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Abstract

To promote sustainable forest management planning including biodiversity monitoring and to enable accurate estimates of stem
volume, above-ground biomass, and carbon stocks, tree identification is essential to contemporary forest inventory. Deep learning
models are now crucial tools for automating tree recognition over large, forested regions due to the growing availability of high-
resolution LiDAR data. In order to identify individual trees using LIDAR-derived RGB raster imagery, this work compares two cutting-
edge object identification architectures: YOLOv8 and YOLOv11. A total of 82 annotated images were utilized, rasterized at a resolution
of 5 cm, and processed using two input resolutions (640x640 pixel and 960x960 pixel), several model configurations (s, m, 1, x), and
augmentation settings (rotation and horizontal flip). To provide fair comparison, every model was trained and evaluated using the same
methodology. Precision, recall, mAP50, and mAP50-95, standard detection metrics, were used to evaluate performance. The results
show that YOLOVS8 consistently beat YOLOv11 on all metrics, especially in its large and extra-large forms at high resolution.
YOLOvV8x with 960 pixel resolution and augmentation was the best-performing setup, with 0.974 precision, 0.837 recall, 0.934 mAP50,
and 0.821 mAP50-95. The results demonstrate notable improvements in detection accuracy when compared to previous methods that
used YOLOvV4 or domain-specific structures like YOLOTree. With the use of rasterized UAV laser scanning data, our results highlight

the potential of the YOLO architecture as a robust and scalable tool for automated, high-precision forest inventory.

1. Introduction

Forests are among the most important ecosystems on Earth,
offering vital functions such as climate regulation, carbon
sequestration, soil preservation, water purification, and
biodiversity conservation (Luo et al., 2024; Satama-Bermeo et
al., 2025; Straker et al., 2023; Sun et al., 2022; Topgiil et al.,
2025). As global environmental challenges such as climate
change, deforestation, and biodiversity loss worsen, the
significance of sustainable forest management and accurate
forest inventories grows (Satama-Bermeo et al., 2025; Sun et al.,
2022). Forest inventories are the systematic collection of detailed
data on forest features such as species composition, tree size,
health condition, and spatial distribution (Luo et al., 2024;
Straker et al., 2023). Such thorough inventories are essential for
making informed decisions about resource allocation,
conservation strategies, pest control, selective logging, and
climate change mitigation (Luo et al., 2024; Topgiil et al., 2025).

Individual tree identification is a critical component of modern
forest inventories, allowing for precise estimates of stem volume,
above-ground biomass, and carbon stocks, as well as targeted
interventions for biodiversity conservation, forest health
monitoring, and sustainable management practices (Satama-
Bermeo et al., 2025; Straker et al., 2023; Sun et al., 2022).
Traditional techniques of tree identification, such as human field
surveys and aerial imaging interpretation, while accurate, are
labor-intensive, time-consuming, and costly, especially when
scaled across large or inaccessible forest regions (Luo et al.,
2024; Satama-Bermeo et al., 2025; Topgiil et al., 2025).

By making it possible to collect detailed structural and spectral
data across large forested landscapes, recent developments in
remote sensing technologies, such as satellite imagery, airborne
laser scanning (ALS), and high-resolution unmanned aerial
vehicle (UAV) imagery, have significantly increased the
effectiveness and scope of forest inventories (Luo et al., 2024;
Satama-Bermeo et al., 2025; Sun et al.,, 2022). Numerous
techniques, such as marker-controlled algorithms, point cloud
clustering, and watershed segmentation, may be used to extract
information from these remote sensing datasets (Sun et al., 2022).

Convolutional neural networks (CNNs), a type of deep learning
(DL) approach, have lately been quite effective at automating
tasks involving the recognition of individual trees. When
compared to conventional techniques, these models greatly
improve the scalability, accuracy, and efficiency of tree
identification procedures (Luo et al., 2024; Straker et al., 2023;
Topgiil et al., 2025). Notably, even in complex environments
with overlapping canopies and diverse growth patterns, object
detection models such as You Only Look Once (YOLO)
architectures (YOLOvS, YOLOv7, YOLOv8, and YOLOV9)
have demonstrated remarkable potential in accurately identifying
individual tree crowns (Luo et al., 2024; Satama-Bermeo et al.,
2025; Sertel and Topgul, 2025; Topgiil et al., 2025).

