thresholds. In this study, two versions were used: 

o mAP50, calculated at a fixed IoU threshold 
of 0.5. 

o mAP50–95, averaged over multiple IoU 
thresholds ranging from 0.50 to 0.95 in 0.05 
increments: 

 

 
 
All metrics were computed using the test set. This evaluation 
framework enables a comprehensive comparison of the YOLOv8 
and YOLOv11 architectures in the context of tree detection from 
rasterized UAV LiDAR imagery. 
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3. Results 

The performance results of the YOLOv8 models for individual 
tree detection are presented in Table 1. The table reports results 
for four commonly used object detection performance metrics: 
precision, recall, mAP50, and mAP50-95 evaluated across a 
range of model sizes (s, m, l, x), input resolutions (640×640 pixel 
and 960×960 pixel), and augmentation settings (with and without 
augmentation). 
 
3.1 YOLOv8 Performance 

YOLOv8 models showed a significant increase in recall and 
mAP50-95 values as the model size and resolution increase. 
Among YOLOv8 models, the best mAP50-95 value (0.821) was 
achieved at 960 pixel resolution without increasing the crown 
localization generalization ability, which was demonstrated by 
YOLOv8x. Similar excellent performances were achieved for 
YOLOv8l and YOLOv8x at 960 pixel resolution with 
augmentation, yielding mAP50-95 values of 0.819 and 0.814, 
respectively (Table 1). 
 
In most cases, only slight increases in mAP50-95 values were 
observed with data augmentation; the largest increase occurred 
for YOLOv8m (640 pixel), with the value rising from 0.753 to 
0.780. On the other hand, for YOLOv8x (960 pixel), the accuracy 
decreased from 0.974 to 0.959 when augmentation was applied. 
The benefits of augmentation include improved detection across 
all robustness levels, but there is also a possibility of geometric 
distortion, which may cause a slight loss in prediction reliability. 
 

Table 1. Metric results of YOLOv8 experiments. 

Dataset Model  Preci-
sion 

Re-
call 

mAP 
50 

mAP 
50-95 

640 YOLOv8s 0.949 0.813 0.906 0.678 
640 YOLOv11s 0.926 0.841 0.919 0.659 
640aug YOLOv8s 0.973 0.816 0.909 0.703 
640aug YOLOv11s 0.936 0.828 0.916 0.702 
640 
640 