In this paper, deep learning methods for individual tree detection
are investigated and evaluated for coniferous forest in northern
Sweden, focusing on the importance of advancements towards
precision forestry, forest inventory, and sustainable management
of global forest resources (Satama-Bermeo et al., 2025; Straker
et al., 2023; Sun et al., 2022).
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2. Materials and Methods
2.1 Study Area

The study was carried out at the Svartberget Experimental Forest,
located northwest of Vindeln in northern Sweden (64.24°N,
19.77°E). The forest is owned by the forest company Sveaskog
and is a part of Vindeln Experimental Forests run by the Swedish
University of Agricultural Sciences. In the boreal zone,
Svartberget is a long-term study site with an emphasis on
sustainable forest management, catchment-scale hydrology, and
mire ecology. The area is characterized by elevations ranging
from 160 m to 320 m above sea level and consists predominantly
of mixed coniferous forest with Norway spruce (Picea abies (L.)
H. Karst.) and Scots pine (Pinus sylvestris L.). The underlying
bedrock is composed almost entirely of gneiss, while the soils are
primarily formed from moraines of varying thickness.

2.2 Dataset

In this study, the dataset consists of 82 raster images created from
LiDAR point clouds captured via UAV laser scanning on DJI
Matrice 350 RTK drone equipped with DJI Zenmuse L1 (i.e., a
Livox LiDAR module and a 20 MP RGB camera). Firstly, raw
data are processed through DJI Terra software and then the raw
point clouds were processed in Cloud-Compare software,
rendering RGB raster images at a 5 cm spatial resolution. This
rasterizing method preserves the structural and spatial attributes
of individual tree crowns while transforming the 3D point cloud
into a 2D form that can be input into CNNs for object detection.

Due to the variability in forest conditions in terms of tree density,
crown overlap, and canopy structure, it was essential to ensure
the robustness of the model. Annotated bounding boxes were
placed around every individual tree in each image for ground-
truthing in supervised learning. The dataset was split into training
(70%), validation (20%), and testing (10%) subsets, with a
representative distribution of forest complexity maintained
across all splits. In total, 4600 trees were annotated. Even though
raster image count is limited, many trees were populated in these
images. Therefore, there are a total of 3103 trees in the training
dataset, 974 trees in the validation dataset, and 523 trees in the
test dataset.

Data augmentation was applied to the training set as a means of
model generalization. Each annotated image was augmented
three times with horizontal flipping and random rotations, -15° to
+15° on either side. The augmented variability further aided the
models in detecting trees under varying orientations and spatial
arrangements.

2.3 Methodology

This study compares the two object-detection architectures,
YOLOv8 and YOLOvV11, introduced by Jocher et al. (2023) for
detecting individual trees using the raster images derived via
UAV RGB and LiDAR data. The same training and evaluation
framework was implemented for both models to ensure a
consistent basis for comparison. The reason for selecting real-
time object-detection models is their scalability of this study.
Since forests covers large areas, the inference time of these
models can add up significantly over time (Sertel and Topgul,
2025; Terven et al., 2023).

2.3.1 Model Architecture and Training Configuration:
The model families used in this study, YOLOvVS8 and YOLOv11
(Jocher et al., 2023), were evaluated under four configurations,

s-small, m-middle, l-large, and x-extra-large. These variants
differ in terms of depth and width so the effect of the complexity
of each model could be assessed in terms of detection
performance (Terven et al., 2023). All models are pretrained with
Common Objects in Context dataset before any further training.

The model was trained using the input resolutions of 640x640
pixel and 960%960 pixel to assess how spatial detail may
influence model accuracy. In order to further improve
generalization and to provide robustness against overfitting, data
augmentation was employed. This involved augmenting each
input sample three times, with horizontal flipping and random
rotation in the range of -15° to +15°. These augmentation is
selected for comparability of previous research by Topgiil et al.
(2025).

It was deemed essential to apply all models by supervised
learning, with the same optimization setting in terms of learning
rate scheduling, batch size, and loss functions. This allows to
factor out other variables affecting architecture and input
resolution.

2.3.2 Performance Evaluation Metrics: The model has been
evaluated using precision, recall, and mean Average Precision
(mAP), all of which are widely regarded as standard metrics for
evaluating object detection performance. Together with other
complements, those metrics can be used to judge detection
accuracy, robustness, and the ability of a given model to both
localize and classify individual trees.

The metrics are defined as:

e  Precision evaluates the ratio of correctly predicted
trees among all predicted bounding boxes:

TP
TP + FP

Precision =

e Recall quantifies the proportion of true trees that were
successfully detected:

TP

Recall = ————
TP + FN

e  Average Precision (AP) is computed as the area under
the precision—recall curve for a given IoU threshold:

e  Mean Average Precision (mAP) is the average of AP
values over different Intersection over Union (IoU)
thresholds. In this study, two versions were used:

o mAP50, calculated at a fixed IoU threshold
of 0.5.

o mAP50-95, averaged over multiple IoU
thresholds ranging from 0.50 to 0.95 in 0.05
increments:

All metrics were computed using the test set. This evaluation
framework enables a comprehensive comparison of the YOLOVS
and YOLOV11 architectures in the context of tree detection from
rasterized UAV LiDAR imagery.
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3. Results

The performance results of the YOLOvVS models for individual
tree detection are presented in Table 1. The table reports results
for four commonly used object detection performance metrics:
precision, recall, mAP50, and mAP50-95 evaluated across a
range of model sizes (s, m, 1, X), input resolutions (640x640 pixel
and 960960 pixel), and augmentation settings (with and without
augmentation).

3.1 YOLOVS Performance

YOLOv8 models showed a significant increase in recall and
mAP50-95 values as the model size and resolution increase.
Among YOLOv8 models, the best mAP50-95 value (0.821) was
achieved at 960 pixel resolution without increasing the crown
localization generalization ability, which was demonstrated by
YOLOv8x. Similar excellent performances were achieved for
YOLOv8l and YOLOv8x at 960 pixel resolution with
augmentation, yielding mAP50-95 values of 0.819 and 0.814,
respectively (Table 1).

In most cases, only slight increases in mAP50-95 values were
observed with data augmentation; the largest increase occurred
for YOLOvV8m (640 pixel), with the value rising from 0.753 to
0.780. On the other hand, for YOLOvV8x (960 pixel), the accuracy
decreased from 0.974 to 0.959 when augmentation was applied.
The benefits of augmentation include improved detection across
all robustness levels, but there is also a possibility of geometric
distortion, which may cause a slight loss in prediction reliability.

Table 1. Metric results of YOLOvV8 experiments.