YOLOv8m 
YOLOv11m 

0.966 
0.957 

0.845 
0.846 

0.930 
0.925 

0.753 
0.724 

640aug 
640aug 

YOLOv8m 
YOLOv11m 

0.947 
0.939 

0.861 
0.843 

0.935 
0.922 

0.780 
0.728 

640 
640 

YOLOv8l 
YOLOv11l 

0.953 
0.958 

0.824 
0.816 

0.919 
0.915 

0.765 
0.715 

640aug 
640aug 

YOLOv8l 
YOLOv11l 

0.954 
0.930 

0.838 
0.844 

0.926 
0.923 

0.723 
0.744 

640 
640 

YOLOv8x 
YOLOv11x 

0.965 
0.942 

0.835 
0.813 

0.923 
0.902 

0.788 
0.717 

640aug 
640aug 

YOLOv8x 
YOLOv11x 

0.952 
0.958 

0.827 
0.826 

0.914 
0.921 

0.798 
0.744 

960 
960 

YOLOv8s 
YOLOv11s 

0.959 
0.946 

0.851 
0.870 

0.927 
0.925 

0.743 
0.741 

960aug 
960aug 

YOLOv8s 
YOLOv11s 

0.961 
0.952 

0.849 
0.857 

0.919 
0.918 

0.726 
0.729 

960 
960 

YOLOv8m 
YOLOv11m 

0.979 
0.962 

0.870 
0.862 

0.925 
0.929 

0.790 
0.781 

960aug 
960aug 

YOLOv8m 
YOLOv11m 

0.951 
0.952 

0.853 
0.865 

0.912 
0.927 

0.786 
0.789 

960 
960 
960aug 
960aug 

YOLOv8l 
YOLOv11l 
YOLOv8l 
YOLOv11l 

0.963 
0.954 
0.957 
0.959 

0.860 
0.842 
0.849 
0.851 

0.919 
0.921 
0.928 
0.936 

0.800 
0.763 
0.819 
0.796 

960 
960 

YOLOv8x 
YOLOv11x 

0.974 
0.967 

0.837 
0.839 

0.934 
0.927 

0.821 
0.775 

960aug 
960aug 

YOLOv8x 
YOLOv11x 

0.959 
0.930 

0.852 
0.836 

0.922 
0.909 

0.814 
0.742 

3.2 YOLOv11 Performance 

In YOLOv11 models, it was observed that increasing model size 
and resolution does not always result in gains in detection 
metrics. For example, while moving from small to medium at 
640×640 pixel, large and extra-large performed nearly 
identically. 
 
Both YOLOv11s and YOLOv11m gave competitive numbers at 
both resolutions, but the additional gain was very clear when 
going from 640×640 pixel to 960×960 pixel. For recall and 
mAP50-95, improved performance is very evident at high spatial 
detail, suggesting a benefit from a higher resolution for moderate 
capacity models. Generally, augmentation contributed to higher 
mAP scores; however, as observed with YOLOv8, it occasionally 
incurs a penalty in precision (Table 1). 
 
3.3 Comparative Insights 

The comparative evaluation of YOLOv8 and YOLOv11 across 
four experimental conditions, 640×640 pixel without 
augmentation (Figure 1), 640×640 pixel with augmentation 
(Figure 2), 960×960 pixel without augmentation (Figure 3), and 
960×960 pixel with augmentation (Figure 4), reveals several 
consistent patterns. At the baseline resolution of 640×640 pixel, 
YOLOv8 uniformly outperforms YOLOv11 for every model 
scale. Specifically, mAP50-95 scores for the small, medium, 
large, and extra‐large YOLOv8 variants register at 0.678, 0.753, 
0.765, and 0.788, respectively, compared to YOLOv11’s 0.659, 
0.724, 0.715, and 0.717 (Figure 1). This advantage—ranging 
from +0.02 for the smallest model to +0.07 for the extra‐large 
model—demonstrates the superior capability of YOLOv8’s 
architecture to resolve individual tree crowns even under lower‐
resolution constraints. 
 

 
Figure 1. Baseline mAP50-95 comparison YOLOv8 versus 

YOLOv11 across small (s), medium (m), large (l), and extra‐
large (x) model variants at 640×640 pixel resolution without 

data augmentation. 
 

When standard data‐augmentation techniques are applied at 
640×640 pixel, both architectures experience performance shifts 
(Figure 2). YOLOv8s and YOLOv8m benefit most (+0.02–0.03 
mAP), while YOLOv8l exhibit slight declines (–0.02). In 
contrast, YOLOv11 displays more uniform gains of up to +0.03 
across its model sizes. Despite these divergent responses to 
augmentation, YOLOv8 retains its lead across all scales. 

0.6

0.7

0.8

0.9

s m l x

640×640 pixel Network size

YOLOv8 YOLOv11
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Figure 2. Impact of standard data‐augmentation on mAP50-95 

for YOLOv8 and YOLOv11 at 640×640 pixel resolution. 
 

Escalating the input resolution to 960×960 pixel significantly 
elevates detection accuracy for both networks (Figure 3). 
YOLOv8’s scores rise to 0.743, 0.790, 0.800, and 0.821, whereas 
YOLOv11 attains 0.741, 0.781, 0.763, and 0.775 for the 
corresponding scales. The extra‐large YOLOv8 model, thus, 
enjoys a +0.04 mAP margin over YOLOv11x, underscoring its 
enhanced capacity to exploit finer spatial detail. 
 