Dataset | Model Preci- | Re- mAP | mAP

sion call 50 50-95
640 YOLOvVS8s 0949 | 0.813 | 0.906 | 0.678
640 YOLOvll1s 0.926 | 0.841 | 0919 | 0.659
640aug | YOLOvS8s 0973 | 0.816 | 0.909 | 0.703
640aug | YOLOvlls | 0936 | 0.828 | 0.916 | 0.702
640 YOLOv8m | 0.966 | 0.845 | 0.930 | 0.753
640 YOLOv1lm | 0.957 | 0.846 | 0.925 | 0.724
640aug | YOLOv8m | 0.947 | 0.861 | 0.935 | 0.780
640aug | YOLOvlIm | 0.939 | 0.843 | 0.922 | 0.728
640 YOLOvSI 0.953 | 0.824 | 0919 | 0.765
640 YOLOv111 0958 | 0.816 | 0915 | 0.715
640aug | YOLOvSI 0.954 | 0.838 | 0.926 | 0.723
640aug | YOLOvIIl | 0930 | 0.844 | 0.923 | 0.744
640 YOLOv8x 0.965 | 0.835 | 0.923 | 0.788
640 YOLOvllx | 0.942 | 0.813 | 0.902 | 0.717
640aug | YOLOV8x 0.952 | 0.827 | 0.914 | 0.798
640aug | YOLOvllx | 0958 | 0.826 | 0.921 | 0.744
960 YOLOvVS8s 0.959 | 0.851 | 0.927 | 0.743
960 YOLOvll1s 0946 | 0.870 | 0.925 | 0.741
960aug | YOLOvS8s 0.961 0.849 | 0.919 | 0.726
960aug | YOLOvlls 0952 | 0.857 | 0918 | 0.729
960 YOLOv8m | 0.979 | 0.870 | 0.925 | 0.790
960 YOLOvllm | 0.962 | 0.862 | 0.929 | 0.781
960aug | YOLOv8m | 0.951 | 0.853 | 0.912 | 0.786
960aug | YOLOvIIm | 0.952 | 0.865 | 0.927 | 0.789
960 YOLOvSI 0.963 | 0.860 | 0.919 | 0.800
960 YOLOv111 0954 | 0.842 | 0.921 | 0.763
960aug | YOLOVSI 0.957 | 0.849 | 0.928 | 0.819
960aug | YOLOv11l 0.959 | 0.851 | 0.936 | 0.796
960 YOLOvVS8x 0.974 | 0.837 | 0.934 | 0.821
960 YOLOvl1lx | 0.967 | 0.839 | 0.927 | 0.775
960aug | YOLOvV8x 0.959 | 0.852 | 0.922 | 0.814
960aug | YOLOvIIx | 0.930 | 0.836 | 0.909 | 0.742

3.2 YOLOvV11 Performance

In YOLOvV11 models, it was observed that increasing model size
and resolution does not always result in gains in detection
metrics. For example, while moving from small to medium at
640x640 pixel, large and extra-large performed nearly
identically.

Both YOLOv11s and YOLOv11m gave competitive numbers at
both resolutions, but the additional gain was very clear when
going from 640%x640 pixel to 960x960 pixel. For recall and
mAP50-95, improved performance is very evident at high spatial
detail, suggesting a benefit from a higher resolution for moderate
capacity models. Generally, augmentation contributed to higher
mAP scores; however, as observed with YOLOVS, it occasionally
incurs a penalty in precision (Table 1).

3.3 Comparative Insights

The comparative evaluation of YOLOv8 and YOLOvVI11 across
four experimental conditions, 640x640 pixel without
augmentation (Figure 1), 640x640 pixel with augmentation
(Figure 2), 960x960 pixel without augmentation (Figure 3), and
960x960 pixel with augmentation (Figure 4), reveals several
consistent patterns. At the baseline resolution of 640x640 pixel,
YOLOvV8 uniformly outperforms YOLOv11 for every model
scale. Specifically, mAP50-95 scores for the small, medium,
large, and extra-large YOLOVS variants register at 0.678, 0.753,
0.765, and 0.788, respectively, compared to YOLOv11’s 0.659,
0.724, 0.715, and 0.717 (Figure 1). This advantage—ranging
from +0.02 for the smallest model to +0.07 for the extra-large
model—demonstrates the superior capability of YOLOVS’s
architecture to resolve individual tree crowns even under lower-
resolution constraints.

640x640 pixel Network size
0.9

0.8

" I I I
s m | X

B YOLOVS8 YOLOv11
Figure 1. Baseline mAP50-95 comparison YOLOvVS versus
YOLOVI11 across small (s), medium (m), large (1), and extra-
large (x) model variants at 640640 pixel resolution without
data augmentation.

When standard data-augmentation techniques are applied at
640%640 pixel, both architectures experience performance shifts
(Figure 2). YOLOv8s and YOLOv8m benefit most (+0.02—0.03
mAP), while YOLOv8I exhibit slight declines (-0.02). In
contrast, YOLOv11 displays more uniform gains of up to +0.03
across its model sizes. Despite these divergent responses to
augmentation, YOLOVS retains its lead across all scales.
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Figure 2. Impact of standard data-augmentation on mAP50-95
for YOLOv8 and YOLOv11 at 640x640 pixel resolution.

Escalating the input resolution to 960x960 pixel significantly
elevates detection accuracy for both networks (Figure 3).
YOLOVS8’s scores rise to 0.743, 0.790, 0.800, and 0.821, whereas
YOLOvI11 attains 0.741, 0.781, 0.763, and 0.775 for the
corresponding scales. The extra-large YOLOv8 model, thus,
enjoys a +0.04 mAP margin over YOLOv11x, underscoring its
enhanced capacity to exploit finer spatial detail.

960x960 pixel Network Size

0.9

0.8
0.6
s m | X

EHYOLOv8 mYOLOv1l

~

Figure 3. Baseline mAP50-95 comparison of YOLOVS8 and
YOLOV11 across all scales at 960x960 pixel input resolution
without augmentation.

Finally, when high resolution is combined with augmentation
(Figure 4), further gains are observed: YOLOvVS8I and YOLOv8x

re
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Tree T re Tree | T1e€ Tree Tree 0.8 Tree fTree 0.9

rree Tree 1.0

a) Ground Truth b) 640 aug YOLOVSX

Treé 1 0 TleeO 5.9

¢) 960 YOLOv8x

achieve approximately +0.02 mAP improvements, while
YOLOv11m and YOLOvVI11I record up to +0.03. Nevertheless,
YOLOvV8 continues to secure the highest absolute mAP50-95
values. Collectively, these findings confirm that YOLOvVS8 not
only consistently surpasses YOLOv11l across diverse
configurations, but also exhibits greater robustness to input
resolution and augmentation strategies in complex forest-scene
crown detection.

960x960 pixel Network Size with Aug
0.9

0.8
0.6
S m | X

HYOLOv8 mYOLOv1l

~

Figure 4. Combined effect of 960x960 pixel resolution and data
augmentation on mAP50-95 for YOLOv8 and YOLOv11 across
model sizes.

4. Discussion

The study reveals encouraging results with mAP50 scores up to
0.936 and precision levels above 0.95 in the best configurations,
evaluating YOLOv8 and YOLOv11 models on UAV RGB and
LiDAR-derived raster images for individual tree detection.
Compared to Sun et al. (2022), who used an improved YOLOv4
model on tree height maps derived directly from airborne laser
scanning data and reported an overall accuracy of 81.4% with
scores of recall and precision at 83.6%, our models exhibited
superior precision and mAP performance, especially at high
resolution (960x960 pixel). Whereas Sun et al. (2022) have
introduced advanced augmentation using generative adversarial
networks (GANs) and fitted overlapping tree segmentation more
precisely by paraboloid fitting, our pipeline was simplistic with
augmentation like flipping and rotation, but nevertheless
produced competitive or even better detection accuracy. This
indicates considerable improvements in detection quality

“Tree 0.9 JTr
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Tree04eeos

d) 640 aug YOLOvI111 e) 960 aug YOLOvI11I

Figure 5. Best results for the YOLOv8 and the YOLOv11 models.
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Figure 6. Effects of resolution on tree detection performance.
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Figure 7. Effects of augmentation on tree detection performance.

when transitioning from YOLOv4 to newer versions such as
YOLOVS, although trained on RGB rasterized LiDAR data
instead of tree height maps, primarily focusing on optimized
model size and resolution.

Unlike the YOLOTree model proposed by Luo et al. (2024),
which combines UAV RGB imagery and LiDAR point clouds for
individual tree detection and crown volume modeling, our study
focuses solely on individual tree detection performance of
YOLOvV8 and YOLOV11 architectures applied to rasterized RGB
images derived from LiDAR data. While Luo et al. (2024)
obtained a mAP50-95 of 52.8% on the TreeLD dataset with their
lightweight YOLOTree model, our investigations revealed that
YOLOv111 (960x960 pixel with augmentation) reached up to
0.936 mAP50 and 0.796 mAP50-95, indicating a significant
increase in accuracy.

Furthermore, our models' accuracy regularly approached about
0.95, exceeding YOLOTree's 90.5% under comparable
lightweight restrictions.