 
Figure 3. Baseline mAP50-95 comparison of YOLOv8 and 

YOLOv11 across all scales at 960×960 pixel input resolution 
without augmentation. 

 
Finally, when high resolution is combined with augmentation 
(Figure 4), further gains are observed: YOLOv8l and YOLOv8x 
 
 
 

achieve approximately +0.02 mAP improvements, while 
YOLOv11m and YOLOv11l record up to +0.03. Nevertheless, 
YOLOv8 continues to secure the highest absolute mAP50-95 
values. Collectively, these findings confirm that YOLOv8 not 
only consistently surpasses YOLOv11 across diverse 
configurations, but also exhibits greater robustness to input 
resolution and augmentation strategies in complex forest‐scene 
crown detection. 
 

 
Figure 4. Combined effect of 960×960 pixel resolution and data 
augmentation on mAP50-95 for YOLOv8 and YOLOv11 across 

model sizes.  
 

4. Discussion 

The study reveals encouraging results with mAP50 scores up to 
0.936 and precision levels above 0.95 in the best configurations, 
evaluating YOLOv8 and YOLOv11 models on UAV RGB and 
LiDAR-derived raster images for individual tree detection. 
Compared to Sun et al. (2022), who used an improved YOLOv4 
model on tree height maps derived directly from airborne laser 
scanning data and reported an overall accuracy of 81.4% with 
scores of recall and precision at 83.6%, our models exhibited 
superior precision and mAP performance, especially at high 
resolution (960×960 pixel). Whereas Sun et al. (2022) have 
introduced advanced augmentation using generative adversarial 
networks (GANs) and fitted overlapping tree segmentation more 
precisely by paraboloid fitting, our pipeline was simplistic with 
augmentation like flipping and rotation, but nevertheless 
produced competitive or even better detection accuracy. This 
indicates considerable improvements in detection quality 
 
 

 
Figure 5. Best results for the YOLOv8 and the YOLOv11 models. 
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Figure 6. Effects of resolution on tree detection performance. 

 

 
Figure 7. Effects of augmentation on tree detection performance. 

 
 

when transitioning from YOLOv4 to newer versions such as 
YOLOv8, although trained on RGB rasterized LiDAR data 
instead of tree height maps, primarily focusing on optimized 
model size and resolution. 
 
Unlike the YOLOTree model proposed by Luo et al. (2024), 
which combines UAV RGB imagery and LiDAR point clouds for 
individual tree detection and crown volume modeling, our study 
focuses solely on individual tree detection performance of 
YOLOv8 and YOLOv11 architectures applied to rasterized RGB 
images derived from LiDAR data. While Luo et al. (2024) 
obtained a mAP50-95 of 52.8% on the TreeLD dataset with their 
lightweight YOLOTree model, our investigations revealed that 
YOLOv11l (960×960 pixel with augmentation) reached up to 
0.936 mAP50 and 0.796 mAP50-95, indicating a significant 
increase in accuracy. 

Furthermore, our models' accuracy regularly approached about 
0.95, exceeding YOLOTree's 90.5% under comparable 
lightweight restrictions. 
 
While Satama-Bermeo et al. (2025) employed UAVs and AI, 
specifically YOLOv4 and Faster R-CNN, to automate road 
signage inventory, our work investigates the recognition of 
individual trees from UAV RGB and LiDAR-derived raster 
images using more contemporary models, YOLOv8 and 
YOLOv11. Both investigations use aerial images to detect 
objects; however, the target domains, road signs and natural 
forest elements, present distinct problems in terms of item scale, 
occlusion, and unpredictability. Unlike signage, which has 
uniform forms and characteristics, trees have natural 
inconsistencies, making detection more difficult. 
 
 

b) 640 YOLOv11m
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Satama-Bermeo et al. (2025) found mAP scores ranging from 
74% to 95% in an urban context using YOLOv4-based models, 
which were frequently used in RGB or multisensory 
configurations. Our top-performing setup, when applying 
YOLOv8x with 960×960 pixel resolution and augmentation, had 
a mAP50 of 0.934 and a mAP50-95 of 0.821, showing equivalent 
or even greater performance in the setting of vegetation structure, 
where trees frequently overlap and vary in size and density. 
 