While Satama-Bermeo et al. (2025) employed UAVs and Al,
specifically YOLOv4 and Faster R-CNN, to automate road
signage inventory, our work investigates the recognition of
individual trees from UAV RGB and LiDAR-derived raster
images using more contemporary models, YOLOv8 and
YOLOv11. Both investigations use aerial images to detect
objects; however, the target domains, road signs and natural
forest elements, present distinct problems in terms of item scale,
occlusion, and unpredictability. Unlike signage, which has
uniform forms and characteristics, trees have natural
inconsistencies, making detection more difficult.
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Satama-Bermeo et al. (2025) found mAP scores ranging from
74% to 95% in an urban context using YOLOv4-based models,
which were frequently used in RGB or multisensory
configurations. Our top-performing setup, when applying
YOLOv8x with 960%960 pixel resolution and augmentation, had
amAP50 0f 0.934 and a mAP50-95 of 0.821, showing equivalent
or even greater performance in the setting of vegetation structure,
where trees frequently overlap and vary in size and density.

Furthermore, although the studied signage research focuses on
real-time performance and model deployment issues in
complicated urban scenarios, our findings indicate that high
detection accuracy can be achieved in forested environments
using rasterized 2D RGB from LiDAR point cloud data. These
findings indicate that updated YOLO designs provide
generalizable performance and can serve as strong backbones for
environmental inventory tasks like tree recognition.

Figures 5-7 support the quantitative findings. Figure 5 shows the
best results for YOLO8 and YOLO11 models. Figure 6 shows
the effect of resolution on tree detection performance. In Figure
7, models trained with flip and rotation show improved crown
identification under varying orientations and overlapping
canopies, especially for smaller YOLO variants. However, slight
overdetection in some cases suggests that geometric
transformations can introduce small localization noise, which is
consistent with the observed decreases in precision. On the other
hand, Figure 6 clearly shows the benefit of using higher
resolution inputs (960x960 pixel), where finer crown details and
tree boundaries are more accurately detected, especially in dense
forest patches. Increased spatial accuracy at 960x960 pixel
resolution improves the model's ability to discriminate closely
located crowns, which is reflected in higher recall and mAP50-
95 scores. These qualitative observations confirm that both
magnification and resolution play complementary roles in
improving model robustness and detection accuracy in complex
forest scenes.

5. Conclusions

This study shows how well the YOLOvV8 and YOLOvV11 object
identification architectures can distinguish individual trees from
RGB raster images taken from UAV LiDAR point cloud data in
order to improve forest management (Fransson et al., 2023). We
found that YOLOvVS8 consistently outperforms YOLOvI1! in
terms of accuracy, recall, and both mAP50 and mAP50-95 scores
after conducting a comprehensive examination of model sizes (s,
m, 1, x), input resolutions (640x640 pixel and 960x960 pixel),
and data augmentation procedures. With an accuracy of 0.959,
recall of 0.851, mAP50 of 0.936, and mAP50-95 of 0.796, the
greatest detection performance was specifically attained by the
YOLOv8x model, which was trained at 960x960 pixel resolution
without augmentation. These findings demonstrate the model’s
strong generalization capabilities in complex forest environment,
characterized by overlapping crowns and diverse canopy
structures.

However, there are limitations. Although using rasterized RGB
images from the LiDAR point cloud data makes CNN input
simpler, it does not take into account the point clouds' full 3D
spatial richness. Furthermore, the findings applicability to other
forest types or biomes is restricted by the very limited sample size
(82 images). By combining spectral and structural inputs,
merging multi-temporal data, or broadening the dataset over
many ecological zones, future research might overcome these
constraints. Moreover, adding species categorization, tree health
evaluation, and 3D crown reconstruction might improve the

usefulness of the models in ecological monitoring and
operational forestry. This paper offers a quick, precise, and
scalable method for detecting individual trees using data from
UAYV RGB and laser scanning data, laying a solid basis for the
deployment of sophisticated YOLO designs in forest
applications.

This study represents one of our initial implementations, and due
to time and venue constraints, extensive comparative
experiments are beyond the current scope. We plan to conduct
these comparisons in future studies by testing our methods on
benchmark datasets or reimplementing prior methods on our data
for fair evaluation.

Acknowledgements

This work was part of the ForestMap project which is supported
under the umbrella of ERA-NET Cofund ForestValue by the
Swedish Governmental Agency for Innovation Systems, the
Swedish Energy Agency, the Swedish Research Council for
Environment, Agricultural Sciences and Spatial Planning,
Academy of Finland, and the Scientific and Technological
Research Council of Turkey. ForestValue has received funding
from the European Union's Horizon 2020 research and
innovation programme under grant agreement No. 773324 and
from TUBITAK Project No. 221N393.

References

Fransson, J.E.S., Sertel, E., Unsalan, C., Salo, J., Holmstrém, A.,
Wallerman, J., Nilsson, M., 2023. ForestMap: Mapping Forest
Attributes Across the Globe - First Case Study. 2023 IEEE Int.
Geoscience & Remote Sensing Symp., 3395-3397.
doi.org/10.1109/IGARSS52108.2023.10283354

Jocher, G., Qiu, J., Chaurasia, A., 2023. Ultralytics YOLO,
Version 8.0.0. ultralytics.com (20 July 2025).

Luo, T., Rao, S., Ma, W., Song, Q., Cao, Z., Zhang, H., Xie, J.,
Wen, X., Gao, W., Chen, Q., Yun, J., Wu, D., 2024. YOLOTree-
Individual Tree Spatial Positioning and Crown Volume
Calculation Using UAV-RGB Imagery and LiDAR Data. Forests
15, 1375. doi.org/10.3390/£15081375

Satama-Bermeo, G., Lopez-Guede, J.M., Rahebi, J., Teso-Fz-
Betofio, D., Boyano, A., Akizu-Gardoki, O., 2025. PRISMA
Review: Drones and Al in Inventory Creation of Signage. Drones
9, 221. doi.org/10.3390/drones9030221

Sertel, E., Topgul, S.N., 2025. Comparative Analysis of Deep
Learning Approaches for Forest Stand Type Classification:
Insights from the New VHRTreeSpecies Benchmark Dataset.
International  Journal of Digital Earth 18, 2522394.
doi.org/10.1080/17538947.2025.2522394

Straker, A., Puliti, S., Breidenbach, J., Kleinn, C., Pearse, G.,
Astrup, R., Magdon, P., 2023. Instance Segmentation of
Individual Tree Crowns with YOLOv5: A Comparison of
Approaches Using the ForInstance Benchmark LiDAR Dataset.
ISPRS Open Journal of Photogrammetry and Remote Sensing 9,
100045. doi.org/10.1016/j.0phot0.2023.100045

Sun, C., Huang, C., Zhang, H., Chen, B., An, F., Wang, L., Yun,
T., 2022. Individual Tree Crown Segmentation and Crown Width
Extraction from a Heightmap Derived from Aerial Laser
Scanning Data Using a Deep Learning Framework. Front. Plant
Sci. 13,914974. doi.org/10.3389/fpls.2022.914974

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License. 178



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-2/W2-2025
UAV-g 2025 Uncrewed Aerial Vehicles in Geomatics, 10—12 September 2025, Espoo, Finland

Terven, J., Cordova-Esparza, D.-M., Romero-Gonzalez, J.-A.,
2023. A Comprehensive Review of YOLO Architectures in
Computer Vision: From YOLOvI to YOLOv8 and YOLO-NAS.
Machine Learning & Knowledge Extraction 5, 1680-1716.
doi.org/10.3390/make5040083

Topgiil, S.N., Sertel, E., Aksoy, S., Unsalan, C., Fransson, J.E.S.,
2025. VHRTrees: A New Benchmark Dataset for Tree Detection
in Satellite Imagery and Performance Evaluation with YOLO-
Based Models. Front. For. Glob. Change, 7:1495544.
doi.org/10.3389/ffgc.2024.1495544

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-2-W2-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

179



	Comparative Analysis of YOLOv8 and YOLOv11 on Tree Detection Using UAV RGB and Laser Scanning Data
	1. Introduction
	2. Materials and Methods
	2.1 Study Area
	2.2 Dataset
	2.3 Methodology

	3. Results
	3.1 YOLOv8 Performance
	3.2 YOLOv11 Performance
	3.3 Comparative Insights

	4. Discussion
	5. Conclusions
	Acknowledgements
	References