Furthermore, although the studied signage research focuses on 
real-time performance and model deployment issues in 
complicated urban scenarios, our findings indicate that high 
detection accuracy can be achieved in forested environments 
using rasterized 2D RGB from LiDAR point cloud data. These 
findings indicate that updated YOLO designs provide 
generalizable performance and can serve as strong backbones for 
environmental inventory tasks like tree recognition.  
 
Figures 5-7 support the quantitative findings. Figure 5 shows the 
best results for YOLO8 and YOLO11 models. Figure 6 shows 
the effect of resolution on tree detection performance. In Figure 
7, models trained with flip and rotation show improved crown 
identification under varying orientations and overlapping 
canopies, especially for smaller YOLO variants. However, slight 
overdetection in some cases suggests that geometric 
transformations can introduce small localization noise, which is 
consistent with the observed decreases in precision. On the other 
hand, Figure 6 clearly shows the benefit of using higher 
resolution inputs (960×960 pixel), where finer crown details and 
tree boundaries are more accurately detected, especially in dense 
forest patches. Increased spatial accuracy at 960×960 pixel 
resolution improves the model's ability to discriminate closely 
located crowns, which is reflected in higher recall and mAP50-
95 scores. These qualitative observations confirm that both 
magnification and resolution play complementary roles in 
improving model robustness and detection accuracy in complex 
forest scenes. 
 

5. Conclusions 

This study shows how well the YOLOv8 and YOLOv11 object 
identification architectures can distinguish individual trees from 
RGB raster images taken from UAV LiDAR point cloud data in 
order to improve forest management (Fransson et al., 2023). We 
found that YOLOv8 consistently outperforms YOLOv11 in 
terms of accuracy, recall, and both mAP50 and mAP50-95 scores 
after conducting a comprehensive examination of model sizes (s, 
m, l, x), input resolutions (640×640 pixel and 960×960 pixel), 
and data augmentation procedures. With an accuracy of 0.959, 
recall of 0.851, mAP50 of 0.936, and mAP50-95 of 0.796, the 
greatest detection performance was specifically attained by the 
YOLOv8x model, which was trained at 960×960 pixel resolution 
without augmentation. These findings demonstrate the model’s 
strong generalization capabilities in complex forest environment, 
characterized by overlapping crowns and diverse canopy 
structures. 
 
However, there are limitations. Although using rasterized RGB 
images from the LiDAR point cloud data makes CNN input 
simpler, it does not take into account the point clouds' full 3D 
spatial richness. Furthermore, the findings applicability to other 
forest types or biomes is restricted by the very limited sample size 
(82 images). By combining spectral and structural inputs, 
merging multi-temporal data, or broadening the dataset over 
many ecological zones, future research might overcome these 
constraints. Moreover, adding species categorization, tree health 
evaluation, and 3D crown reconstruction might improve the 

usefulness of the models in ecological monitoring and 
operational forestry. This paper offers a quick, precise, and 
scalable method for detecting individual trees using data from 
UAV RGB and laser scanning data, laying a solid basis for the 
deployment of sophisticated YOLO designs in forest 
applications. 
 
This study represents one of our initial implementations, and due 
to time and venue constraints, extensive comparative 
experiments are beyond the current scope. We plan to conduct 
these comparisons in future studies by testing our methods on 
benchmark datasets or reimplementing prior methods on our data 
for fair evaluation. 
 

Acknowledgements 

This work was part of the ForestMap project which is supported 
under the umbrella of ERA-NET Cofund ForestValue by the 
Swedish Governmental Agency for Innovation Systems, the 
Swedish Energy Agency, the Swedish Research Council for 
Environment, Agricultural Sciences and Spatial Planning, 
Academy of Finland, and the Scientific and Technological 
Research Council of Turkey. ForestValue has received funding 
from the European Union's Horizon 2020 research and 
innovation programme under grant agreement No. 773324 and 
from TUBITAK Project No. 221N393. 
 

References 

Fransson, J.E.S., Sertel, E., Ünsalan, C., Salo, J., Holmström, A., 
Wallerman, J., Nilsson, M., 2023. ForestMap: Mapping Forest 
Attributes Across the Globe - First Case Study. 2023 IEEE Int. 
Geoscience & Remote Sensing Symp., 3395–3397. 
doi.org/10.1109/IGARSS52108.2023.10283354 
 
Jocher, G., Qiu, J., Chaurasia, A., 2023. Ultralytics YOLO, 
Version 8.0.0. ultralytics.com (20 July 2025). 
 
Luo, T., Rao, S., Ma, W., Song, Q., Cao, Z., Zhang, H., Xie, J., 
Wen, X., Gao, W., Chen, Q., Yun, J., Wu, D., 2024. YOLOTree-
Individual Tree Spatial Positioning and Crown Volume 
Calculation Using UAV-RGB Imagery and LiDAR Data. Forests 
15, 1375. doi.org/10.3390/f15081375 
 
Satama-Bermeo, G., Lopez-Guede, J.M., Rahebi, J., Teso-Fz-
Betoño, D., Boyano, A., Akizu-Gardoki, O., 2025. PRISMA 
Review: Drones and AI in Inventory Creation of Signage. Drones 
9, 221. doi.org/10.3390/drones9030221 
 
Sertel, E., Topgul, S.N., 2025. Comparative Analysis of Deep 
Learning Approaches for Forest Stand Type Classification: 
Insights from the New VHRTreeSpecies Benchmark Dataset. 
International Journal of Digital Earth 18, 2522394. 
doi.org/10.1080/17538947.2025.2522394 
 
Straker, A., Puliti, S., Breidenbach, J., Kleinn, C., Pearse, G., 
Astrup, R., Magdon, P., 2023. Instance Segmentation of 
Individual Tree Crowns with YOLOv5: A Comparison of 
Approaches Using the ForInstance Benchmark LiDAR Dataset. 
ISPRS Open Journal of Photogrammetry and Remote Sensing 9, 
100045. doi.org/10.1016/j.ophoto.2023.100045 
 
Sun, C., Huang, C., Zhang, H., Chen, B., An, F., Wang, L., Yun, 
T., 2022. Individual Tree Crown Segmentation and Crown Width 
Extraction from a Heightmap Derived from Aerial Laser 
Scanning Data Using a Deep Learning Framework. Front. Plant 
Sci. 13, 914974. doi.org/10.3389/fpls.2022.914974 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

 
178



 

Terven, J., Córdova-Esparza, D.-M., Romero-González, J.-A., 
2023. A Comprehensive Review of YOLO Architectures in 
Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. 
Machine Learning & Knowledge Extraction 5, 1680–1716. 
doi.org/10.3390/make5040083 
 
Topgül, Ş.N., Sertel, E., Aksoy, S., Unsalan, C., Fransson, J.E.S., 
2025. VHRTrees: A New Benchmark Dataset for Tree Detection 
in Satellite Imagery and Performance Evaluation with YOLO-
Based Models. Front. For. Glob. Change, 7:1495544. 
doi.org/10.3389/ffgc.2024.1495544 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025 
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10–12 September 2025, Espoo, Finland

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

 
179


	Comparative Analysis of YOLOv8 and YOLOv11 on Tree Detection Using UAV RGB and Laser Scanning Data
	1. Introduction
	2. Materials and Methods
	2.1 Study Area
	2.2 Dataset
	2.3 Methodology

	3. Results
	3.1 YOLOv8 Performance
	3.2 YOLOv11 Performance
	3.3 Comparative Insights

	4. Discussion
	5. Conclusions
	Acknowledgements
	References



